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Abstract

Power distribution utilities must transport electric energy to attend all clients in a given
network within specified targets for quality and reliability. The occurrence of a failure from
one of the network components is the main factor which compromises the system reliability.
Maintenance actions such as repairs and component replacements are employed to avoid power
interruptions or resume the network healthy operation. This paper represents the relationship
between maintenance activities and reliability as an optimization problem with two criteria:
cost of maintenance activities and maximum value for the system average interruption fre-
quency index, along the planning period. Solution of the problem for each local network gives
the local efficient solutions and the associated trade-off curves. These solutions are optimally
combined to solve higher levels multiple criteria optimization problems, unveiling efficient so-
lutions and associated trade-off curves for each group of networks and for the whole company.
The procedure makes the hierarchical multiple criteria optimization of maintenance activities
which provides information to assess good decisions on maintenance activities at all decision
levels of the network management. Application to both illustrative and real case studies certifies
its benefits.

KEYWORDS: maintenance resources allocation, distribution networks reliability, mul-
tiple criteria optimization, hierarchical multiple criteria optimization, two-level mainte-
nance resources optimization, power distribution networks.

1 Introduction

Given a power distribution network, the hierarchical multiple criteria optimization of mainte-
nance activities, HMO for short, is to define the best compromise of maintenance policies for the
network at both local and global levels, along a given period. The “best compromise" encodes a
comprehensive representation of the search for the minimum cost in maintenance activities and the
highest possible reliability for the networks.

The paper proposes to address the problem with an hierarchy optimization processes which
mirrors the flow of informations and decisions in the management of utilities. Multiple criteria
optimization at the local (lower) levels search the best compromise between the cost of maintenance
activities and maximum value for the system average interruption frequency index SAIFI, along
the planning period. Solutions of the problem for each local network give a set of local efficient
solutions and the associated trade-off curves.

Maintenance policies defined at the upper management levels, for the utility as a whole, must
take into account the available budget, minimum reliability requirements established by regulatory
agencies (usually for a group of networks) and customer relationships. In order to assess these
upper level decisions, local efficient solutions and associated trade-off curves are optimally com-
bined to solve higher levels multiple criteria optimization problems, unveiling efficient solutions
and associated trade-off curves for each group of networks and for the whole company.
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Contrary to other multiple criteria decision problems on power systems that require agreements
between different agents that strive to meet their objectives (Lyra and Ferreira 1995, Lyra et al.
1996), the decision process about maintenance policies studied in the paper is essentially internal to
the utilities. It is supposed to exist a cooperative effort to allow both a reliable flow of informations
in the bottom-up optimization process and in the top-down implementation of the decisions that
should represent the best benefits for the utility.

At first glance, the HMO might be liken with a bilevel optimization problem (Vicente and
Calamai 1994), where the set of feasible points of the upper level problem is given by the solution
set of a lower level problem. The variables of the upper level are the parameters of the lower level
problem and again the solutions of the optimization problem on the lower level influence the upper
level objective function value.

A new area of research is the multiobjective bilevel optimization problem, where one or both
levels hold a vector-valued objective function. For instance, Eichfelder (2010) proposes the first
algorithm to solve bicriteria upper and lower level problems with a one-dimensional variable on the
upper level. For that purpose, the author uses an scalarization technique combined with an adaptive
parameter control.

A major difference between the HMO and the traditional multiobjective bilevel optimization
problem is that HMO holds not one, but several multiobjective lower level problems which must
be cooperatively combined into an efficient set for the upper level problem. In the best of our
knowledge, no algorithm has been proposed for this sort of problem.

The research methodology used to solve the HMO consisted in modeling the problem in order to
represent the process of deterioration which the components are subject to. This normative model-
ing allows maintenance decisions based on quantitative informations (Bertrand and Fransoo 2002).
Analysis of the components failure rates are made according to the preventive maintenances ap-
plied. A multi-objective optimization technique was implemented in the search for non-dominated
solutions, which comprehend the best strategies for maintenance actions.

The primary goal of the paper is to discuss the problem that motivated the design of HMO
and to develop the theory and algorithms that make up the methodology. Section 2 formulates the
multiple criteria decision problems at both local and higher levels; it also presents several necessary
definitions. Section 3 presents the main theoretical results and solution strategies. Case Studies and
Conclusions follow.

2 Problem Definition

Most power distribution networks operate with a radial configuration, which means that, using
a graph terminology, the network can be represented as a tree rooted at a substation which provides
a unique path to every section s. Each section attends a given number of clients and contains a
set of electrical equipments (components) subject to failure. The occurrence of any equipment
failure causes power supply interruption to the corresponding section and recursively to all of his
offsprings sections. Fig. 1 and Fig. 2 illustrate how a power distribution network, for purposes of
maintenance planning, may be organized as coupled sections, which include part of the primary
and secondary networks (Costa et al. 2010). Table 1 gives some notation used throughout the
mathematical formulation.

2.1 Mathematical Formulation of the Local Level Problems

The Multi-Objective Maintenance Resources Allocation Problem for a local network, MRAP, is
defined for a planning horizon of t = 1, . . . ,T years. The nature by which the equipments deteriorate
or ameliorate along this time horizon, as they receive or not maintenance, is defined by a failure

2

717



Table 1: Notation.

xt
e binary decision variable of whether equipment e receives maintenance (1) or not (0).

δt
e failure rate of equipment e in year t.

Ns number of clients affected (including offsprings) by failure on section s.

Es set of equipments belonging to section s.

pe preventive maintenance cost for equipment e.

ce corrective maintenance cost for equipment e.

me0 failure rate multiplier for equipment e on lack of maintenance.

me1 failure rate multiplier for equipment e when maintenance is executed.

mt
e failure rate multiplier applied on equipment e failure rate in year t.

Fig. 1: A simple power distribution network.

Fig. 2: The same power distribution network represented by sections.

rate model given by Eq. (1).

δt+1
e = δt

emt
e (1)

The equipment failure rates are updated along the time horizon by the failure rate multiplier,
according to the actions applied. When maintenance is carried out, the equipment failure rate is
reduced (or sustained) by the multiplier me1 (0 < me1 6 1); otherwise the equipment failure rate is
increased by me0 (me0 > 1).

One of the MRAP objectives is the maintenance cost, which is expressed in terms of preventive
maintenance cost and corrective maintenance cost. The preventive cost during time t (PCt) is the
sum of all costs from the performed maintenance.

PCt = ∑
s

∑
e∈Es

pext
e (2)
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The corrective cost during time t (CCt) is the sum of every equipment corrective maintenance cost
multiplied by its failure rate.

CCt = ∑
s

∑
e∈Es

ceδt
e (3)

The second MRAP objective is related to the network reliability, given by the system average in-
terruption frequency index (Brown 2002), SAIFI for short, given by Eq. (4), which represents the
expected number of failures for each client, per year.

SAIFIt =
∑

s
(Ns ∑

e∈Es

δt
e)

∑
s

Ns
(4)

Considering the previous equations, the MRAP for a single local level network, such as the one
illustrated in Fig. 1, can be summarized in the following bi-objective integer non-linear mathemat-
ical model:

(MRAP)

MIN CT = ∑
t

1
(1+ i)t (CCt +PCt) (5)

MIN SAIFI = max
t

(SAIFIt) (6)

st

mt
e = xt

eme1 +(1− xt
e)me0 ∀e,∀t (7)

δt
e = δt−1

e mt−1
e ∀e,∀t (8)

xt
e ∈ {0,1} ∀e,∀t (9)

The first objective function (5) represents the maintenance total cost, adjusted by the present value,
given an interest rate i. The second objective function (6) represents the maximum SAIFI obtained
for the planning horizon. Constraints (7) and (8) represents the failure rate model. The binary
constraints on the decision variables are expressed by (9). The initial failure rates δ0

e are presumed
known for every equipment. The number of decision variables xt

e grows according with the number
of equipments and periods of the planning horizon (|xt

e| = |e||t|). The same growth is observed in
the number of constraints (7) and non-linear constraints (8).

The following definitions define the nature of the solutions that one should accomplish by solv-
ing the MRAP.

Definition 1 (Feasible Solution) Each feasible solution x = [xt
e] (∀e,∀t) for the MRAP has an im-

age in the criteria space z(x) = (CT (x),SAIFI(x)). Henceforth, each solution will be represented
by the image z = (CT,SAIFI).

Definition 2 (Solution Set) A solution set S = {z1,z2, . . . ,zp} contains p feasible solutions refer-
ring to a network with NC clients. Every network i will have its own solution set Si = {zi

1,z
i
2, . . . ,z

i
pi}

and a given number of clients NCi. Whenever possible, the solutions subindexes will be ommited.

Definition 3 (Dominance) A solution z = (CT ,SAIFI) dominates z = (CT,SAIFI) if CT 6 CT
and SAIFI 6 SAIFI, with at least one of the inequalities being strict (Roy and Vincke 1981). This
is represented by z ≺ z.

Definition 4 (Nondominated Solution) A solution z = (CT,SAIFI) is nondominated (or efficient)
in S if, and only if, there does not exist a solution z∈ S such that z≺ z (Roy and Vincke 1981, Ehrgott
2005).
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When dealing with a multi-objective problem, such as the MRAP, it is expected to achieve a so-
lution set S containing all (and only) nondominated solutions (efficient solutions). Notwithstanding
the size of S can be theoretically infinite, in practical applications only a subset with a representative
number of nondominated solutions is adequate.

2.2 Mathematical Formulation of the Higher Level Problem

Power distribution utilities, with several (electrically independent) networks, are interested in
solving the MRAP for the power distribution system as a whole. Theoretically, in this case the
MRAP model can still be used, by considering the collection of networks as a single entity. The
fact that this instance will no longer be a tree but a forest is irrelevant to the model. This approach,
however simple and intuitive, is impractical due to the scale of this instance. Also, it would not
provide a realistic representation for the flow of information and decisions in a distribution utility.

In order to deal with these large scale instances that are formed by a group of networks, we
formulated this higher level problem (which also benefits from a divide and conquer paradigm),
where first we obtain the solution set for each network and compose this collection of sets into a
single set of nondominated solutions for the entire power distribution system. This set represents the
best possible global maintenance policies for the power distribution company considering the trade-
offs between maintenance investment and system reliability. For this reason we call it the Global
Composite Solution Set (GCSS). The following definitions present three new operators which will
serve as building blocks for the formal definiton of the GCSS, and for the algorithm to efficiently
determine it, presented in Section 3.2.

Definition 5 (Filter π) We define the operation π(S) that filters all the dominated solutions from
the set S. That said, S̃ = π(S) implies that S̃ ⊆ S, ∀z ∈ S if z is nondominated then z ∈ S̃, and ∀z ∈ S
if z is nondominated then z /∈ S̃.

Definition 6 (Aggregation ⊕) Consider two solutions zi =(CT i,SAIFIi)∈ Si and z j =(CT j,SAIFI j)∈
S j(i 6= j) (original solutions). The operator aggregation ⊕ under these solutions, generates a third
solution zk (aggregate solution) formed by the sum of the costs and the weighted average of the
SAIFIs from the original solutions. In this sense, this aggregate solution represents the total amount
of maintenance investment, and the average failure rate for both networks i and j.

zi ⊕ z j = (CT i +CT j,
NCiSAIFIi +NC jSAIFI j

NCi +NC j ) = zk (10)

Definition 7 (Composition ⊗) Let two networks i and j with NCi and NC j clients have solution
sets Si and S j (original sets), respectively. The operator composition ⊗ under these two sets gen-
erates a third solution set Sk (composite set) which contains all possible aggregated solutions pro-
duced from the original sets. In addition, the number of clients associated with this composite
solution set will be naturally NCk = NCi +NC j.

Si ⊗S j = {zi
1 ⊕ z j

1,z
i
1 ⊕ z j

2, . . . ,z
i
1 ⊕ z j

p j ,zi
2 ⊕ z j

1,z
i
2 ⊕ z j

2, . . . ,z
i
2 ⊕ z j

p j , . . . , (11)

zi
pi ⊕ z j

1,z
i
pi ⊕ z j

2, . . . ,z
i
pi ⊕ z j

p j} = Sk

Definition 8 (Global Composite Solution Set) The GCSS is the set of all global Pareto optimal
(nondominated) solutions concerning a collection of n sets {S1,S2, . . . ,Sn}. This means that each
solution from the GCSS is the result of the aggregation of n solutions, one from each set.

GCSS = π(S1 ⊗S2 ⊗S3 ⊗·· ·⊗Sn) (12)
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3 Solution Strategy

3.1 Solution of the Local Level Problems

To solve the MRAP model, a classical multi-objective scalarization technique was used, the
ε-Constraint Method (Ehrgott 2005), where given the multi-objective optimization problem, we
minimize only one of the objectives, the maintenance cost, while the SAIFI is transformed into a
constraint (14). Therefore, in this technique the original multi-objective model (MRAP) is con-
verted into a mono-objective model (ε-MRAP):

(ε-MRAP)

MIN CT = ∑
t

1
(1+ i)t (C

t
c +Ct

p) (13)

st

max
t

(SAIFIt) 6 εk (14)

mt
e = xt

eme1 +(1− xt
e)me0 ∀e,∀t (15)

δt
e = δt−1

e mt−1
e ∀e,∀t (16)

xt
e ∈ {0,1} ∀e,∀t (17)

It can be verified in (14) that the SAIFI is no longer part of the objective, but, instead, con-
strained by the parameter εk. The ε-MRAP, despite having only one objective, remains difficult to
be solved optimally, since it is a non-linear integer optimization problem. Nevertheless good solu-
tions were attained heuristically by means of a genetic algorithm based on the work of Reis (2007).
Some characteristics of this metaheuristic are listed in the following:

i. The representation of the individuals were maid through a vector of real numbers in which
each position (locus) represents an equipment subject to maintenance, and the corresponding
value represents the investment destinated to that component.

ii. The initialization of population (30 individuals) was made through a greedy constructive
heuristic, where the individuals were generated considering only a restricted list of com-
ponents that could receive maintenance investment based on their potential to improve the
system reliability.

iii. The recombination operator, due to the decision of using a real vector representation, was an
arithmetic crossover, where the offsprings atributes are generated as a linear combination of
their parents atributes.

iv. The mutation operation (with 0.5% probability) is basically a random perturbation of the
generated solutions through recombination.

v. The population update is made using a steady-state strategy, where only one individual is
generated in each iteration, which replaces his worst parent.

vi. A local search is used to further improve the solution quality by reallocating investments
between pairs of components.

To obtain the set of p solutions, the ε-MRAP is solved p times under distinct values of εk, where
ε1 = SAIFImax and εp = SAIFImin. The values of SAIFImax and SAIFImin can be trivially calculated
by considering xt

e = 0 (not a single maintenance) and xt
e = 1 (all possible maintenance) (∀t,∀e),
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respectively. To distribute p values of εk uniformly between the SAIFI extreme values, they are
computed by Equation (18).

εk = SAIFImin +
(SAIFImax −SAIFImin)(k−1)

p−1
k = 1, . . . , p (18)

Thus, given a power distribution network, its solution set is obtained after solving p times the
ε-MRAP model and filtering any nondominated solutions.

3.2 Solution of the Higher Level Problem

By definition, GCSS is the solution set resulting from the composition of a collection of n
solution sets Si (i = 1, . . . ,n) after filtering only the nondominated solutions. However, determining
GCSS by means of Equation (12) is a naive strategy. Since if we have p solutions in each set Si, it
would be necessary pn aggregations to generate GCSS, which is highly impractical.

This work proposes a more efficient way to compute the GCSS. Before describing it, some
properties of the operators ⊕ and ⊗ are provided.

Property 1 The aggregation operator ⊕ is comutative.

Proof:

zi ⊕ z j =
(

CT i +CT j,
NCiSAIFIi +NC jSAIFI j

NCi +NC j

)
=
(

CT j +CT i,
NC jSAIFI j +NCiSAIFIi

NC j +NCi

)
= z j ⊕ zi

(19)

Property 2 The aggregation operator ⊕ is associative.

Proof:

(zi ⊕ z j)⊕ zk =

(CT i +CT j)+CT k,
NCi j

(
NCiSAIFIi+NC jSAIFI j

NCi+NC j

)
+NCkSAIFIk

NCi j +NCk


=

CT i +(CT j +CT k),
NCiSAIFIi +NC jk

(
NC jSAIFI j+NCkSAIFIk

NC j+NCk

)
NCi +NC jk

= zi ⊕ (z j ⊕ zk)

Property 3 The operator ⊗ is comutative and associative.

Proof: Given that the aggregation ⊕ is both comutative and associative, extending these properties
to ⊗ is trivial.

The conditions by which a solution belonging to a composite set is nondominated are the objects
of interest for Lemmas (1) and (2).

Lemma 1 (Necessary condition for an aggregated nondominated solution) Let zk ∈ Sk be an ag-
gregate solution from zi ∈ Si and z j ∈ S j (zk = zi ⊕ z j, Sk = Si ⊗S j). A necessary condition for zk to
be nondominated in Sk is that zi and z j are also nondominated in Si and S j, respectively.
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Proof: By contradiction, suppose that one of the original solutions that generates the nondominated
solution zk, for instance zi, is dominated. In that case there exist a solution zi which dominates zi.

zi ≺ zi ⇒


CT i 6 CT i

SAIFIi 6 SAIFIi

zi 6= zi ⇒ (CT i
< CT i)∨ (SAIFIi

< SAIFIi)

Let zk be the aggregate solution from zi and z j (zk = zi ⊕ z j). Comparing solutions zk and zk:

{
CT k = CT i +CT j 6 CT i +CT j = CT k

SAIFIk = NCiSAIFIi+NC jSAIFI j

NCi+NC j 6 NCiSAIFIi+NC jSAIFI j

NCi+NC j = SAIFIk

⇒ zk ≺ zk

However, if zk dominates zk then it is a contradiction with the hypothesis that zk is nondomi-
nated. The contradiction is a consequence of the assumption that zi was dominated.

Lemma 2 (Non-sufficient condition for an aggregated nondominated solution) Let zk ∈ Sk be
an aggregate solution from zi ∈ Si and z j ∈ S j (zk = zi ⊕ z j, Sk = Si ⊗ S j). It is not a sufficient
condition that zi and z j are nondominated in Si and S j (respectively) for zk to be nondominated in
Sk.

Proof: A simple procedure to produce a dominated solution from the aggregation of two non-
dominated solutions will be given. Consider two nondominated solutions zi

1 and zi
2 in Si, and two

nondominated solutions z j
1 and z j

2 in S j.

zi
1 = (CT i

1 ,SAIFIi
1)

zi
2 = (CT i

2 ,SAIFIi
2)

}
(CT i

1 < CT i
2 ,SAIFIi

1 > SAIFIi
2)

z j
1 = (CT j

1 ,SAIFI j
1)

z j
2 = (CT j

2 ,SAIFI j
2)

}
(CT j

1 < CT j
2 ,SAIFI j

1 > SAIFI j
2)

Aggregating solution zi
1 with z j

2 to generate zk
1, and solution zi

2 with z j
1 to generate zk

2.

zk
1 = zi

1 ⊕ z j
2 =

(
CT i

1 +CT j
2 ,

NCiSAIFIi
1 +NC jSAIFI j

2
NCi +NC j

)

zk
2 = zi

2 ⊕ z j
1 =

(
CT i

2 +CT j
1 ,

NCiSAIFIi
2 +NC jSAIFI j

1
NCi +NC j

)
Now suppose that zk

1 dominates zk
2:

zk
1 ≺ zk

2 ⇒


CT i

1 +CT j
2 6 CT i

2 +CT j
1

NCiSAIFIi
1 +NC jSAIFI j

2
NCi +NC j 6 NCiSAIFIi

2 +NC jSAIFI j
1

NCi +NC j

zk
1 6= zk

2

⇒


CT j

2 −CT j
1 6 CT i

2 −CT i
1

NCi(SAIFIi
1 −SAIFIi

2) 6 NC j(SAIFI j
1 −SAIFI j

2)
zk

1 6= zk
2

(20)
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The conditions expressed by (20) are feasible. Therefore, Lemma 2 gives a procedure to gen-
erate a dominated solution through aggregation of two nondominated solutions. Also, it gives the
conditions that lead to zk

1 dominating zk
2.

Property 3 with Lemmas 1 and 2 allows to draw the following conclusions.

i. The result from one or several compositions is independent of the order by which the solution
sets are composed.

ii. To obtain a nondominated solution of a composite set it is necessary to aggregate nondomi-
nated solutions from the original sets. Therefore, dominated solutions from the original sets
can be discarded.

iii. Aggregating two nondominated solutions is not a sufficient condition to generate a nondom-
inated solution for the composite set. Hence, many dominated solutions may be generated
through a composition, even if the original sets contain only nondominated solutions.

Based on these properties, Theorem 1 describes an alternative method to determine the GCSS,
which is more efficient when compared to using the definition (12).

Theorem 1 (Alternative strategy to determine GCSS) Given a collection of n solution sets Si

(i = 1, . . . ,n), the GCSS can be determined by iteratively composing and filtering these sets two-by-
two, in any order, until only one set remains, that one being the GCSS.

GCSS = π(· · ·π(π(S1 ⊗S2)⊗S3) · · ·⊗Sn) (21)

Proof:
The GCSS is defined as the set of global Pareto optimal (nondominated) solutions result from

the composition of the original solution sets. To demonstrate that Equation (21) can successfully
determine GCSS, it must be shown that the π filters applied on each composition do not lose any
solution in GCSS. This is guaranteed by Lemma 1, since nondominated solutions from a composite
set are always generated by nondominated solutions from the original set. Thus removing domi-
nated solutions after the composition of two sets does not interfere in the result of the suceeding
compositions.

3.3 On the Complexity of Determining GCSS

In practice, Equation (21) is much more efficient in determining the GCSS than by Equation
(12), since several dominated solutions are filtered during the process, which in turn can dramati-
cally reduce the computational effort. However, an algorithm implementing Equation (21) will also
have a worst-case complexity of O(pn). This is true for the reason that the GCSS may theoreti-
cally contain pn nondominated solutions (i.e., all solutions are nondominated); hence, the simple
enumeration of the solutions would be exponential. For these pathological cases, this work pro-
poses an O(np2) approximate algorithm to find the GCSS. In this algorithm, the solution sets are
still composed and filtered two-by-two; however a limited number of p nondominated solutions are
carried out on each composite set. The criteria to select these p nondominated solutions can be, for
instance, uniform distribution, lowest costs or lowest SAIFIs. Once again, this algorithm is iterated
until only one set remains, which will be an approximation of the GCSS. This algorithm requires
at most (n− 1)p2 aggregations; therefore, its complexity grows polynomially with the size of the
instance.

9
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4 Case Studies

On this Section, the ε-MRAP model has been solved to one small idealized network, based on
the instance used by Sittithumwat et al. (2004), using the genetic algorithm discussed in Section 3.1.
Three real networks have also been solved, and their solution sets composed using Equations (12)
and (21) to determine the GCSS. All algorithms were implemented in Java, and the computational
tests executed in a Intel Quad Core 3.0Ghz, 4 Gb RAM.

4.1 Case Studies of the Local Level Problems

The MRAP was applied to a small network, called reference network, already depictured in
Fig. 1. This network is formed by eight sections (3 primary and 5 secundary), 34 components,
and 5200 clients. The ε-MRAP was solved by a genetic algorithm earlier described on Section 3.1,
assuming 30 uniformly distributed values of ε = SAIFI ∈ [1.49,3.96]. The genetic algorithm found
one nondominated solution at every iteration, taking 5.74 seconds of CPU time.

Fig. 3d shows the set of nondominated solutions for the reference network. Each one of these
correspond to a maintenance policy for the reference network, thus we can find trade-off policies
which go from zero cost (simply allowing the natural degradation of the components) to almost
R$64,000.00 (intensive maintenance on every component). With respect to the system reliability,
there are solutions which have an expected number of failures down from 1.5 up to 4.0 per client
per year.

(a) Solution for year 1 (b) Solution for year 2

(c) Solution for year 3
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Fig. 3: Local level solution for the reference network.

To further illustrate what each solution of the set represents, Fig. 3d has a marked solution
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z = (19.9,1.92), for which the complete 3-years maintenance policy is described in Fig. 3a, 3b and
3c. In these figures, the components are displaced according to the section they belong. The number
of clients represents not only the clients residing in the section, but also includes all the clients
affected by an eventual power interruption on it. The highlighted components were chosen by the
optimization process to go under maintenance. A quick observation is that mainly the components
on the primary sections have been selected for maintenance, which can be explained by the greater
number of clients depending on the good operation of these components.

4.2 Case Studies of the Higher Level Problems

The object of study for determining the Global Composite Solution Set (GCSS) was a group of
three real large scale distribution networks, refered as Network 1, 2, and 3. The characteristics of
these network are shown in Table 2.

Table 2: Characteristics of Netwoks 1, 2, and 3.
Network 1 Network 2 Network 3

Vegetation 178 447 820

Posts 178 447 820

Cables 178 447 820

Infrastructure 178 447 820

Transformers 52 269 200

Switches 1 4 8

Total 765 2061 3488

Sections 178 447 820

Clients 4513 18268 25466

The genetic algorithm solved 30 iterations of the ε-MRAP for each network separately, thus ob-
taining three solution sets, depicted in Fig. 4. Some of the solutions from these sets are dominated,
what is undesirable. However, it is expected that this can happen once in a while, since we are not
in the possession of an exact algorithm. The CPU time necessary to generate these solution sets
were 104, 653 and 1840 seconds, for Network 1, 2, and 3, respectively.

Equation (21) was implemented to obtain the GCSS for the three solution sets. It starts by
composing two solution sets, and the filtered result was then composed with the third solution set.
The GCSS emerged after filtering the result from the second composition; it can be visualized as
the nondominated points of the composite solution set in Fig. 4. The CPU time of 2.35 seconds to
generate the GCSS was practically irrelevant, compared to the genetic algorithm CPU time. In order
to exemplify how Equation (21) is computationally more efficient than Equation (12) in practical
situations, we have also used the Eq. (12) to determine the same GCSS, taking 4.543 seconds of
CPU time, say 93.3% higher then the previous strategy, for composing only three networks.

Fig. 4 illustrates that every solution in the composite set results from the aggregation of the orig-
inal solutions, one from each original set. In addition, several dominated solutions were generated
during the compositions (also shown in Fig. 4), which is consistent with Lemma 2.

5 Conclusions

This paper proposed the hierarchical multiple criteria optimization of maintenance activities
(HMO), which allows to define the best compromise of maintenance policies for power distribution
networks at both local and global levels, along a given period. The best compromise is obtained
by evaluating efficient solutions and associated trade-off curves that consider the search for the
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Fig. 4: Composition of the solution sets from Network 1, 2 and 3.

minimum cost in maintenance activities and the highest possible reliability for the networks. The
development of the approach was motivated by a decision problem faced by distribution utilities
in Brazil, where reliability indicators, such as maximum values for the system average interrup-
tion frequency index (SAIFI), are establish and supervised by the Brazilian Electricity Regulatory
Agency, for each group of networks operated by a distribution company in a geographical area.

Solutions of the problem for each network give local efficient solutions and the associated trade-
off curves. Local solutions are optimally combined to solve the higher level multiple criteria opti-
mization problem, unveiling efficient solutions and associated trade-off curves for the whole com-
pany. This way, the flow of informations in a bottom-up multiple criteria optimization procedure
provide the necessary information to allow well informed decisions about maintenance policies for
the utility as a whole. The top-down flow of these decisions meets the previously defined trade-off
curves and associated efficient solutions, which indicate the best use of maintenance resources at
all local networks. To sum up, the methodology provides information to assess good decisions on
maintenance activities at all decision levels of a power distribution utility.
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