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Abstract

In recent years, there has been increased interest in setting up guidelines for carrying
out cost-effectiveness analysis of medical interventions, and some such guidelines have
indeed been established. In the paper, we present a model of information retrievement
and use in which we can studie the role of guidelines. The main result, which is a
version of the well-known theorem of Blackwell (1948), shows that in cases where there
are sufficiently many decisions to be made on the basis of the information obtained,
there can be no objective ranking of methods, except the trivial one stating that more
information is better than less. The consequence is that guidelines, and the very detailed
version known as the reference case approach, may have administrative advantages but
can be harmful when considered as an aid towards better decisions.
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1. Introduction

In the course of the last decade, the use of cost-effectiveness analysis as an aid to decision
making in health care has been steadily increasing, with the effect that not only a large
number of such analyses have been carried out, but also the discussion of methods and
foundations has been growing. Among the issues which have been debated is the possibil-
ity of drawing up guidelines for carrying out a cost-effectiveness analysis. Such guidelines
have indeed been established various time intervals, and the trend toward towards greater
detailedness of guidelines has in the last years been evident, possibly as a response to the
demand from the pharmaceutical industry wanting exact instructions as to which documen-
tation has to be presented, partly by authorities wanting a clear description of the information
to be demanded from producers wanting to market a new drug.

In many cases, the scientific community has been invited to participate in drawing up
guidelines, so that the cost-effectiveness analyses which are made in accordance with the
guidelines are those that are “best” from a purely theoretical point of view. The question of
whether such scientifically correct guidelines can at all be found seems not to have attracted
much, if any, attention. However, a similar question has been asked long ago in another
field, which however is related, namely that of finding the “correct” accounting standards,
rules for how the accounts of a company should be drawn up and presented. As pointed out
by Demski (1973), such correct accounting standards simply do not exist.

What is behind this seemingly paradoxical situation – that science cannot point to the
right way of doing cost-effectiveness analysis – is a problem which was considered by sta-
tistical information theory even earlier. Indeed, one of the main results of this theory, known
as Blackwell’s theorem (Blackwell, 1951), states that if a decision maker has to choose an
act with uncertain consequences, and she has a choice of different methods for obtaining
information prior to this choice, then the only ranking of such information services which
does not depend on the preferences of the decision maker is the simple, but unfortunately
quite trivial rule: “More information is better than less”. In other words, there can be no
method for collecting and presenting information which is superior to all other methods no
matter how the decision maker looks at the outcomes.

It might be argued that this dependence of the guidelines on the decision maker which
has to use the information in her decisions is not a real problem; guidelines are indeed es-
tablished by specified decision makers (public health care organizations, NICE, and others).
However, in what follows we can actually sharpen the statement of Blackwell’s theorem
slightly, so that it will apply even when the decision maker and her preferences are uniquely
specified, as long as there are sufficiently many alternative actions to choose among – as will
indeed be the case when the decision maker is in charge of a national health care system.
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So, even in this case, there is no theoretical foundation of guidelines considered as “golden
standard” or best practice. Guidelines may be convenient or useful for many other purposes,
but alas, they cannot be the last of science. This result adds another dimension to the scep-
ticism towards the increased emphasis on detailed guidelines observed in recent years, as
expressed e.g. by Birch and Gafni (2004).

The paper is structured as follows: In Section 2, we introduce the statistical informa-
tion theory and explain the relation to cost-effectiveness analysis. This section ends with a
formulation and proof of the version of Blackwell’s theorem which is tailored to our pur-
pose. In Section 3, we connect the abstract result on information methods to the case at
hand, cost-effectiveness analysis, and we show why guidelines cannot be scientifically well-
founded here, although it may well be so in other fields of medical decision making. We
close the paper with some comments in Section 4.

2. Cost-effectiveness analysis as an information service

In the present section, we briefly introduce the background for our model, which is the ap-
proach to the theory of information introduced by Marschak, Blackwell, and others; a more
detailed exposition of this theory can be found e.g. in Hirshleifer and Riley (1992). The
model introduced pertains to all decision making under uncertainty, but we keep the discus-
sion as close as possible to our principal application, which is cost-effectiveness analysis,
showing as we proceed how the abstract concepts fit in with our overall purpose.

We consider a situation where a decision maker – which in our application may be a
health care organization deciding upon the best way of treating the patients under their re-
sponsibility – has to make a decision which is subject to some uncertainty. This uncertainty
will be modelled in a very simple way, since we assume that there is a finite set of uncertain
states,

S = {s1, . . . , sn},

each of which affect the results of the treatment. The choices of the decision maker is given
by a set A of decisions; for our purposes, a decision is a function a : S → X, taking each
uncertain state s ∈ S to an outcome a(s) in a space of possible outcomes (to be specified
later). In our application to health care, a decision is a particular treatment of patients
(which may be a procedure in hospital or the administration of a particular medical drug);
the effects of such treatments are usually not fully known, and neither are their costs. In our
present case, we have assumed that there are some identifiable but random factors which are
behind this uncertainty, which is indeed a simplification as compared with reality where the
uncertainty about future consequences of a treatment tend to have a more complex nature.
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However, this simple structure allows us to obtain some results which hopefully give insight
into the more complicated reality.

We shall assume that the decision maker has initial beliefs about the likelihood of each
of the underlying states s1, . . . , sn influencing outcome of the decisions, formulated as a
(“prior”) probability distribution (P(σ1), . . . , P(σp)). Also, the decision cares about the con-
sequences obtained, meaning that she has a utility function U : X → R assigning utility
or degree of satisfaction to each possible outcome. Relying only on the initial beliefs, stan-
dard decision making under uncertainty calls for the choice of decision which maximizes
expected utility

EP[U ◦ a] =

n∑
i=1

P(σi)U(a(si))

over all decisions a ∈ A. This behavior may not correspond fully to what decision makers in
health care organizations actually do, but it is at least in line which what they pretend to do.

In our discussion so far, there has been no mentioning of information; decisions were
based on assessments of probabilities but not on any observation; to allow for this – and
thereby formally introducing “evidence-based medicine” into the model, we should add the
option of collecting and processing of information before the decision is made, which is
what cost-effectiveness analysis is about.In particular, following the recent guidelines of
NICE (2004), information about the medical effects of a treatment should be gathered, if
possible by a randomized clinical trial, which should also contain observations about health-
related quality of life, and the information should be collected and processed according the
specified rules. What the guidelines specify, is an information method, that is a procedure
for collecting date and producing a signal (in our case, a report of the cost-effectiveness
analysis, containing relevant cost-effectiveness ratios as well as other ingredients (such as
sensitivity analysis, confidence limits etc.)

In our simplified formal world, an information method is a pair (Σ, p), where Σ =

{σ1, . . . , σm} is a finite set if siugnals, and p is a system of conditional probabilities p(σ j|si),
for j = 1, . . . ,m, i = 1, . . . , n, interpreted as the probability that signal σ j is reported given
that the true state of nature is si. Thus, in our model the information obtained reveals the true
state of nature only partially, since there is a random error to be taken into account. This ap-
proach is in line with the usual approach to the treatment of uncertainly in cost-effectiveness
analysis, cf. e.g. Drummond and McGuire (2002).

Given any observed signal σ j, the decision maker may compute posterior probabilities
P∗(·|σ j) of the states of nature using Bayes’ formula,

P∗(si|σ j) =
p(σ j|si)P(si)

P(σ j)
,
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where P(σ j) =
∑n

h=1 p(σ j|sh)P(sh) is the probability of observing the signal σ j. Having now
the updated probabilities over states of nature, conditional on the observed signal σ j, the
choice of the decision maker must be the decision which maximizes

EP∗(·|σ j)[U ◦ a] =

n∑
i=1

P∗(si|σ j)U(a(si))

over all a ∈ A. This optimal decision, given the signal σ j, is denoted a[σ j]. The overall
expected value (of taking optimal decisions, contingent on the observed signals) of the op-
timal decision, denoted a[σ j], will depend on the signal observed; before actually carrying
out the observation, we may evaluate the potential gains in expected utility as

V(Σ, p; U) =

m∑
j=1

P(σ j)EP(·|σ j)[U ◦ a[σ j]] − EP[U ◦ a],

that is the difference between the ex ante expected utility with and without the information
method. We call V(Σ, p; U) the value of the information method (at the utility function U).

The value of information, as derived above, depended on the utility function U of the
decision maker. Consequently, the choice if information method, if indeed such a choice is
open to the decision maker, will in its turn depend on the utility function. In the case we
have in mind, where an information method is a particular way of collecting and presenting
data on different medical interventions, this means that the method for performing these op-
erations should be chosen in accordance with the desires and goals of the decision maker.
Simple and acceptable as this sounds, it does carry a controversial message, namely that it
is in general impossible to prescribe a single such method, independently of the decision
maker who is going to use the results. In other word, ranking different methods of perform-
ing cost-effectiveness analysis seems not in general possible without recourse to a concrete
decision maker, so that guidelines which are applicable to all users cannot be constructed in
a scientific way. In the following we give the precise formulation of this result.

For this, we need the notion that one information method is more informative that an-
other. Let (Σ, p), (̂Σ, p̂) be information methods, with |Σ| = m, |̂Σ| = m̂. Then (Σ, p) is more
informative than (̂Σ, p̂) if for each signal σ̂ ĵ ∈ Σ̂ such that P̂(·|σ̂ ĵ) , 0, there are nonnegative
numbers r ĵ,1, . . . , r ĵ,m with

∑m
j=1 r ĵ, j = 1 such that

P̂(·|σ̂ ĵ) =

m∑
j=1

r ĵ, jP(·|σ j).

An equivalent formulation of this condition is that there is an (m̂ × m) matrix R with all
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column sums 1 such that
P̂ = RP,

where P̂ is the (n × m̂)-matrix with characteristic element P̂(si|σ̂ ĵ), P the (n × m) matrix
with characteristic element P(si|σ j), and R is (m̂ × m) with elements r ĵ, j, ĵ = 1, . . . , m̂,
j = 1, . . . ,m.

The following is a formulation of the classical result by Blackwell (1948) adapted to our
situation. We work with classes of acceptable utility functions which are more restricted than
what is usually seen in the formulations of Blackwell’s theorem, where it is usual to allow
all possible utility functions. The proof given below follows Bielinska-Kwapisz (2003).

Theorem 1. Let (Σ, p), (̂Σ, p̂) be information methods, let U be a set of utility functions,
A a set of actions such that for all vectors q ∈ Rn, there are U ∈ U, a, a′ ∈ A such that
U(a(si)) = qi, U(a′(si)) = 0, i = 1, . . . , n. Then the following are equivalent:

(i) (Σ, p) is more informative than (̂Σ, p̂),
(ii) V(Σ, p; U) ≥ V (̂Σ, p̂; U) for all U ∈ U.

Proof: (ii)⇒(i): Suppose on the contrary that V(Σ, p; U) ≥ V (̂Σ, p̂; U) for all U ∈ U but that
(Σ, p) is not more informative than (̂Σ, p̂); then by definition we have that there is a signal
σ̂ ĵ∗ of the information method (̂Σ, p̂) with P̂(·|σ̂ ĵ∗) , 0 such that

P̂(·|σ̂ ĵ∗) < conv({P(·|σ j)| j = 1, . . . ,m}.

By separation of convex sets, there must then be q ∈ Rn, q , 0, such that

q · P̂(·|σ̂ ĵ∗) =

n∑
i=1

qiP̂(si|σ̂ ĵ∗) = λ > 0,

q · P(·|σ j) ≤ 0, all σ ∈ Σ.

Now we use the assumption onU and A to find U ∈ U and a1, a2 ∈ A such that U(a1(si)) =

qi, U(a2(si)) = 0, i = 1, . . . , n; in the following we assume that A contains only these two
acts. Then for each σ ∈ Σ we have that

maxa∈AEP(·|σ)[U ◦ a] = max{P(·|σ) · q, P(·|σ) · 0} = P(·|σ) · 0 = 0

since P(·|σ) · q ≤ 0 for each σ. It follows that

V(Σ, p; U) + maxa∈AEP[U ◦ a]

=

m∑
j=1

P(σ j)maxa∈AEP(·|σ j)[U ◦ a] = 0.
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Assessing the value of the information method (̂Σ, p̂) similarly, we get

V (̂Σ, p̂; U) + maxa∈AEP[U ◦ a]

=

m̂∑
ĵ=1

P̂(σ̂ ĵ)maxa∈AEP̂(·|σ̂ ĵ)
[U ◦ a] =

m̂∑
ĵ=1

P̂(σ̂ ĵ)max{P̂(·|σ̂ ĵ) · q, P̂(·|σ̂ ĵ) · 0}

≥ P̂(σ̂ ĵ∗)(̂(P)(·|σ̂ ĵ∗) · q) +
∑
ĵ, ĵ∗

P̂(σ̂ ĵ)[̂(P)(·|σ̂ ĵ) · 0] = P̂(σ̂ ĵ)λ > 0.

It follows that V (̂Σ, p̂; U) > V(Σ, p; U), a contradiction, showng that (i) must hold.
(i)⇒(ii): We have that for each signal σ̂ ĵ ∈ Σ̂ such that P̂(·|σ̂ ĵ) , 0, there are nonnegative

numbers r ĵ,1, . . . , r ĵ,m witn
∑m

j=1 r ĵ, j = 1 such that

P̂(·|σ̂ ĵ) =

m∑
j=1

r ĵ, jP(·|σ j).

Therefore, if a[σ̂ ĵ] is the optimal decision given σ̂ ĵ, then

EP̂(·|σ̂ ĵ)
U(a[σ̂ ĵ]) =

n∑
i=1

P̂(si|σ̂ ĵ)U(a[σ̂ ĵ](si)) =

n∑
i=1

m∑
j=1

r ĵ, jP(si|σ j)U(a[σ̂ j](si))

=

m∑
j=1

r ĵ, j

n∑
i=1

P(si|σ j)U(a[σ̂ j](si)) ≤
m∑

j=1

r ĵ, j

n∑
i=1

P(si|σ j)U(a[σ j](si))

=

m∑
j=1

r ĵ, jEP(·|σ j)U(a[σ j])

where we have used that a[σ j] maximizes EP(·|σ j)[U ◦ a]. Multiplying by

P̂(σ̂ ĵ) =

n∑
i=1

p̂(σ̂ ĵ|si)P(si)
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and summing over ĵ, we get that

m̂∑
ĵ=1

n∑
i=1

p̂(σ̂ ĵ|si)P(si)EP̂(·|σ̂ ĵ)
U(a[σ̂ ĵ])

≤

m̂∑
ĵ=1

n∑
i=1

p̂(σ̂ ĵ|si)P(si)
m∑

j=1

r ĵ, jEP(·|σ j)U(a[σ j])

=

m̂∑
ĵ=1

n∑
i=1

m∑
j=1

Prob{σ j, σ ĵ|si}P(σi)EP(·|σ j)U(a[σ j])

=

m∑
j=1

n∑
i=1

p(σ j|si)P(σi)EP(·|σ j)U(a[σ j]) =

m∑
j=1

P(σ j)EP(·|σ j)U(a[σ j]),

and it follows that V(Σ, p; U) ≥ V (̂Σ, p̂; U).

3. Conditions for meaningfulness of guidelines

In the previous section, we established a version of Blackwell’s theorem tailored to our
problem, dealing with cost-effectiveness analysis in general and rules for conducting such
analyses in particular. In the present section, we draw the lines from the abstract world of in-
formation systems to the more relevant context of guidelines for cost-effectiveness analysis
– as well as to guidelines for other aspects of medical decision making.

For this, we take a closer look on the conditions onU and A stated in the theorem, which
state that there is a rather large supply (in terms of utility levels achieved in the different
states of nature) of decisions which are in principle available. We now consider cases where
this richness of action possibilities is a consequence of the underlying structure.

Such a case is provided by the environment in which cost-effectiveness analysis is carried
out. We outline briefly its theoretical background (or rather, one possible theoretical back-
ground, as there may be several, cf. e.g. Brouwer and Koopmanschap (2000)): We consider
medical interventions (in a broad sense) in a society with M individuals, each character-
ized by a vector (xi, hi) describing current consumption of commodities and current state of
health; the consumption part of the vector in its turn is a vector describing consumption of
each of the l goods available, xi = (xi1, . . . , xil), and similarly the health component has the
form hi = (hi1, . . . , hiK), where hik measures the kth characteristic of health (which may be
ability to move around, or ability to hear, or some other aspect of health). An intervention is
described by the change (4xi,4hi) which it causes in the state (of consumption and health)
of the individual i, for i = 1, . . . ,m.

In the standard approach (cf. e.g. Hansen, Hougaard, Keiding, Østerdal (2004)) it is
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assumed that each individual i has a utility function ui defined on the consumption-health
pairs (xi, hi), and the decision maker or society assesses allocations ((x1, u1), . . . , (xm, um))
in accordance with a social welfare function S defined on m-tuples of utility levels, so that
allocations are judged by the achieved value

U((x1, u1), . . . , (xm, um)) = (S (u1(x1, h1), . . . , um(xm, hm)),

an approach often termed as “welfarist”. In our present setup, we do not insist that allo-
cations are ranked exactly in this way, but only that the decisions in society are made in
accordance with a utility function of the type Ŝ ((x1, h1), . . . , (xm, hm)). Since an intervention
is described as a change (from status-quo) in interventions, it follows that may think of the
decision maker’s utility function as defined directly on these the outcomes of the interven-
tions, changes of allocation, namely by

U(( 4x1,4h1), . . . , (4xm,4hm)

= Ŝ ((x1 + 4x1, u1 + 4h1), . . . , (xm + 4xm, hm + 4hm)) − Ŝ ((x1, u1), . . . , (xm, um)).

To make this setup fit with our model of the previous section, we assume that the changes
in allocation are subject to random displacements, so that (4xi,4hi) depend on the state
of nature sh, h = 1, . . . ,m, so that an intervention takes the form (4xi(sh),4hi(sh))m

i=1
n
h=1.

In our application, the uncertainty mainly pertains to the effects of the medical treatment;
the draw on material ressources may of course also be subject to randomness, although
to a smaller extent. What does distinguish the two commodity and health components is
however the possibility of compensation payments (between individuals and from outside);
in the statement of our main result below we assume effects, positive or negative, on the
health components of the individuals, may be offset by suitable money compensations.

Theorem 2. Let A be a set of interventions of the form a = (4xi(sh),4hi(sh))m
i=1

n
h=1 depending

on an uncertain state of nature, which contain also the zero intervention (“do nothing”), and
letU be a set of utility functions of the decision maker. Assume that

(i) A allows for all possible money compensations of health effects: For each intervention
((4x1,4h1), . . . (4xm,4hm)), state sh, and each commodity allocation (x̄1, . . . , x̄m), the
set A contains an intervention a′ such that

a′(sh) = ((4x1(sh) + x1,4h1(sh)), . . . (4xm(sh) + xm,4hm(sh))),

(ii) for each U ∈ U, U is monotonic in the commodity components and the marginal
rate of substitution between commodity and and health (of any individual) is bounded
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(from above and below).

If the cost-effectiveness methodology (Σ, p) is better than (Σ̂, p̂) for all U ∈ U, then (Σ, p) is
a more detailed version of (Σ̂, p̂) (in the sense of being more informative).

Proof: The theorem is basically a reformulation of Theorem 1 and all that is needed is to
show that A contains interventions such that for each vector q = (q1, . . . , qm) ∈ Rm, there is
an intervention (4x′i(sh),4h′i(sh))m

i=1
n
h=1) with

U(4xi(sh),4hi(sh))m
i=1) = qh, each h.

But this follows easily from the assumptions (i) and (ii), which together show that there
is an intervention, constructed from the original one combined with suitable commodity
displacements in each state, such that the final utility level in each state corresponds to the
vector q. The result now follows immediately.

It may be noticed that our assumptions in Theorem 2 are stronger than what is really
needed; indeed, we need not compensate everybody, what matters is only that some com-
pensations can be made which make up for any loss and gain that the decision maker would
experience from the uncompensated intervention. Also, it suffices to consider very small
displacements since what mattered in Theorem 1 was not the absolute values of the utilities
in each state but only their relative values.

4. Discussion

The implications for practice of the results are that guidelines for cost-effectiveness are of
dubious value., at least when considered as a source of information. Given that the assump-
tions of Theorem 2 are reasonably weak and seem satisfied in practical situations where
cost-effectiveness analysis is performed, the conclusion is that there can be no “best” way
of setting up such an analysis. The reference case approach, specifying that observations on
medical and other outcomes of an intervention should be carried out according to a stan-
dardized scheme, may have administrative merits but it has no scientific basis. The only rule
that can be stated is that more detailed observation is better than less detaild information,
which indeed is trivial.

Why, then, are guidelines so widespread and estimated? Again, Theorem 2 points to
an answer: For purely medical interventions, the setup differs considerably from that of
cost-effectiveness analysis, since there is no economic component, and obviously monetary
transfers make no change in the medical outcome. In such cases, information methods may
indeed by ranked to an extent which permits a choice of a best one, singled out as reference
case.
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What makes perfect sense in one context doesn’t however necessarily work in another.
Guidelines may be useful in medical practice and misleading in economic practice. The
arguments of the present paper should indicate that this is indeed the case.
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