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Abstract

We investigate the pricing of options in a class of discrete-time Flexible Coefficient Generalized

Autoregressive Conditional Heteroskedastic (FC-GARCH) models with non-normal innovations. A

conditional Esscher transform was used to select a price kernel for valuation in the incomplete

market. We provide a numerical study on the pricing results when the GARCH innovations have a

normal distribution or a shifted-Gamma distribution and identify some key features of the pricing

results.
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§1. Introduction

In this paper, we study the option valuation problem in a class of discrete-time Flexible Co-

efficient Generalized Autoregressive Conditional Heteroskedastic (FC-GARCH) models with non-

normal innovations. The original version of this class of models was introduced by Veiga and

Medeiros(2008) for the case of normal innovations. The class of FC-GARCH models can incorpo-

rate various empirical features of asset’s returns, such as the asymmetric impact of past returns on

conditional volatilities and long-memory effect of conditional volatility. It also nests a number of

important ARCH-type models in the literature. Here we investigate the use of the conditional Ess-

cher transform for option valuation under this class of models and explore its pricing implications.

Simulation studies are conducted to illustrate the practical implementation of the proposed model

and to document some features of option prices arising from the proposed model.

The rest of the paper is structured as follows. The next section presents a FC-GARCH model

with non-normal innovations for modeling the asset returns. In Section 3, we discuss the valuation

approach based on the conditional Esscher transform. Section 4 studies some parametric cases of

the model. Section 5 gives the simulation results and some discussion on the results. The final

section summarizes the main finding of the paper.

§2. Flexible Coefficient Generalized Autoregressive Conditional Heteroskedastic

(FC-GARCH) models for Asset Returns

We consider a discrete-time economy with a bond B and a a share S. Let T denote the time

index set {0, 1, 2, . . . , T} of the economy. To model uncertainty, we fix a complete probability

space (Ω,F ,P) where P is a real-world probability measure. To simplify our analysis, we assume

that the continuously compounded rate of interest from the bond is a constant, say r per period.

Consequently, the bond-price process {Bt|t ∈ T } evolves over time as:

Bt = Bt−1e
r , B0 = 1 . (2.1)

Let ǫ = {ǫt}t∈T be the return innovations of the share S, where we take ǫ0 = 0 by convention.

Suppose {ǫt|t ∈ T \{0}} are independent and identically distributed, (i.i.d.), with common distri-

bution D(0, 1), where D(0, 1) represents a general distribution with zero mean and unit variance.

Let S := {St}t∈T be the price process of the share S. Let Yt := ln(St/St−1), which is the

continuously compounded rate of return from the share S from time t − 1 and time t. Then we

assume that the return process Y := {Yt|t ∈ T } follows a first-order Flexible Coefficient Generalized
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Autoregressive Conditional Heteroscedastic model with m = H + 1 limiting regimes, henceforth,

FC-GARCH (m, 1, 1):

Yt = µt + h
1/2
t ǫt ,

ht = G(wt;ψ) . (2.2)

Here G(wt;ψ) is a nonlinear function of a vector of variables wt := (Yt−1, ht−1, st)
′, (i.e. “′”

represents the transpose of a matrix, or in particular a vector), defined by:

G(wt;ψ) := α0 + β0ht−1 + λ0Y
2
t−1 +

H
∑

i=1

[αi + βiht−1 + λiY
2
t−1]f(st; γi, ci) ,

where

1. for each i = 1, 2, . . . , H, the logistic function

f(st, γi, ci) :=
1

1 + e−γi(st−ci)
;

2. the vector of parameters

ψ := (α0, β0, λ0, α1, · · · , αH , β1, · · · , βH , λ1, · · · , λH , γ1, · · · , γH , c1, · · · , cH)′ ∈ R
3+5H ;

3. for each i = 1, 2, · · · , N , the parameter γi is the slope parameter. When γi → ∞, the function

becomes a step function. Here, we consider a simple case that st = Yt−1.

The class of FC-GARCH models provides the flexibility in incorporating the asymmetric effect

of the sign and the size of the previous return Yt−1 on the current variance level ht. It can also

capture the heavy-tailedness of return’s distribution and the slow decay of the autocorrelation of the

squared returns process {Y 2
t |t ∈ T }, (see He and Terasvirta (1999)). In addition, the FC-GARCH

model can capture another important stylized empirical feature of returns data, namely, the Taylor

effect, first documented by Taylor (1986). The Taylor effect refers to the strong autocorrelation

of absolute daily returns data. This also relates to the long-memory effect of volatility; that is,

the decay of the autocorrelations of volatility is too slow to be described by any short memory

autoregressive moving average time series models. In the empirical studies by Ding et al. (1993),

it has been documented that the realized volatility decays in a hyperparabolic rate.

When γi = 0, or αi, βi, λi = 0, i = 1, 2, · · · , H, the FC-GARCH model reduces to the

GARCH(1,1) model. The FC-GARCH model also nests other important ARCH-type models in

the literature. Some examples include the LST-GARCH(1,1) model, the GJR-GARCH(1,1) model,
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the VS-GARCH(1,1) model, the ANST-GARCH(1,1) model, the DT-ARCH(1,1) model, the DT-

GARCH(1,1) model, and others. For detail, interested readers may refer to Veiga and Medeiros

(2008).

§3. The Conditional Esscher Transform

In this section, we recall the method of the conditional Esscher transform to determine a price

kernel for option valuation. The method applies to determine a price kernel for a general FC-

GARCH model in the next section.

For each t ∈ T , write Ft for the P-completed, σ-field generated by the share price process up

to and including time t and write also F := {Ft|t ∈ T }. We assume that under P,

Yt = µt + ξt .

where ξt is an i.i.d innovation process having distributionD(0, ht) and µt and ht are Ft−1-measurable.

We now define the conditional Esscher transform. Let {θt|t ∈ T \{0}} be an F -predictable,

real-valued, process on (Ω,F ,P). Denote, for each t ∈ T \{0}, the moment generating function of

Yt given Ft−1 under P evaluated at z ∈ ℜ by MY (t, z); that is,

MY (t, z) := E[ezYt |Ft−1] .

Here E is expectation under P.

Assume that, for each t ∈ T \{0} and z ∈ ℜ, MY (t, z) exists, (i.e. MY (t, z) <∞). Consider an

F -adapted process {Λt|t ∈ T } on (Ω,F ,P) with Λ0 = 1, P-a.s., defined by:

Λt :=
t
∏

k=1

eθkYk

MY (k, θk)
, t ∈ T \{0} .

Then, it is easy to check that {Λt}t∈τ is an (F,P)-martingale. So, E[ΛT ] = 1.

Now we define a new probability measure Pθ equivalent to P on FT by setting

dPθ

dP

∣

∣

∣

∣

FT

:= ΛT . (3.1)

We call Pθ the conditional Esscher transform associated with θ.

Let M θ
Y (t, z) be the moment generating function of the return Yt given Ft−1 under the new

measure Pθ. Write Eθ[·] for expectation under Pθ. Then, by the Bayes’ rule, it is easy to check
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that

M θ
Y (t, z) =

MY (t, θt + z)

MY (t, θt)
. (3.2)

According to the fundamental theorem of asset pricing (see Harrsion and Kreps and Harr-

sion and Pliska (1981, 1983)), the absence of arbitrage opportunities is “essentially” equivalent

to the existence of an equivalent martingale measure under which discounted price processes are

martingales. We call the latter a martingale condition.

Now we write S̃t := e−rtSt, which is the discounted asset price at time t, for each t ∈ T . Then

in our case, the martingale condition is:

S̃u = Eθ[S̃t|Fu] , for all u, t ∈ T with u ≤ t . (3.3)

Here Eθ is expectation under Pθ.

The following proposition gives the necessary and sufficient condition for the martingale con-

dition. The proof is standard, so we only state the result.

Proposition 3.1: The martingale condition is satisfied if and only if there exists an F -predictable

process {θt|t ∈ T \{0}} such that

r = lnMY (t, θt + 1) − lnMY (t, θt) . (3.4)

The existence and uniqueness of the process θ can be established using some standard arguments.

Consider an European-style option with payoff V (ST ) at maturity T . Then, a conditional price

of the option at time t given Ft is determined as:

Vt = e−r(T−t)Eθ[V (ST )|Ft] . (3.5)

§4. Some Parametric Cases

In this section, we consider some parametric cases of our model in Section 2 when the GARCH

innovations have a normal distribution and a shifted gamma distribution. The development in this

section follows that of Siu et al. (2004).

§4.1 Normal innovations
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Firstly, under P, Yt|Ft−1 ∼ N(µt, ht). Consequently,

ln(MYt|Ft−1
(1, θt)) = ln

(

MYt|Ft−1
(1 + θt)

MYt|Ft−1
(θt)

)

= ln





eµt(1+θt)+
(1+θt)

2
ht

2

eµtθt

θ2
t

ht

2





= µt + htθt +
ht

2
.

Then, the martingale condition implies that

θt =
r − µt − ht

2

ht
.

It is not difficult to see that

MYt|Ft−1
(z, θt) =

MYt|Ft−1
(z + θt)

MYt|Ft−1
(θt)

= e
z
(

r−ht

2

)

+
z
2

ht

2 .

This is the moment generating function of a normal distribution with mean r− ht

2 and variance ht.

Let ǫθt := ξt − r + µt + ht

2 , for each t ∈ T \{0}. Then under Pθ, ǫθt |Ft−1 ∼ N(0, ht). Further, if

we take µt := r + λ
√
ht − 1

2ht as in Duan (1995),

ǫθt = ξt + λ
√

ht .

Consequently, under Pθ, the conditional variance dynamics are given by:

ht = α0 + β0ht−1 + λ0(ǫ
θ
t−1 − λ

√

ht−1)
2

+
H
∑

i=1

[

αi + βiht−1 + λi(ǫ
θ
t−1 − λ

√

ht−1)
2
]

f(st; γi, ci) .

§4.2 Shifted-Gamma Innovations

For each t ∈ T \{0}, Xt ∼ Ga(a, b), where Ga(a, b) represents a Gamma distribution with shape

parameter a and scale parameter b. We now suppose that the innovation at time t is given by:

ξt :=
√

ht

(

Xt − a/b
√

a/b2

)

, (4.1)

so we write ξt|Ft−1 ∼ SGa(0, ht).
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Then, under P,

Yt = r + λ
√

ht −
1

2
ht + ξt (4.2)

ht = α0 + β0ht−1 + λ0ξ
2
t−1 +

H
∑

i=1

(αi + βiht−1 + λiξ
2
t−1)f(st; γi, ci) , (4.3)

where

f(st, γi, ci) :=
1

1 + e−γi(st−ci)
.

The return process Y can be expressed as:

Yt = r + λ
√

ht −
1

2
ht −

√

aht + b

√

ht

a
Xt .

Note that b
√

ht

a Xt|Ft−1 ∼ Ga(a,
√

a
ht

). Then, Yt|Ft−1 is a shifted Gamma random variable with

shape parameter a, scale parameter
√

a
ht

and shift parameter −r−λ
√
ht+

1
2ht+

√
aht. Consequently,

the moment generating function of Yt|Ft−1 is given by:

MYt|Ft−1
(θt) =





√

a
ht

√

a
ht

− θt





a

e(r+λ
√

ht− 1
2
ht−

√
aht)θt (4.4)

provided that θt <
√

a
ht

.

Again, using the following formula,

M θt

Y (z, θt) =
MY (t, θt + z)

MY (t, θt)
, (4.5)

it is not difficult to show that

MYt|Ft−1
(z, θt) =





√

a
ht

− θt

√

a
ht

− θt − z





a

e(r+λ
√

ht− 1
2
ht−

√
aht)z , (4.6)

provided that z <
√

a
ht

− θt.

Consequently, the martingale condition implies that

θt =

√

a

ht
−
[

1 − e
λ
√

ht−
1
2 ht−

√
aht

a

]−1

. (4.7)

Now if we take bt :=
√

a
ht

and bθt :=

[

1 − e
λ
√

ht−
1
2 ht−

√
aht

a

]−1

, then

bθt = θt − bt .
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Under Pθ,

Yt|Ft−1 ∼ SGa(a, bθt ,−r − λ
√

ht +
1

2
ht +

√

aht) .

Let ∼ be “equal in distribution”. Then, we can write

Yt ∼ r + λ
√

ht −
1

2
ht −

√

aht +Xθ
t .

Here Xθ
t ∼ Ga(a, bθt ), and

ht = α0 + β0ht−1 + λ0(X
θ
t−1 −

√

aht−1)
2

+
H
∑

i=1

[αi + βiht−1 + λi(X
θ
t−1 −

√

aht−1)
2]f(st; γi, ci) .

§5. Simulation Studies

In this setion, we start by conducting simulation exercices for the option price with an underlying

asset which logreturn follows the FC-GARCH. We perform the simulation in two cases: with

innovations having normal and shifted-Gamma distributions. We simulate FC-GARCH prices and

use it to estimate a GARCH so that we can compare the FC-GARCH option prices to option prices

generated by a GARCH simulated with the estimated parameters. We also compare them to the

Black Scholes option price based on a MGB. In the end of the section, we do a sensibility analysis

study to check how sensible the option price is according to changes in each of the parameters.

We take an option with maturity T = 63, we consider 252 trading days per year and we set

0.1187 as the annual volatility. We perform 10000 simulations for the option prices and use both the

antithetic and control variate techniques in the normal case and the control variate in the Gamma

case.

The parameters used for simulating the FC-GARCH option prices are:

For the Shifted-Gamma case, we also assume that a = 0.567.

In order to compare the FC-GARCH option price with an option price based on a GARCH(1,1),

we obtain the parameters to do the GARCH simulation by a iterated two-stage method of estima-

tion, in which we first estimate the risk-premium based on the comparison of the conditional mean

found by the MATLAB1 and the actual equation for the conditional mean. Using this risk-premium,

1We used the garchfit command in MATLAB.
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FC-GARCH Parameters

α [2.22 × 10−16, 2.55 × 10−5, 3.73 × 10−4]

β [1.5186,−0.6339,−0.7238]

λ [0.0438,−0.0113,−0.0286]

γ [551.71, 413.78]

c [−0.0324, 0.0407]

Risk Premium 0.0359

Table 1: Vectors of parameters for the FC-GARCH including the values of α, β and λ in the three

different regimes.

we rescale the data subtracting the conditional mean and estimate the GARCH parameters sep-

aratedly. We performed 1000 iterations and the parameters converged. The variance of the data

used to do the estimation was 4.0789 × 10−4. This was used as the initial variance to perform the

simulation for finding the option prices.

GARCH Parameters in Normal Case

α 3.2822 × 10−5

β 0.8265

λ 0.0928

Risk Premium 0.1221

For the shifted gamma noises, we estimated the a using the two stage procedure as in Siu et

al(2004) by using the formula:

â =

[

2
∑T

t=1 h
3/2
t

∑T
t=1 ξ

3
t

]2

(4.8)

which led us to the following parameters:

GARCH Parameters in Shifted-Gamma Case

α 4.2816 × 10−5

β 0.8814

λ 0.0179

Risk Premium 0.0349

a 0.5114

The variance of the data was 4.2330 × 10−4. This was used as the initial variance to perform

the simulation for finding the option prices.
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Tables 1 and 2 displays the option prices obtained from the FC-GARCH model with normal

innovations and Tables 3 and 4 displays the option prices obtained from the FC-GARCH model

with shifted gamma noises. In the four tables we compare it to the associated Black-Scholes and

GARCH prices.

Note that the FC-GARCH always overprice the Black Scholes case and the GARCH model in

the normal case. On the other hand, the FC-GARCH always underprice the Black Scholes as well

as it underprices the GARCH in the gamma case.

Call Prices for the FC-GARCH with IV=1.0

K/S0 BS FCNormal GARCH

0.80 20.7062 20.8431 20.5368

0.90 12.6986 12.7960 12.2975

0.95 9.4850 9.5540 8.9856

1.00 6.8628 6.9350 6.3299

1.05 4.8140 4.9089 4.3114

1.10 3.2783 3.4187 2.8579

1.20 1.4010 1.6072 1.1569

Call Prices for the FC-GARCH with IV=1.2

K/S0 BS FCNormal GARCH

0.80 20.7062 20.8794 20.6579

0.90 12.6986 12.8682 12.5015

0.95 9.4850 9.6534 9.2326

1.00 6.8628 7.0434 6.5861

1.05 4.8140 5.0230 4.5422

1.10 3.2783 3.5260 3.0505

1.20 1.4010 1.7167 1.2873

Call Prices for the FC-GARCH with IV=1.0

K/S0 BS FCSG GARCH

0.80 20.5751 20.1627 20.3600

0.90 12.4219 11.6073 11.9746

0.95 9.1546 8.2994 8.7076

1.00 6.5076 5.7375 6.1263

1.05 4.4651 3.8441 4.1954

1.10 2.9613 2.4987 2.8028

1.20 1.1855 1.0104 1.2002
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Call Prices for the FC-GARCH with IV=1.2

K/S0 BS FCSG GARCH

0.80 20.5751 20.3908 20.5503

0.90 12.4219 11.7655 12.2693

0.95 9.1546 8.3907 9.0418

1.00 6.5076 5.7701 6.4839

1.05 4.4651 3.8468 4.5429

1.10 2.9613 2.5124 3.1006

1.20 1.1855 1.0662 1.3988

§6. Summary and discussion

In this paper we adopted the method of Siu et al(2004) to find the risk neutral version of the

FC-GARCH with two different innovations, the normal and the shifted-gamma cases. We also

performed simulations and showed tables comparing the Black Scholes price and the GARCH price

to our simulation results of the FC-GARCH. We noticed that our prices slightly overprice the Black

Scholes price and the GARCH price in the normal case but in the gamma case, the FC-GARCH

underprice both the Black Scholes and the GARCH.
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