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Abstract: In a cross-dock facility goods are moved by forklift from incoming truck platforms 
(strip doors) to temporary holding areas and then to platforms (stack doors) for outgoing trucks or 
directly from incoming truck strip doors to stack doors for outgoing trucks.  Costs within the 
cross-dock may be minimized by appropriate assignment of strip doors to incoming trucks and 
stack doors to outgoing trucks.  We present in this paper a formulation of this problem as a 
Generalized Quadratic 3-dimensional Assignment Problem and describe a methodology for 
generating practical Cross-dock Door Assignment Problem (CDAP) test cases.  For our 
presentation at XLI SBPO, we will generate a range of CDAP test cases (from easy to very 
difficult) and attempt to solve these, using an exact and an approximate solution method. 
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1. Introduction 

1.1 Background and literature review 
Cross-docking is a logistics technique used in the retail and trucking industries to rapidly 

consolidate shipments from disparate sources and realize economies of scale in outbound 
transportation.  Cross-docking essentially eliminates the costly inventory-holding functions of a 
warehouse, while still allowing it to serve its consolidation and shipping functions.  The idea is to 
transfer shipments directly from incoming to outgoing truck trailers, without storage in between.  
Shipments typically spend less than 24 hours in a cross-dock, sometimes less than an hour.  With 
the process of moving shipments from the receiving dock (strip door) to the shipping dock (stack 
door), bypassing storage, cross-docking reduces inventory carrying cost, transportation cost, and 
other costs associated with material handling.  Research topics on the design and operational 
problems in cross-docking include the size of the cross-dock, the number of strip and stack doors, 
the width of the cross-dock, shapes for different cross-dock sizes, and assigning strip and stack 
doors to incoming and outgoing truck trailers, which is addressed here.   

In a cross-dock facility, goods are moved by forklift from the incoming strip door to the 
appropriate outgoing stack door, for a specific destination.  The dynamic nature of the flow 
patterns between origin-destination combinations makes the assignment of origins to strip doors 
and assignment of destinations to stack doors a difficult combinatorial optimization problem.  

The cross-docking problem is a type of the assignment problems for which many studies have 
been reported in the literature.  Peck (1983) developed a simulation for the integer programming 
model of the trailer-to-door assignments that minimizes the total transfer time.  Tsui and Chang 
(1990, 1992) presented a general model of the dock door assignments and then developed a 
solution based on the branch and bound method.  Kinnear (1997) introduced the definition of the 
cross-docking and explained the advantage of the cross-docking.  Gue (1999) addressed the cross-
dock “layout” as of the arrangement of strip/stack doors and the assignment of destination to stack 
doors.  Gue proposed a look-ahead scheduling algorithm to reduce more labor cost compared to 
first-come first-served policy.  Bartholdi and Gue (2000) described models that guide a local 
search routine in cross-dock door assignment so as to minimize the total labor cost.  Their layout 
models balanced the cost of moving freight from incoming trailer to outgoing trailers with the cost 
of delays due to different types of congestion.  Bermudez (2002) developed a genetic algorithm for 
assigning doors in order to minimize the total weighted travel distance.  Sung and Song (2003) 
designed an integrated service network for a cross-docking supply chain network.  Bozer and 
Carlo (2008) proposed a simulated annealing heuristic to determine the door assignments in cross-
docks which is formulated as a Quadratic Assignment Problem (QAP) with rectilinear distances. 

In this paper, we address an extension of the cross-dock door assignment problem as first 
defined in Tsui and Chang (1990).  The fundamental difference is that our model handles the 
situation where the strip door serves more than one origin and the stack door serves more than one 
destination.  Unlike previous study combining several origins or destinations with a “larger” one, 
we apply the formulation of the Generalized Quadratic 3-dimensional Assignment Problem 
(GQ3AP) to consider the multiple-to-one assignment as a knapsack constraint on the dock’s 
capacity. 

1.2 Tsui and Chang’s Cross-dock Door Assignment Problem 

Here is Tsui and Chang’s mathematical model of the Cross-dock Door Assignment Problem 
(TS-CDAP), 
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Parameters: 

M   number of origins, 
N   number of destinations, 
I   number of strip doors, 
J   number of stack doors, 

mnw  represents the number of trips required by the material handling equipment to 
move items originating from m  to the cross-dock door where freight destined for 

 is being consolidated, n
ijd   represents the distance between strip door i  and stack door . j

Decision Variables: 

1mix =  if origin  is assigned to strip door i , m 0mix =  otherwise, 
1njy =  if destination  is assigned to stack door , n j 0njy =  otherwise. 

 
Formulation: 

1 1 1 1
Minimize:  

I J M N

ij mn mi nj
i j m n

d w x y
= = = =
∑∑∑∑       (1)  

Subject to: 

  
1

1
M

mi
m

x
=

=∑  ,      (2) 1,2,...,i = I

1
1

I

mi
i

x
=

=∑  ,      (3) 1, 2,...,m = M

1
1

N

nj
n

y
=

=∑  1, 2,...,j J= ,      (4) 

1

1
J

nj
j

y
=

=∑  ,      (5) 1,2,...,n = N

0 or 1mix =  , 1, 2,...,m M= 1,2,...,i I= ,  
0 or 1njy =  , 1, 2,...,n N= 1,2,...,j J= . 

Here, (2) makes sure that each strip door is assigned to only one origin, (3) makes sure that 
each origin gets assigned only one strip door, (4) makes sure that each stack door is assigned to 
only one destination, and (5) makes sure that each destination is assigned only one stack door 
(Tsui and Chang, 1990). 

But, there are errors in this definition of the TS-CDAP.  Namely, for both assignment 
constraints (2) and (3) to hold, M  must be equal to I .  Similarly for (4) and (5) to hold,  must 
be equal to 

N
J .  Tsui and Chang saw the TS-CDAP as a Quadratic Assignment Problem.  But, here 

too they were wrong.  The QAP has just one permutation matrix solution variable.  Whereas, the 
TS-CDAP has two sets of permutation matrix solution variables x  and y , which are indeed 
independent. 
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Follow the previous argument that M  must be equal to I  and  must be equal to N J  in the 
TS-CDAP model, we make a few observations.  Solution matrices  of size X M M×  and Y  of 
size  are necessarily square.  But the flow matrix W  and the distance matrix N N× D  are not.  
The ‘squareness’ of  and Y  is a serious deficiency.  In no practical situation would each strip 
door serve only one origin and each stack door serve only one destination.  We tried first to relate 
the TS-CDAP to the Quadratic 3-dimensional Assignment Problem (Q3AP).  The Q3AP has 
application in the design of symbol mapping diversity for the improvement of wireless 
communications in noisy and fading environments (Hahn, et al., 2008a). 

X

In Zhu (2007), we manipulated the formulation Q3AP to look just like the TS-CDAP, making 
the TS-CDAP a special case of the Q3AP.  The Q3AP solves the CDAP problem when the number 
of origins equals the number of strip doors equals the number of stack doors equals the number of 
destinations.  We also showed that the 3-dimensional Assignment Problem (3AP) is a special case 
of the TS-CDAP.  The 3AP is NP-hard.  So, the TS-CDAP is proven to be NP-hard.  
Unfortunately, the restrictions that each strip door would serve only one origin and each stack door 
would serve only one destination remained.  Thus, it was necessary to develop a more general 
algorithm, i.e., the Generalized Quadratic 3-dimensional Assignment Problem (GQ3AP), which is 
covered in the next Section. 

2. A New CDAP and its relationship with the GQ3AP 
We define a much more useful Cross-dock Door Assignment Problem (CDAP) and attempt to 

relate it to a Generalized Quadratic 3-dimensional Assignment Problem (GQ3AP).  With the same 
setting for the TS-CDAP and additional parameters, 

Additional Parameters: 

ms   volume of goods from origin m , 

iS   capacity of strip door , i

nr   demand from destination n , 

jR   capacity of stack door j . 

A new and generalized formulation of the CDAP is: 
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Minimize:  dij wmnxmi ynj
n=1

N

∑
m=1

M

∑
j=1

J

∑
i=1

I

∑       (6)  

   ,      (7) 
1

M

m mi i
m

s x S
=

≤∑ 1,2,...,i = I

1
1

I

mi
i

x
=

=∑  ,      (8) 1, 2,...,m = M

1

N

n nj j
n

r y R
=

≤∑  1, 2,...,j J= ,      (9) 

1
1

J

nj
j

y
=

=∑  ,      (10) 1,2,...,n = N

0 or 1mix =  ,1, 2,...,m M= 1,2,...,i I= ,  
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0 or 1njy =  ,1, 2,...,n N= 1, 2,...,j J= . 

Here, (7) makes sure that the capacity of each strip door  is not exceeded, (8) makes sure 
that each origin gets assigned only one receiving (strip) door, (9) makes sure that the capacity of 
each outbound (stack) door 

iS

jR  is not exceeded, and (10) makes sure that each destination is 
assigned only one stack door.  With this new model we are able to assign multiple origins to a 
single strip door, as long as its capacity  could accommodate them.  And, it is also possible to 
assign multiple destinations to one stack door, as long as its capacity 

iS

jR  could accommodate them. 

The GQ3AP model as first defined in Guignard, et al. (2006) is:  

  ,    (11) 
  
Minimize:  cijpknquijukntiptkq

q=1

J

∑
n=1

I

∑
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∑
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u
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   ,0 or 1iju = 1,2,...,i K= 1, 2,...,j I= , 

where  is the resource requirement of equipment i  and ijs jS  is the available resource at location 
j , and subject to the following constraints on :  t

1

K

kq kq q
k

r t R
=

≤∑  ,      (14) 1, 2,...,q = J

1

1
J

kq
q

t
=

=∑  ,      (15) 1,2,...,k = K

   ,0 or 1kqt = 1,2,...,k K= 1,2,...,q J= , 

where  is the resource requirement of equipment k  and  is the available resource at location 

.  Here, we purposely leave out the linear terms with coefficients , as these terms have 
nothing to do with this analysis.  Observe that the constraints in both models are essentially same, 
considering they are different only in variable subscripts.   

kqr qR
q ijpb

The GQ3AP is a newly defined assignment problem, which is the generalization of both the 
Generalized Quadratic Assignment Problem (GQAP) and the Quadratic 3-dimensional 
Assignment Problem (Q3AP).  This GQ3AP arises in many applications such as multi-story 
evacuation design and cross-dock layout design.  Zhu (2007) describes a Lagrangian dual for the 
GQ3AP based on a level-1 reformulation-linearization technique (RLT) dual-ascent procedure 
similar to those successfully used for the GQAP and Q3AP.  In Hahn, et al. (2008b) experimental 
results show the branch-and-bound algorithm embedded with the dual-ascent procedure has solved 
several instances of multi-story space assignment problem (MSAP) for the first time. 
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Now, if the six-dimensional cost matrix  can be written as: C

 
Cijpknq = wik d jq ,        (16) 

where [ ]ikw=W  is K K×  and jqd⎡ ⎤= ⎣ ⎦D  is I J× , and D  are the strip/stack distances in 

cross-docking facility and W  are the number of moving trips of goods, just as before.  The 
difference is that now in (16) the number of strip doors is equal to the number of stack doors (a 
perhaps serious limitation). 

Then the objective function to be minimized becomes , 

which can be simplified based on the equality constraints shown in (13) and (15) as: 

wik d jquijuknt ip tkq
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∑
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∑
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∑
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∑
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∑
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∑ .
 (17) 

Then (11) can be rewritten as: 

  
Minimize:  wik d jquijtkq

q=1

J

∑
k=1

K

∑
j=1

I

∑
i=1

K

∑ .     (18) 

Now come a tricky step, which permits us to use the GQ3AP to solve a CDAP where the 
number of origins is not equal to the number of destinations.  The GQ3AP formulation insists that 
this is the case.  To fool the GQ3AP to solve a CDAP, we play with the product  in such a 
way that forces the solution of the GQ3AP to be a solution of a CDAP whose x  and 

ik jqw d
y  matrices 

are of different size.  To accomplish this, we set W  such that:  

0 if  or  and ,ikw i M k N M N= > > ≤ K ,    (19) 

Then, substituting x  with  and u y  with , we have . With further 

variable subscript replacement, the objective function finally becomes: 

t
1 1 1 1

M I N J

ik jq ij kq
i j k q

w d x y
= = = =
∑∑∑∑

1 1 1 1
Minimize:  

I J M N

ij mn mi nj
i j m n

d w x y
= = = =
∑∑∑∑ ,     (20) 

which is exactly the same as that in CDAP.   

In conclusion, we manipulated the GQ3AP formulation to look like the CDAP, making the 
CDAP a special case of the GQ3AP.  The model of GQ3AP, i.e., equations (11)-(15), solves the 
CDAP problem when the number of origins equals the number of destinations.  Furthermore, 

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1231



1iju =  if strip door j  is assigned to origin , i 0iju =  otherwise, 

1kqt =  if stack door  is assigned to destination , q k 0kqt =  otherwise. 

But, if we play the trick in between (19) and (20), we can solve the CDAP of equations (6)-(10). 

One extra note for using the GQ3AP model to solve a CDAP arises when there are goods 
transferred from origin i  to destination i .  This produces a non-zero value in the flow matrix, 
which incorrectly moves quadratic costs in the objective function to the linear cost terms.  In the 
GQ3AP, the quadratic expression in the objective function (11) does not include any terms for 
which , unless i k=  and   and j n p qi k= = = .  Here we use the decision variables ijp ij ipx u t=  

and knq kn kqx u t= .  So if i k , then  and j p= =  and n q= ijp knq ijpx x x= , which becomes associated 

with the linear cost only.  If , then  and ei er i k j= th  or ≠ n p q≠ ijpx x 0knq = .  Thus, we run into 
trouble with solving the CDAP is goods are sent from origin i  to destination .  Fortunately, there 
is a simple solution.   

i

We put zeros on the diagonal of the flow matrix W , by permuting the rows (columns) of the 
flow matrix so that zeros fall on the diagonal and correcting the resulting solution vectors to 
compensate for the permutation.  If a row (or column) of the flow matrix has no zero, we will add 
a dummy destination (or origin). 

Now, let’s get to the question of whether or not the CDAP is an NP-hard problem.  Take (18), 
which is really a special case of the CDAP, set , ,K N I N J N= = = and make matrix W  a 
diagonal matrix.  We get: 

  
min wiid jquijtkq

q=1

N

∑
k=1

N

∑
j=1

N

∑
i=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= min N wiid jquijtkq

q=1

N

∑
k=1

N

∑
j=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  (21)  

which is the formulation for a 3-dimensional Assignment Problem (3AP).  Thus, the 3AP is a 
special case of the CDAP.  The 3AP is NP-hard.  So, the CDAP is proven to be NP-hard. 

3. Generating test examples 
Generating test examples requires generating origin/destination matrices and sample cross-

dock floor plans (layouts). 

3.1 Generating origin/destination matrices 
In order to have realistic shipping volumes for testing our CDAP solution algorithms, we 

consulted a number of authors who had been involved in cross-dock design.  While we were 
unable to get complete origin/destination volumes, Professor Kevin Gue of Auburn University was 
able to provide a set of destination volumes for a less-than-truckload (LTL) trucking example in 
which goods were sent to 56 destinations in the U.S.  Thus, we used this list of volumes as the 
basis for generating origin/destination matrices.  Thus, in all our experiments, the destinations 
have been given pre-determined volumes of goods as their demands. 

The procedure for generating origin/destination matrices is that, for each destination, decide 
from which origin it will receive goods, and how much it will receive.  It can be done by following 
the two steps below: 
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Step 1. Toss a fair coin M  times ( M  is the number of origins) and record the results of the 
experiment as Heads = 1, Tails = 0. If it is a head then the origin corresponding to the 
outcome number is chosen to send goods to the destination (e.g. if, for the 7th 
destination, the outcome of the 4th coin toss is head, then the 4th origin sends a certain 
amount of goods to the 7th destination).  

Step 2. This experiment is repeated for all N  destinations. For each destination, the demand 
from the corresponding origin is given by a random integer number, and make sure the 
sum of these random numbers is equal to the total demand of that destination. 

Table 1 is an example of flow matrix derived from this method. 

O1 O2 O3 O4 O5 O6 O7 O8          Origin 
Dest. 65572 29944 7371 22404 9421 26756 11108 2229 
D1 39751 0 144 0 14729 0 24163 0 715 
D2 21390 0 16608 0 0 4782 0 0 0 
D3 20842 0 13192 1744 2236 1633 2037 0 0 
D4 20758 10640 0 0 3701 2906 343 1691 1477 
D5 19372 19108 0 0 0 76 0 174 14 
D6 18073 9011 0 0 0 0 0 9062 0 
D7 17790 14069 0 1686 1738 0 213 61 23 
D8 16829 12744 0 3941 0 24 0 120 0 

Table 1 – Origin/Destination Matrix of Flow of Goods 

3.2 Cross-dock shapes to be considered 
We start with a simple layout of the cross-dock, which has the long rectangular shape, with 

strip (receiving) doors on one side of the building and stack (outbound) doors on the other side.  
And we use rectilinear distances to simulate corridors or safety isles, so that there are clearly 
marked lanes for the forklifts, and they would not collide in this way.  The distance between i -th 
strip door and j -th stack door is 3ijd i= + − j

 

 

.  See Figure 1. 

 

 

d 

 

 
 
 

    Figure 1 – Typical Cross-dock Layout 

Figure 1 gives an impression how the transfer of goods taking place.  In the figure, each origin 
has exactly six goods to transfer.  Each destination receives six goods.  But, the goods received by 
the three destinations do not have the same mix of origins.  The figure also gives strip door to 
stack door distances.  For instance, the distance of 4 units from strip door 2 to stack door 1 comes 

Destination 1 

Destination 2 

Destination 3 Origin 3 

Origin 2 

Origin 1 

Cross-dock 

Strip      Stack   
1 1 

d=3 
3 3 
     

 
 
2       d=4      2 
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from 3 units to cross the space from the strip door side to the stack door side plus another 1 unit to 
get to stack door 1. 

4. Experimental results 
We have tested the 8×8×4×4 CDAP model with 8 origins, 8 destinations, 4 strip doors and 4 

stack doors. The flow matrix is generated as above (see Table 1).  In order to fit into the GQ3AP 
algorithm, we permute the columns of flow matrix, so that all diagonal entries are equal to 0.  This 
is because in GQ3AP the i -th origin and i -th destination are the same entity, and there is no flow 
between them.   

Table 2 is the flow matrix generated from Table 1 after permutation. 

O1 O3 O7 O2 O4 O6 O5 O8           Origin 
Dest. 65572 7371 11108 29944 22404 26756 9421 2229 
D1 39751 0 0 0 144 14729 24163 0 715 
D2 21390 0 0 0 16608 0 0 4782 0 
D3 20842 0 1744 0 13192 2236 2037 1633 0 
D4 20758 10640 0 1691 0 3701 343 2906 1477 
D5 19372 19108 0 174 0 0 0 76 14 
D6 18073 9011 0 9062 0 0 0 0 0 
D7 17790 14069 1686 61 0 1738 213 0 23 
D8 16829 12744 3941 120 0 0 0 24 0 

Table 2 – Flow Matrix Generated from Table 1 after Permutation 

After testing the model with different door capacities, we have the following results.  Here the 
minimal cost came from implementing the GQ3AP solver proposed in Hahn, et al. (2008b). 

Door Capacity 1 7/8 6/8 5/8 4/8 
Minimal Cost 524415 533582 535875 535876 549745 

Table 3 – Door Capacity vs. Minimal Cost 

If each door capacity is equal to the total volume of all demands, where ‘percentage of total 
volume’ = 1, we can get the least cost, i.e. 524415. However, there is only one strip door assigned, 
as well as only one stack door assigned, which is a huge waste in door utility. As percentage of 
total volume decreases, the minimum cost gets larger. When each door capacity reduces to half of 
the total volume, the minimum cost is 549745, but it starts to use 3 different strip (and stack) doors. 
So we should really make decisions based on balancing between the minimum cost and the door 
usage.  When each door capacity reduces to 3/8 of total volume or below, there is no feasible 
solution then. 
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535875

524415

533582

549745

535875

510000

515000

520000

525000

530000

535000

540000

545000

550000

555000

1 7/8 3/4 5/8 1/2

min

    percentage of total volume  

5. Conclusion and planned experimental work 
In this paper, we propose a new formulation for the Cross-dock Door Assignment Problem, 

which concerns assigning origins to receiving (strip) doors and destinations to outbound (stack) 
doors such that costs within the cross-dock are minimized.  The form could be presented as a 
Generalized Quadratic 3-dimensional Assignment Problem.  We also propose a method for 
generating realistic test cases of the Cross-dock Door Assignment Problem. 

For our presentation at XLI SBPO, we plan to generate a variety of test examples for several 
sizes of origin/destination volume situations and to draw appropriate cross-dock layouts to serve 
the volume of goods that need to be handled by the cross-dock for these origin/destination 
examples.  Then, we will attempt to solve these with following CDAP solvers: 

1. The GQ3AP exact solution solver described in this paper. 
2. A heuristic solver for the GQ3AP developed by Bum-Jin Kim.  
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