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Resumo

Uma coloração equilibrada é uma coloração própria de um Grafo G na qual, para
quaisquer duas cores, a diferença entre as ocorrências das cores é no máximo igual a
uma unidade. Para muitas aplicações faz-se necessário resolver o problema associ-
ado de encontrar a coloração equilibrada com o menor nḿero de cores. O conceito
de coloração equilibrada e o problema de minimização associado podem ser esten-
didos para coloração de arestas e coloração total. Neste trabalho introduz-se uma
formula ção por programação inteira para o problema de coloração equilibrada, e
também as transformações necessárias para se resolver os problemas correlatos de
coloração de arestas e coloração total.

Palavras-chave: Coloração Equilibrada, Programação Inteira.

Abstract

An equitable coloring is a proper coloring of a graph G in which, for any two colors,
the difference between color occurrence is at most one. For many applications it is
necessary to solve the associated problem of finding the equitable coloring with the
minimum number of colors. The concept of equitable coloring and the associated
problem can be extended to edge and total coloring. In this work we introduce
an integer programming formulation to the equitable coloring problem, as well as
the necessary transformations to solve the correlated equitable edge coloring and
equitable total coloring problems.

Keywords: Equitable Coloring, Integer Programming.
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2 AN PROGRAMMING APPROACH TO EQUITABLE COLORING PROBLEMS

1. Introduction

The concept of equitable coloring has many applications, for example in sched-
uling problems, when we need to distribute tasks among agents so that any two
agents must have similar quantity of tasks.

Equitable coloring can be used also to solve load balancing problems, when we
need to distribute process and communications activities evenly across a computer
network so that no single device is overwhelmed. Load balancing is specially im-
portant for networks where it is difficult to predict the number of requests that
will be issued to a server. Load balancing can also refer to the communications
channels themselves, in this case we can use equitable edge coloring or equitable
total coloring, depending if we need or not to distribute the tasks only among the
channels or consider the servers too.

Recently we have used balanced total coloring to create general algorithms for
interconnecting networks. Total coloring of a graph can suitable represent intercon-
necting networks, since the elements that can work at the same time are mapped
to the classes of colors representing independents sets. This allows the creation of
algorithms based on colors and not in topologies themselves. We can enumerate
much more applications, but the precedent list is sufficient to show the importance
of the concept and the necessity of finding the solution of the associate problem,
i.e, find the equitable coloring of a graph with the minimum number of colors, in a
reasonable computational time.

In the present work we introduce an integer programming formulation to the
equitable coloring problem, as well as the necessary transformations to solve the
correlated equitable edge coloring and equitable total coloring problems. It is im-
portant to emphasize that, as far as we know, there is no another mathematical
programming formulation for the problem in the literature.

This work is organized as follows. The second section is dedicated to formal
definitions of equitable coloring problems, and the necessary transformations to
convert the equitable edge coloring and the equitable total coloring problems into
the equitable coloring problem. The third section is dedicated to present the in-
teger programming formulation and in the last section we show some preliminary
computational results.

2. Definitions

A proper coloring ϕ of a graph G(V,E) is a mapping from V to a set of colors
C, such that no two adjacent vertices have the same image.

A proper edge coloring ϕ′ of a graph G(V,E) is a mapping from E to a set of
colors C, such that no two adjacent edges have the same image.

A proper total coloring ϕT of a graph G(V,E) is a mapping from V
⋃

E to a
set of colors C, such that no two adjacent or incident elements have the same image.
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Given a proper coloring of a graph G, we denote by y(c) the number of times
that color c appears in the coloring.

A proper coloring of G is an equitable coloring if, for every two (node) colors c1

and c2 of C, we have |y(c1)− y(c2)| ≤ 1. The associated equitable coloring problem
consists in finding the equitable coloring of G with the minimum number of colors.
This number is denoted by χeq(G).

A proper edge coloring of G is an equitable edge coloring if, for every two (edge)
colors c1 and c2 of C, we have |y(c1) − y(c2)| ≤ 1. The associated equitable edge
coloring problem consists in finding the equitable edge coloring of G with the min-
imum number of colors. This number is denoted by χ′

eq(G).

A proper total coloring of G is an equitable total coloring if, for every two (node
or edge) colors c1 and c2 of C, we have |y(c1)−y(c2)| ≤ 1. The associated equitable
total coloring problem consists in finding the equitable total coloring of G with the
minimum number of colors. This number is denoted by χT

eq(G).

The three problems are refereed as equitable coloring problems.

Given a graph G(V,E), the line graph of G is a graph G̃(Ṽ , Ẽ) in which Ṽ = E

and xw ∈ Ẽ if and only if x and w has a common vertex in G.

Given a graph G(V,E) the total graph of G is a graph Ġ(V̇ , Ė) in which V̇ =
V

⋃
E and xw ∈ Ė if and only if one of the following sentences is true:

(1) x and w are edges of G sharing a common vertex.
(2) x and w are adjacent vertices in G.
(3) x ∈ V and w ∈ E and w is incident to x in G.

It is easy to see that an equitable coloring of the line graph of a graph G is
equivalent to an equitable edge coloring of G. It is also easy to see that an equitable
coloring of the total graph of a graph G is equivalent to an equitable total coloring
of G. Therefore, the integer programming formulation introduce in next section
can be used to model all the equitable coloring problems.

3. Integer Programming Formulation

In this section we introduce the Integer Programming Formulation to The Eq-
uitable Coloring Problem. It is important to emphasize that, as far as we know,
there is no another mathematical programming formulation for this problem in the
literature.

The first step consists in introducing the decision variables, all integer. There
are three classes of variables: the binary xvc variables linking colors c to vertices v,
the also binary wc variables related to colors c and the integer variables yc related
also to colors c.

The first class of binary variables, xvc, is widely used in the literature for coloring
problems, and are defined as follows:
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(1) xvc =

{
1 if color c is assigned to vertex v,
0 otherwise,

for all v ∈ V and c ∈ {1, . . . ,∆ + 1}.

It is known [Hajnal-Szemeredi] that every graph G has χeq(G) ≤ ∆(G)+1. Then
∆ + 1 colors are sufficient to color a graph in an equitable way. So, in order to
minimize the number of colors being used in the formulation, we define the class
wc of binary variables as follows:

(2) wc =

{
1 if xvc = 1 for some vertex v,
0 otherwise,

for all c ∈ {1, . . . ,∆ + 1}.

Until this point we have not address the equitable necessary condition stating
that an equitable coloring of a graph G is a proper vertex coloring such that the
sizes of every two used color classes differ by at most one unity. Here the size of
a used color class is the number of vertices colored with that color. In order to
address this question we introduce the class of yc integer variables as follows:

(3) yc =
n∑

v=1

x vc , for all c ∈ {1, . . . ,∆ + 1}.

The mathematical formulation is then stated as follows:

(4)



min
∆+1∑
c=1

wc

∆+1∑
c=1

xvc = 1 , ∀ v ∈ V (a)

x vc + x uc ≤ wc , ∀ (v, u) ∈ E , ∀ c ∈ {1, . . . ,∆ + 1}(b)

yc =
n∑

v=1

xvc , ∀ c ∈ {1, . . . ,∆ + 1} (c)

| yc − yl | ≤ 1 , ∀ c, l ∈ {1, . . . ,∆ + 1} (d)

xvc ∈ {0, 1} , ∀ v ∈ V , ∀ c ∈ {1, . . . ,∆ + 1}

wc ∈ {0, 1} , ∀ c ∈ {1, . . . ,∆ + 1}

yc is integer , ∀ c ∈ {1, . . . ,∆ + 1}
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Constraints (4a) assert that each vertex must receive exactly one color and con-
straints (4b) say that no pair of adjacent vertices can share the same color. Variables
yc count the number of vertices colored with color c (constraints (4c)). Finally, con-
straints (4d) guarantee that the sizes of every two used color classes differ by at
most one unity. Clearly, the variables wc can be relaxed to wc ∈ [0, 1] without
changing the feasible solution set.

In order to model (4) becomes implementable, we need to drop the modulus
function in constraints (4d). It is easy to observe that, in fact, we have only to
force | yc − yl |≤1 when both wc and wl are different from zero. This leads to the
following pair of integer disjoint constraints that, together, replace (4d):

(5) yc − yl ≤ 1 + M (2− wc − wl) , ∀ c, l ∈ {1, . . . ,∆ + 1} ,

(6) yc − yl ≥ −1 − M (2− wc − wl) , ∀ c, l ∈ {1, . . . ,∆ + 1} ,

where M has to be big enough to force | yc − yl | ≤ 1 only when both wc and
wl are different from zero. Besides, it is also sufficient to choose among all pairs
c, l ∈ {1, . . . ,∆ + 1} that ones satisfying c 6= l and l > c.

The new model obtained from (4) by replacing constraints (4d) with the pair of
disjoint constraints (5) and (6) is implementable and has (n + 2)(∆ + 1) variables
and n+(m+3)(∆+1) constraints. The equitable coloring polytope ECP is defined
by the convex hull of all feasible solutions to this new integer problem.

4. Computational Results

In order to validate the model presented in Section 3 we have tested the integer
programming formulation over some popular examples of the literature having a
priori known equitable chromatic numbers.

The value for M was settled to M = min{n, ∆2} and the model was implemented
using the commercial solver Xpress-MP 2006 with IVE 1.17.12, Mosel 1.6.3 and
Optimizer 17.10.04. The computer used was a Pentium Intel Dual Core 2.66GHz,
960MB RAM with Windows XP Professional 2002.

Table 1 shows the obtained results in details. G3,3 is a grid graph, S7 is a star,
W6 is a wheel and the Kp, q graphs belong to the well known Kneser family of
graphs. It is important to emphasize that we have found all the known χeq(G) for
all graphs G tested. Therefore we have not shown gap column in this table.
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G n m ∆ χeq(G) Cardinality CPU Time(s)

P3 3 2 2 2 {1, 2} 0.01
P5 5 4 2 2 {2, 3} 0.02
C6 6 6 2 2 {3, 3} 0.01
C7 7 7 2 3 {2, 3, 2} 0.08
K3 3 3 2 3 {1, 1, 1} 0.03
K5 5 10 4 5 {1, 1, 1, 1, 1} 0.16
G3,3 9 12 4 2 {5, 4} 0.03
S7 7 6 6 4 {2, 2, 2, 1} 0.40
W6 6 10 5 4 {2, 1, 2, 1} 2.70
Cube 8 12 3 2 {4, 4} 0.03
Octahedron 6 12 4 3 {2, 2, 2} 0.05
Dodecahedron 20 30 3 3 {7, 7, 6} 0.09
Icosahedron 12 30 5 4 {3, 3, 3, 3} 71.25
K5, 2 10 15 3 3 {4, 3, 3} 0.05
K7, 3 35 70 4 3 {12, 11, 12} 0.70
K9, 4 126 315 10 3 {42, 42, 42} 1134.50

Table 1. Preliminary Computational Results

5. Conclusions and Future Research

This work presents an initial effort in order to explore and solve equitable color-
ing problems in an exact way. It is important to emphasize that, as far as we know,
there was no another mathematical programming formulation for the problem in
the literature.

Further experiments in heavier graphs (e.g. the DIMACS coloring benchmark
graphs) will allow us to have a better appreciation of the real efficiency of our in-
teger programming formulation.

Our future research will also address the characterization of the polytope ECP
trying to identify new families of valid inequalities and sufficient conditions for them
to be facet-defining inequalities.

As a remark on the results in Kneser Graphs we can say they are somewhat
surprising. In order to achieve the equitable coloration the Branch-and-Bound al-
gorithm found coloring classes rather different from the canonical ones. This suggest
a conjecture that, for Kneser graphs, χeq = χ at least for the so called odd graphs,
Kneser graphs of type K(2n + 1, n).
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