
A MULTI-OBJECTIVE APPROACH FOR THE REGRESSION TEST

CASE SELECTION PROBLEM

Camila Loiola Brito Maia

Optimization in Software Engineering Group (GOES.UECE)

Natural and Intelligent Computing Lab (LACONI)

State University of Ceará (UECE)

Av. Paranjana, 1700, 60.740-903, Fortaleza, Ceará, Brazil

camila.maia@gmail.com

Rafael Augusto Ferreira do Carmo

Optimization in Software Engineering Group (GOES.UECE)

Natural and Intelligent Computing Lab (LACONI)

State University of Ceará (UECE)

Av. Paranjana, 1700, 60.740-903, Fortaleza, Ceará, Brazil

carmorafael@gmail.com

Fabrício Gomes de Freitas

Optimization in Software Engineering Group (GOES.UECE)

Natural and Intelligent Computing Lab (LACONI)

State University of Ceará (UECE)

Av. Paranjana, 1700, 60.740-903, Fortaleza, Ceará, Brazil

fabriciogf.uece@gmail.com

Gustavo Augusto Lima de Campos

Optimization in Software Engineering Group (GOES.UECE)

Natural and Intelligent Computing Lab (LACONI)

State University of Ceará (UECE)

Av. Paranjana, 1700, 60.740-903, Fortaleza, Ceará, Brazil

gustavo@larces.uece.br

Jerffeson Teixeira de Souza

Optimization in Software Engineering Group (GOES.UECE)

Natural and Intelligent Computing Lab (LACONI)

State University of Ceará (UECE)

Av. Paranjana, 1700, 60.740-903, Fortaleza, Ceará, Brazil

jeff@larces.uece.br

ABSTRACT

When software is modified, some functionality that had been working can be affected. The

reliable way to guarantee that the software is working correctly after those changes is to test the

whole system again, but generally there is not sufficient time. Then, it is necessary to select

significant test cases to be executed, in order to guarantee that the system is working as it should

be. Although there are already works regarding on the regression test case selection problem,

some important features which can influence in the test case selection are not considered in them.

In this work, we state a new and more complete multi-objective formulation for this problem. The

work also shows the results of the solution for the problem using a multi-objective genetic

algorithm, comparing it with a random algorithm.

KEYWORDS. Metaheuristics. Regression Test Case Selection. NSGA-II. MH.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1824

1. Introduction

Software Test is a part of the entire software development process. The purpose of the testing

process is to make sure computer code does what it was designed to do and that it does not do

anything unintended (Myers, 2004). It is the ultimate review of specification, design, and code

generation (Pressman, 2001).

The process of testing relies on the concept of test case, which is defined as a detailed

specification of testing, including some important information about the test, like pre-conditions,

post-conditions, data for entry, interdependency, etc. (Bastos, 2007). A group of test cases is

named test suite.

During the lifetime of software it is common that changes on the software occur. Those

changes may be necessary because of new requirements, adaptability issues or even correction of

errors found after the release (patches). In such a situation, the test of the modified software

system is required and, more important, crucial. This process of testing a system when just

modifications have been done after the first final version is known as regression testing. The

main reason to execute regression test is the inherent chance of introduction of errors in any

human-based development activity.

There is only one reliable way to guarantee that the modified software is working as well as

the previous version: testing the whole system again. Nevertheless, this approach is not practical

if we consider the effort required to test all the system again when only a part of it had been

modified. This scenario leads to a problem denominated regression test case selection. As its

names suggests, this problem regards on the selection of significant test cases to be used in a later

test process (i.e. a regression test process).

Many aspects can be considered for the regression test case selection problem, such as:

available time to test, requirement importance to the client, test execution risks, requirement and

code coverage, fault history, defect‟s severity, and so on. The most important issue is to combine

some of these aspects to select the most significant test cases, i.e., the ones that better represent

the client‟s desire and necessity. In this context, there are multiple objective functions to

optimize as minimization of execution time of test cases, minimization of risk and maximization

of importance of the requirements covered.

In the Operational Research field, metaheuristics are well known methods used to solve

optimization problems including multiple objective (hereafter referred to as multiobjective) ones.

So, it is enough convenient to use such methods to solve the regression test case selection. Since

the regression test case selection is a difficult problem in the Software Engineering field, this

problem-solution pair formulation is included in this relatively new field named Search Based

Software Engineering (SBSE) (Harman et al., 2001). The SBSE field concerns on the solution of

complex problems in the software development process which can be formulated as a search

problem. To be able to solve such difficult problems, the SBSE field mainly relies on

metaheuristic methods like Simulated Annealing, Tabu Search, Genetic Algorithm and others.

The solution found by a metaheuristic procedure is not necessarily the best one, but it is a good

solution for the problem. As it can be seen in Harman (2007), metaheuristics had been utilized to

solve the test case selection problem, among others software engineering problems (Clarke et al.,

2003).

This paper describes a multiobjective formulation for the regression test case selection

problem, based on the authors‟s expertise on software testing, and analyses the results found by a

a multiobjective genetic algorithm (NSGA-II) on this problem.

The rest of this paper is organized as follows: Section 2 describes related works in the

selection test case problem. Sections 3 and 4 detail the test case selection problem. Section 5

details the NSGA-II algorithm used in this paper. Finally, section 6 relates the experiment and

section 7 shows the conclusion and proposes some future work.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1825

2. Related Work

Chen et al. (2003) discuss a specification-based (black box) method for regression test

selection. Code-based regression test selection is interesting, but as the size of the system grows it

will be more difficult to do this test case selection by using code coverage. They present a

function named RE (Risk of Exposure) which is based on both the probability of fault and the

cost if a fault is executed. This RE function is applied to each test case and many scenarios. The

scenarios that cover the most critical test cases and that have RE function with higher value are

selected. In that work, the RE function is the only one objective function to be optimized in the

regression test case problem.

Xu et al. (2005) propose a causal model to the test case selection problem. According to

them, if the company implements the known test practice recommended by independent

verification and validation process the unavailability of source code at system level is true. In

addition, different test engineers may have different ideas to perform test case selection. The

expert system had to integrate the different rules from the different test engineers. The following

factors were considered as objectives: execution time, defect density and defect severity (based

on past results). Higher priority is given to test cases that cover new and modified functions. The

output is the system test plan, with the selected test cases and their execution order.

Yoo et al. (2007) introduce the concept of Pareto efficiency to the test case selection problem.

The Pareto approaches take multiple objectives functions and construct a group of optimal

solutions. In this case, each solution is the optimal test cases subsets. The paper instantiates the

test case selection problem with two versions: the first one combines code coverage and cost as

objective functions, and the second one combines code coverage, cost and fault history as

objective functions. They implement three algorithms: a reformulation of Greedy Algorithm, the

Non Dominating Sorting Genetic Algorithm (NSGA-II), and an island genetic algorithm variant

of NSGA-II, which they call vNSGA-II. For small programs, the NSGA-II has the best

performance, followed by the vNSGA-II algorithm. For larger programs, the greedy algorithm

performs very well, outperforming the other algorithms. This was the first work about using

multiple objective functions to the test case selection problem and using search based algorithms

to solve them.

Mansour et al. (2001) compare five regression test selection algorithms, which include:

Simulated Annealing, Reduction (Harrold et al., 1993), Slicing (Agrawal et al., 1993), Dataflow

(Gupta et al., 1996), and Firewall (Mansour et al., 2001) Algorithms. The objective function of all

of them is based on code coverage. The comparison is based on eight quantitative and qualitative

criteria, for example, number of test cases, execution time and precision inclusiveness. They

executed the algorithms for fifteen programs, from 21 to 381 lines of code.

3. Aspects Considered in the Problem

3.1. Importance of the Modified or Created Requirements

Each requirement has its own importance for the client. It is desirable that the most important

requirements are tested first because they reflect the most important functionality or because they

are the ones which have major risks for the client's business.

3.2. Dependence among Requirements

Some requirements have dependence with other requirements. Thereby, they have to be

tested only if those requirements had already been tested. This specific information must be

informed by the client.

3.3. Execution Time for Test Cases

Testing is usually the last activity of the software development process. However, the time

available to the test phase is usually defined in the beginning of the development process.

Besides, the test process (for being the last phase) may have to compensate the delays of previous

phases.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1826

There are two types of test cases: the manual test cases (executed manually by a human

resource) and the automated ones (executed automatically). However, the time to execute each

one of them does not have to be added. For example, suppose that there is one available human

resource and that there are three test cases: two manual, and one automated. Assume that the first

manual test case has execution time of 2 minutes, and that the second manual test case needs 1

minute to be finished. The third test case (the automated one) is executed in 2 minutes. The total

time to the testing execution would be 3 minutes, because the automated test case does not need a

human resource to execute it and it is executed in a parallel way. Otherwise, if the time to execute

the automated test case was 5 minutes, the total time to the test execution would be 5 minutes,

because this time is greater than the sum of the first two ones.

3.4. Risk of a Test Case

Each test case has risks related to itself. Some examples of risks of test cases are:

1. Risks of process, for example unavailable tools or documentation, not defined

methodology, not qualified test analysts, etc;

2. Not available or only few resources;

3. Not available or not configured properly test environment;

4. Precarious configuration management;

5. No experience with new tools or technology used.

After the identification of the risks, it is important to identify both the risk probability and the

impact of each risk to the client if that risk occurs. The table below, based on Bastos et al. (2007),

demonstrates the relationship between the probability of the risk and its impact for client.

Table 1. Relationship between Probability of a Risk and Impact.

Impact for the

Client’s Business

Probability of the Risk

High Medium Low

High HH HM HL

Medium MH MM ML

Low LH LM LL

To be able to use this information in a mathematical way, the values above were converted to

numbers: HH = 9, HM = 8, HL = 7, MH = 6, MM = 5, ML = 4, LH = 3, LM = 2, and LL = 1.

By logical means, the greatest priority has to be given to the test cases which have the

greatest impact for the client and also have the greatest probability of occur. Following this bias,

Table 1 was “translated” to get a value that represents these characteristics of risk.

3.5. Available Time to Test

All software projects have a limited time to execute test over the application. This time is

generally estimated in the beginning of the project, but it may change. The resources allocation

have to be adapted to this limited time (in hours, for example) which is represented in this paper

by 𝑇𝑚𝑎𝑥 . This 𝑇𝑚𝑎𝑥 can be transformed in d days (an approximation of the number of days),

aiming to of calculate the available time to test for each resource.

3.6. Resources for the Test Case Execution

For each software project, there are human resources allocated to execute the test process.

These resources may come from the project team itself or from an independent test team, for

example. This resource is generally insufficient or limited. It also may happen that there is

enough time to test all modified requirements, but there are not enough resource to do that work.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1827

4. Formulation of the Problem
Let R be the set of all modified requirements and TC be the set of test cases that covers these

requirements. TC must contain test cases that test the more significant requirements in less time.

Based on the aspects described on the previous section, the problem is formulated as follows:

4.1. Requirements

Suppose that the number of requirements of the entire software application is q and that there

are 𝑛 requirements, modified or new, that have to be tested. This 𝑛 amount vary from 1 to 𝑞, i.e.,

at least one requirement has to be tested (otherwise there is no sense in running tests) and the

maximum amount of requirements to be tested is the total amount of requirements of the

software. So, the set R of requirements that have to be tested can be described as:

𝑅 = 𝑟𝑖 𝑖 = 1,… ,𝑛}, 1 ≤ 𝑛 ≤ 𝑞

Each requirement has its importance, which varies from 1 (less importance) to 3 (more

importance). The information about this importance value of the requirements must be informed

by the client. The values can be represented by this function:

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑟𝑖 = {1,… , 3}

Each requirement has also a set of preceding requirements, i.e. a group with other

requirements that must be tested before this requirement. The function is:

𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔𝑠 𝑟𝑖 = 𝑟 ∈ 𝑅 𝑟 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑟𝑖}

For each requirement there is a set of test cases associated, which contains the test cases that

have to be executed to guarantee the requirement‟s functionality accorded with the client.

𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 𝑟𝑖 = 𝑡 ∈ 𝑇 𝑡 𝑐𝑜𝑣𝑒𝑟𝑠 𝑟𝑖}

4.2. Test Cases and Test Suites

Suppose that the number of test cases of the entire software application is c and the set of all

test cases is T. There are 𝑘 test cases that have to be tested, based on the modified or new

requirements. This number 𝑘 vary from 1 to 𝑐. So, the set TC that contains all test cases that have

to be executed is:

𝑇𝐶 = 𝑡𝑗 | 𝑗 = 1,… ,𝑘 , 1 ≤ 𝑘 ≤ 𝑐

Each test case has a type (1 for manual or 2 for automated), an execution time, and a risk of

execution. The value of this risk combines the probability which it can occur with the cost to the

client if this risk occurs from 1 to 9 (as described in tables 1 and 2). The type and risk of a test

case is represented by the following functions:

𝑡𝑦𝑝𝑒 𝑡𝑗 = {1, 2}

𝑟𝑖𝑠𝑘 𝑡𝑗 = {1,… ,9}

We know the requirements covered by a test case using the function below:

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑗 = 𝑟 ∈ 𝑅 𝑟 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡𝑗 }

Then, the following function is used to inform whether a determined test case covers a

specified requirement:

𝑐𝑜𝑣𝑒𝑟 𝑡𝑗 , 𝑟𝑒𝑞 =
1, 𝑖𝑓 𝑟𝑒𝑞 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠(𝑡𝑗)

0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

A solution for the regression test case selection problem is a test suite, i.e., a set of test cases,

represented by TC, and the requirements covered by the test suite can be determined by:

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠𝑂𝑓𝑇𝑒𝑠𝑡𝑆𝑢𝑖𝑡𝑒 𝑇𝐶 = 𝑟𝑒𝑞 ∈ 𝑅 | ∃ 𝑡𝑐 ∈ 𝑇, 𝑐𝑜𝑣𝑒𝑟 (𝑡𝑐 , 𝑟𝑒𝑞)

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1828

The importance of a set of test cases is the sum of importance of all requirements that these

test cases cover.

𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑗 = 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑟𝑣)

𝑟𝑣 ∋𝑐𝑜𝑣𝑒𝑟 (𝑡𝑗 ,𝑟𝑣)

4.3. Resources

There are a limited number of people to execute the selected test cases, from 1 to 𝑚, here

represented by:

𝑃 = 𝑝 = 1,… ,𝑚}

Each person has a working time and the extra overtime they are authorized to work. The

working time and the extra overtime variables are used as input to calculate the available time to

test, in hours. This information is combined to the execution time of test cases to limit the

number of test cases selected to the executing phase.

It is important to consider that each resource has its productivity, represented here by letter 𝑑.

For example, if the productivity is 80%, then 𝑑 = 0,8.

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑖𝑚𝑒 𝑝 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝑇𝑖𝑚𝑒 𝑝 × 𝑑 + 𝑒𝑥𝑡𝑟𝑎𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒(𝑝)

4.4. Mathematical Formulation of the Problem

Based on the subsections above, the mathematical formulation is:

1.𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(
𝑘

𝑗=1
𝑡𝑗)

2.𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑟𝑖𝑠𝑘(
𝑘

𝑗=1
𝑡𝑗)

3.𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑖𝑚𝑝𝑜𝑟𝑡(𝑡𝑗)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑎) 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 𝑡𝑗 ≤ 𝑇𝑚𝑎𝑥

𝑘

𝑗=1

𝑏) 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑖𝑚𝑒 𝑝 ≤ 𝑇𝑚𝑎𝑥

𝑝

=1

𝑐) ∀ 𝑟𝑖 ∈ 𝑅,∀ 𝑡𝑗 ∈ 𝑇,

 ∃ 𝑟 ∈ 𝑅 ∋ 𝑟 ∈ 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔𝑠 𝑟𝑖 𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 𝑡𝑗 , 𝑟 → 𝑡𝑗 ∈ 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠(𝑟𝑖)

In this formulation, the functions indicated by the numbers 1, 2, and 3 are the objective

functions, which correspond respectively to: minimization of the execution time, minimization of

risk, and maximization of importance. The three lines indicated by the letters a, b, and c

correspond to the constraints regarding on execution time, available time, and existence of some

required test cases.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1829

5. NSGA-II for Regression Test Case Selection

This section is intended to present an approach for the regression test case selection problem

based on the NSGA-II metaheuristic.

5.1. Pareto-Optimal Solution

A solution 𝑥∗ ∈ Ω is a Pareto-Optimal solution (an efficient solution) if there is no other

solution 𝑥 ∈ Ω such that 𝑓 𝑥 ≤ 𝑓 𝑥∗ and 𝑓 𝑥 ≠ 𝑓(𝑥∗). This efficient solution is not

dominated by any feasible solution of the problem (Ferreira, 1999).

If 𝑥∗ ∈ Ω is an efficient solution, then any alternative 𝑥 ∈ Ω that provides a decrease in

some objective, compared with 𝑥∗, has to provide a increase in another objective. Assuming that

the solution of the problem must to be efficient, the optimization process is reduced to the set of

all efficient solutions of the problem (Ferreira, 1999).

5.2. The NSGA-II Metaheuristic

NSGA-II (Nondominated Sorting Genetic Algorithm II) is a multiobjective evolutionary

algorithm proposed by Deb et al. (2002). The main feature of NSGA-II is that this metaheuristic

alleviates some difficulties existent in other multiobjective algorithms, like nonelitism approach,

computational complexity and the need for specifying a sharing parameter.

Initially, a random parent population 𝑃0
of size 𝑁 is created. Then it is sorted based on the

nondomination. A fitness value (rank) is assigned to each solution with value equal to its

nondomination level. A population 𝑄0 of size 𝑁 is created based on 𝑃0, and using binary

tournament selection, recombination and mutation. Thereafter, a combined population 𝑅0 is

formed with size 2𝑁. Then, the population 𝑅0 is also sorted according to nondomination. The

best solutions build the 𝐹1set, which is the first Pareto front. The 𝐹2 set is built with the second

best solutions, and so on. Finally, the nondomination sets are ordered as shown in Figure 1, and

the 𝑁 first elements are chosen for the new population.

Figure 1. NSGA-II Procedure (Deb et al., 2002)

The diversity among nondominated solutions is introduced by using the crowding comparison

procedure. The density estimation of solutions near a particular solution is calculated as follows:

the average distance of two points on either side of this point along each objective was calculated.

This quantity 𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is an estimate of the perimeter of the cuboid formed by using the nearest

neighbors as the vertices. This is called crowding distance, and is illustrated in Figure 2.

Figure 2. Crowding Distance (Deb et al., 2002)

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1830

For each objective function, the boundary solutions are assigned an infinite value. The overall

crowding-distance value is calculated as the sum of individual distance values of each objective.

The new population 1tP is used for selection, crossover and mutation to create a new

population 𝑄𝑡+1 (Deb et al., 2002).

5.3. The NSGA-II Algorithm

The pseudo code below, in Figure 3, describes the NSGA-II algorithm.

𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡

𝐹 = 𝑓𝑎𝑠𝑡-𝑛𝑜𝑛-𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑-𝑠𝑜𝑟𝑡(𝑅𝑡)

𝑃𝑡+1 = ∅ 𝑎𝑛𝑑 𝑖 = 1

𝑢𝑛𝑡𝑖𝑙 𝑃𝑡+1 + 𝐹𝑖 ≤ 𝑁

𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑑-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒-𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝐹𝑖)

𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖
𝑖 = 𝑖 + 1

𝑆𝑜𝑟𝑡(𝐹𝑖 ,≺𝑛)

𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖 1: 𝑁 − 𝑃𝑡+1
𝑄𝑡+1 = 𝑚𝑎𝑘𝑒-𝑛𝑒𝑤-𝑝𝑜𝑝(𝑃𝑡+1)

𝑡 = 𝑡 + 1

Figure 3. NSGA-II Pseudo code (Deb et al., 2002)

Initially, a set 𝑅𝑡 is build by a parent and his offspring set. The Pareto front‟s sets are then

formed, as explained in section 5.1.

The algorithm for the fast-non-dominated-sort function is detailed in figure 5. For each

solution 𝑝, we calculate the number of solutions that dominates 𝑝 (𝑛𝑝) and a set of solutions that

𝑝 dominates (𝑆𝑝). Then, for each member 𝑞, if 𝑝 dominates 𝑞 then 𝑞 is a member of 𝑆𝑝 .

Otherwise, 𝑛𝑝 is added by one because 𝑝 is dominated by 𝑞. If 𝑛𝑝 is zero, 𝑝 is not dominated by

anyone, then 𝑝 is included in F1 (first Pareto front). The others Pareto fronts are built in the same

way.

So, while the new population 𝑃𝑡+1 is not completely filled, elitism is applied and the

elements of the nondominated sets (F1, F2, etc.) are added into 𝑃𝑡+1.

The crowding-distance-assignment algorithm, used for elitism, is in Figure 4. In this

algorithm „I‟ is a nondominated set. For each i in I and for each objective, we sort the population.

The boundary solutions I[1] and I[L] are set to an infinite value. For all others solutions a value

equal to the absolute normalized difference in the function values of two adjacent solutions is

assigned (Deb et al., 2002).

𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒-𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐼
𝑙 = 𝐼
𝑓𝑜𝑟 𝑒𝑎𝑐 𝑖, 𝑠𝑒𝑡 𝐼 𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0

𝑓𝑜𝑟 𝑒𝑎𝑐 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑚

𝐼 = 𝑠𝑜𝑟𝑡 𝐼,𝑚
𝐼 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼 𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞

𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑙 − 1
𝐼[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝐼 𝑖 + 1 .𝑚 − 𝐼 𝑖 − 1 .𝑚)/(𝑓𝑚

𝑚𝑎𝑥 − 𝑓𝑚
𝑚𝑖𝑛)

Figure 4. crowding-distance-assignment Pseudo code (Deb et al., 2002)

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1831

𝑓𝑎𝑠𝑡-𝑛𝑜𝑛-𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑-𝑠𝑜𝑟𝑡(𝑃)

𝑓𝑜𝑟 𝑒𝑎𝑐 𝑝 ∈ 𝑃

𝑆𝑝 = ∅

𝑛𝑝 = 0

𝑓𝑜𝑟 𝑒𝑎𝑐 𝑞 ∈ 𝑃

𝑖𝑓 𝑝 ≺ 𝑞 𝑡𝑒𝑛

𝑆𝑝 = 𝑆𝑝 ∪ {𝑞}

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑞 ≺ 𝑝 𝑡𝑒𝑛

𝑛𝑝 = 𝑛𝑝 + 1

𝑖𝑓 𝑛𝑝 = 0 𝑡𝑒𝑛

𝑝𝑟𝑎𝑛𝑘 = 1

𝐹𝑖 = 𝐹𝑖 ∪ 𝑝
𝑖 = 1

𝑤𝑖𝑙𝑒 𝐹𝑖 ≠ ∅

𝑄 = ∅

𝑓𝑜𝑟 𝑒𝑎𝑐 𝑝 ∈ 𝐹𝑖
𝑓𝑜𝑟 𝑒𝑎𝑐 𝑞 ∈ 𝑆𝑝

𝑛𝑞 = 𝑛𝑞 − 1

𝑖𝑓 𝑛𝑞 = 0 𝑡𝑒𝑛

𝑞𝑟𝑎𝑛𝑘 = 𝑖 + 1

𝑄 = 𝑄 ∪ 𝑞
𝑖 = 𝑖 + 1

𝐹𝑖 = 𝑄

Figure 5. fast-non-dominated-sort Pseudo code (Deb et al., 2002)

6. Empirical Evaluation

A series of empirical tests were executed, using the NSGA-II algorithm to generate the

solutions for the regression test case selection problem. More specifically, the experiments were

designed to answer the following question:

I) Can a multiobjective function optimize the regression test case selection problem?

Does it generate an optimal solution?

6.1. Project Data Used

For the experiments, some data from a software project in a large company were

collected.

The data was divided in:

 Requirement data: id (identification), description, importance, test cases

which cover them, the requirements of which it is dependent, and an indicator of

requirement added / changed

 Test cases: id, description, execution time (in minutes), risk, type

(manual or automatic), and the requirements they cover.

 Resource: working time, productivity and extra overtime.

 Project: available time to test (in days).

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1832

There are 117 requirements for all system, but only 25 of them are new or changed

requirements. There are 135 test cases to cover all system. Only one tester was allocated to

execute the system test.

6.2. Experimental Design

Two algorithms were used for the experiments: the NSGA-II algorithm, configured in

JMetal Framework (Durillo et al., 2006), and an implemented random algorithm.

For the NSGA-II algorithm, the following configurations were implemented:

 Random initial population.

 Number of iterations: 50 iterations were considered for the analysis,

because we observed that from this value onward, the results do not differ. It was tested

until get 250 generations.

 Crossover tax of 0.9, with Single Point Crossover method, and mutation

tax of 1/199.

 Selection: Binary Tournament method.

The implemented random algorithm generates 50 valid solutions randomly.

In the experiment, the following three objectives were considered for the solutions

(groups of test cases) found by the algorithms: risk (minimized), execution time (minimized), and

importance (maximized). In addition, different sizes of population (number of solutions) were

considered. For example, if the population is 20, then 20 solutions are generated by the

algorithms. It was tested with the sizes 10, 20, 30, 40, and 50.

For technical reasons, we specify the environment of the experiment. All experiments

were performed on the Linux Ubuntu 8.04 operating system. The hardware used was a Celeron

M520 processor and 1 GB of memory.

6.3. Results

The results are presented in figures 6 and 7 below.

Figure 6. Risk x Execution Time x Importance

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1833

Figure 7. Comparing NSGA-II with a Random Algorithm

Figure 6 represents the generated populations for the NSGA-II algorithm with populations

increasing 10 to 10 until 50 converging to a front. As already cited in this paper, from 50 onward,

the results are the same. In figure 7, it is showed the comparison between NSGA-II algorithm (the

red signs) and the random algorithm (the green signs) used to compare the results.

6.4. Analysis of Results

Analyzing the results obtained from the experiments, several relevant results can be pointed

out. First, it can be observed that from a population of size 50 onward, the results are the same,

i.e., the results converge to a front, generating the same solutions.

In order to validate the obtained results with NSGA-II algorithm, these results were compared

with a random strategy. This comparison (see figure 7) shows that NSGA-II generates better

solutions, considering the three cited objectives. The random algorithm does not consider any

objective, which makes it generate poor solutions that do not improve the process of selection to

the regression test process.

It can be observed in the graph that only two solutions randomly generated are better than the

solutions generated by the NSGA-II algorithm. It is also important to mention that all solutions

generated by the random algorithm are valid solutions for the regression test case problem. All

the solutions generated by the NSGA-II algorithm were valid and optimal for the regression test

case problem.

7. Conclusions and Future Work

The regression test case selection problem is an important component of the software

development. The point of view of the client has always to be considered, as well as some

development process aspects, like time to execute test. Each software engineer has an expertise

about this problem, and we used our experience to model the problem as described in this paper.

This paper proposed a multiobjective formulation for the regression test case problem and

executed it with the application of the NSGA-II algorithm (valid and optimal solutions found) and

a random algorithm (valid solutions found), and we could understand that we can optimize the

regression selection test case problem using a multiobjective formulation and algorithm. The

NSGA-II showed to be a good solution for this problem, since the results found were optimal

solutions.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1834

As future work, a major quantity of data will be considered in the evaluation, and there will

be some other multiobjective metaheuristics to validate the multiobjective formulation for the

regression selection test case problem.

8. References
Agrawal, H., Horgan, J. R., Krauser, E. W. and London, S. A. (1993), Incremental

Regression Testing, Proceedings of Conference on Software Maintenance, 348-357.

Bastos, A., Rios, E., Cristalli, R. and Moreira, T. (2007), Base de Conhecimento em Teste de

Software, Martins Fontes Editora, 89-108.

Chen, Y. and Probert, R. L. (2003), A Risk-Based Regression Test Selection Strategy,

Chillarege Press.

Clarke, J., Dolado, J. J., Harman, M., Hierons, R., Jones, B., Lumkin, M., Mitchell, B.,

Mancoridis, S., Rees, K., Roper, M. and Shepperd, M. (2003), Reformulating Software

Engineering as a Search Problem, Proceedings of IEE Software, Vol. 150, Issue 3, 161-175.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan T. (2002), A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Vol. 6, Issue 2,

182-197.

Durillo, J. J., Nebro, A. J., Luna, F., Dorronsoro, B. and Alba, E., JMetal: A Java Framework

for Developing Multi-Objective Optimization Metaheuristics, Technical Report ITI-2006-10,

University of Málaga, (http://neo.lcc.uma.es/staff/paco/pdfs/TECHREP%20ITI-2006-10.pdf),

2006.

Ferreira, P. A. V. (1999), Otimização Multiobjetivo – Teoria e Aplicações, Tese de Livre

Docência (http://www.dt.fee.unicamp.br/~valente/teseLD.ps).

Gupta, R., Harrold, M. J. and Soffa, M. L. (1996), Program Slicing-Based Regression Testing

Techniques, Software Testing, Verification and Reliability, Vol 6, Number 2, 83-111.

Harman, M. (2007), The Current State and Future of Search Based Software Engineering,

Proceedings of the Future of Software Engineering (FOSE ’07).

Harman, M. and Jones, B. F. (2001), Search-based software engineering, Information and

Software Technology, 43, 833-839.

Harrold, M. J., Gupta, R. and Soffa, M. L. (1993), A Methodology for Controlling the Size of

a Test Suite, ACM Transactions on Software Engineering and Methodology (TOSEM), Vol. 2,

Issue 3, 270-285.

Mansour, N., Bahsoon R. and Baradhi G. (2001), Empirical Comparison of Regression Test

Selection Algorithms, The Journal of Systems and Software, 57, 79-90.

Myers, G J. (2004), The Art of Software Test,,

Presman, R.S. (2001), Software Engineering, McGraw Hill

Xu, Z., Gao, K., and Khoshgoftaar (2005) “Application of Fuzzy Expert System In Test Case

Selection For System Regression Test, Proceedings of Information Reuse and Integration (IRI

’05).

Yoo, S and Harman, M. (2007), Pareto Efficient Multi-Objective Test Case Selection,

Proceedings of International Symposium on Software Testing and Analysis (ISSTA ’07).

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1835

http://neo.lcc.uma.es/staff/paco/pdfs/TECHREP%20ITI-2006-10.pdf
http://www.dt.fee.unicamp.br/~valente/teseLD.ps

