
JUREMA, A NEW BRANCH & BOUND ANYTIME ALGORITHM
FOR THE ASYMMETRIC TRAVELLING SALESMAN PROBLEM

Tiago Carneiro Pessoa

Universidade Estadual do Ceará
Mestrado Acadêmico em Ciências da Computação – MACC

Av. Paranjana, 1700 – Serrinha, CEP: 60740-000
E-mail: carneiro@larces.uece.com

Marcos José Negreiros Gomes
Universidade Estadual do Ceará

Mestrado Profissional em Computação Aplicada – MPCOMP/UECE-IFCE
Av. Paranjana, 1700 – Serrinha, CEP: 60740-000

E-mail: negreiro@graphvs.com.br

ABSTRACT
In many different ways to solve combinatorial optimization problems, the Branch-and-Bound
(BnB) method is one that performs implicit and complete enumeration of the solution space, and
is one of the most popular methods because of its inherent optimality proof when in its
termination. We show a new way to do Branch-and-Bound, evaluated to the Asymmetrical
Traveling Salesman Problem (ATSP), called JUREMA. Jurema is an abundant tree from the
Brazilian semi-arid, which topology in dry seasons looks like the BnB tree of the related method.
The method Jurema showed to be of high performance for the very difficult ATSP instances,
comparatively superior to traditional BnB-DFS commonly used for this propose. The method can
be extended for other NP-Hard problems, once it can be combined with heuristic and
metaheuristics with great success. Jurema is an Anytime BnB. We present the details of the
method and the results for the difficult instances form the literature.

KEYWORDS. ATSP. Branch & Bound. Anytime algorithms. Main area: Combinatorial
Optimization.

2054

1. Introduction
The Travelling Salesman Problem (TSP), is the most well known and studied

Combinatorial Optimization problem (GUTTIN; PRUNNER, 2002; ZHANG, 2004;
HELSGAUN, 2006; LAPORTE, 2006). Due to its fame and hardness, the TSP plays a special
role in testing and development of new optimization techniques (VAUDORIS; TSANG, 1999).

The TSP is symmetric if the cost matrix is symmetric (cij=cji, ∀i,j), asymmetric
otherwise (∃ cij≠cji, ∀i,j). The asymmetric case is a more general way of representation and its
instances are frequently harder to solve than the symmetric case instances (ZHANG; KORF,
1996; ZHANG, 2004).

Due to the Combinatorial Optimization problems’ relevance, a large number of
algorithms were created to solve them, algorithms that can be divided into complete and
approximate (BLUM; ROLI, 2003).

Complete algorithms are those that guarantee to find an optimal solution for a valid
instance of the problem, in a certain period of time. Among the complete algorithms, a method
called Branch-and-Bound (BnB) proves the optimality of solutions of any combinatorial problem,
since the instance is properly adjusted. The BnB consists in a set of algorithms that have common
characteristics and it is the most widely used method to solve hard combinatorial problems
(CRAINIC; ROUCAIROL, 2006).

According to Zhang (1993; 2000), BnB algorithms evaluates the search space in a
gradual way and as the time passes, the algorithm can find better solutions till the optimality is
proved. Thus BnB algorithms can be easily adapted as Anytime Algorithms, i.e. an algorithm that
anytime during its execution can provide a solution to an instance of the problem (GRASS,
1996).

Generally, as a search strategy, Branch-and-Bound methods uses Depth-First Search
techniques, where the most recently generated sub problem is explored first or Best-First Search
(Breadth-First plus evaluation (Van LE, 1993)), where the most promising sub problem is
explored first (ZHANG, 1996; PAPADIMITRIOU; STEIGLITZ, 1998).

It is presented here a novel way of doing BnB that uses the best of the most widely used
search strategies. To this composition of strategies, it was given the name JUREMA, since the
Jurema Search’s resulting tree looks like an important and abundant tree found in the Brazilian
semi-arid region, called Jurema. In this methodology, it is observed that new solutions are more
often found then the traditional BnB-DFS, in most cases evaluated.

The remainder of this paper is structured as follows: in section 2 it is presented the
Jurema Method, in section 3 is presented the computational evaluation and the results of the
comparison between DFS and the Jurema Method; in the conclusions it’s considered the results
achieved and future work.

2. The Jurema Method
The Jurema Method has three main characteristics:

1. Is a hybrid method and starts the search from a known solution, called
Guiding Solution;

2. Is a different search algorithm. Its search is not performed from root to leaf,
like traditional Branch-and-Bound algorithms. The Jurema Search is performed
from leaf to root;

3. As a search strategy, the Jurema method applies a Depth-First Search
and Breadth-First Search combination.

2.1 Origin of the chosen name

2055

The Jurema Method preempts that the Guiding Solution is a good solution (Upper
Bound), near the global optimum. The Guiding Solution can be quickly obtained using traditional
heuristics or metaheuristcs. From this starting solution, new upper bounds (solutions) can be
quickly found by searching the starting solution’s neighborhood, at levels closer to the leaf.

Once quickly found, these new upper bounds would promote a premature pruning of
subtrees present in levels closer to the Branch-and-Bound tree’s root, resulting in a tree with
scattered branches and few leafs.

When a sketch of what a Jurema Method’s resulting Branch-and-Bound tree would
looks like was drawn, was noticed that this resulting tree really looked like with the Brazilian’s
semi-arid region trees. These trees, called xerofitas or xerofilas, have a twisted and covered by
thorns trunk, scatter branches and, during the dry season, as a way to save water, they loses its
leafs.

The Jurema tree, Mimosa tenuiflora (BAKKE et. al, 2006), is xerofita whom belongs to
the acacia’s family and it is one of the most abundant species of Brazilian semi-arid’s flora,
Figure 2-1.

Figure 2-1: Three “Juremas”: Black Jurema (real one), a sketch of what a Jurema

Method’s resulting Branch-and-Bound tree would looks like and, finally, a Jurema Method’s
Branch-and-Bound tree.

The Jurema is, for some cultures, a holy tree (Figure 2-1). For some indigenous

cultures, the Black Jurema is the “Tree of Life” (KANABOGY, 2009; VOLPATTO, 2009). In
Figure 2-1, it is shown, from left to right, the Black Jurema found in Brazilian’s semi-arid region,
a sketch of what a Jurema Method’s resulting Branch-and-Bound tree would looks like and
finally, a Jurema Method’s Branch-and-Bound tree.

2.2 Jurema Method

The Jurema Method is divided in three major steps (Algorithm 2-1): upper bound
calculation; lower bound calculation and Jurema Search (Algorithm 2-2).

To initial upper bound calculation and Guiding Solution construction, any heuristic or
metaheuristic for the ATSP can be used. The only requirement is to store the Hamilton Cycle in a
vector of size n+1 (in Algorithm 2-2 this vector is called guidingSolution). To construct the
Guiding Solution and upper bound calculation, it was applied a combination of Farthest insertion
and the 2-Opt (Croes, 1954) well known heuristic. A powerful heuristic like Helsgaun (2006)
could also be used, but once Helsgaun’s usually finds the optimal solution or an upper bound
really close to the optimum, the initial purpose of Jurema Method: to find new solutions quickly
would not be observed since it would not be possible to observe how often new upper bounds
would be found.

In step two, any method to calculate a lower bound to the ATSP can be applied. Was
used, in the current Jurema Method implementation, the lower bound calculation present in
(LITTLE; MURTY; SWEENEY; KAROL, 1963), based on the Hungarian Method for solving
the Assignment Problem, where a lower bound for the ATSP is the sum of the greatest constant

2056

present in each row and column of the original cost matrix Cnxn.
The third major step, Jurema Search, is described further.

2.2.1 Formal Description

After the initial upper bound (UB) calculation, the search step (Jurema Search) can be
started. A pseudocode for the third step (Jurema Search) can be seen bellow (Algorithm 2-2).

As the search begins at the leaf node (node n+1), it is necessary, before starting the
search’s most external loop, to subtract, from the initial upper bound total cost, called cost, the
edges guidingSolution[n] → guidingSolution[n+1] and guidingSolution[n-1] →
guidingSolution[n] weights, since the search step cannot follow another path from nodes
guidingSolution[n-1], guidingSolution[n] and guidingSolution[n+1] other than what has been
taken in the construction of the Guiding Solution. These two initial steps are shown in Figure 2-2.

Figure 2-2: Illustrations that represents the initial Guiding Solution (left) and the two necessaries

steps before the Jurema Search’s most external loop (right).

In algorithm 2-2, the BFS stage’s objective is to find, reachable from actualNode, all

non visited nodes belonging to level actualLevel + 1. These nodes are enqueued and this
resulting queue is ordered using the lower bound of each enqueued node as a parameter. The
objective of this ordination is to explore the most promising regions of the search space first
(Jurema Search’s Best-First Search element) and avoid DFS to get stuck in branches that could
not lead to the optimal solution.

Algorithm 2-1: Pseudocodes of Jurema Method (up) and DFS-BnB (down). Upper and lower
bounds were the same for Jurema and DFS-BnB.

2057

Algorithm 2-2: Algorithm that represents the Jurema Search.

As the search is performed in a leaf-root way, the actualNode’s children

guidingSolution[actualLevel+1] is only inserted into the active set after the BFS step, so it’s not
discovered and branched again unnecessarily.

Each node discovered through BFS will be a Depth-First Search (DFS) root (Figure 2-
3). After this set of steps mentioned, the Jurema Search still is into the most external loop, but
now, the search is performing the second iteration.

In Figure 2-3 are shown details of the most external loop’s first and second iterations.
It’s important to underline that nodes belonging to the Guiding Solution vector were not
discovered by the Jurema Search (gray rectangle nodes), they were discovered by the upper
bound calculation and they were used only to guide the searching step. Nodes discovered by the
Jurema Search have (x)_y labels, where x represents the order which the node was discovered and
y represents the node’s index (the city number to be visited by the travelling salesman).

A set of illustrations representing the first (left) and second (right) most internal loop’s
iterations are shown in Figure 2-3. Figure 2-4 shows the Jurema Search’s Branch-and-Bound
resulting tree.

Figure 2-3: Set of illustrations representing the first iteration (left) and the second iteration

(right) of the Jurema Search’s most external loop.

2058

Figure 2-4: Jurema Search’s Branch-and-Bound resulting tree1.

3. Computational evaluation
During the preliminary research, a C++ application was conceived. This application

contained an implementation of a Depth-First Search Branch-and-Bound (DFS-BnB) algorithm
and an implementation of Jurema Method.

To generate the resulting Branch-and-Bound tree for the two methods, the application
writes a metadata. This metadata is interpreted by the software Graphvz 2.4, which generates the
visualization of the resulting BnB tree.

The conceived application is able to calculate the elapsed time necessary to the Jurema
Method and to DFS-BnB perform its searches.

3.1 Test Methodology

The testing step was divided into two stages: in the first stage both algorithms (Jurema
and DFS-BnB) performed searches over random asymmetric instances. In the second stage, both
algorithms performed searches over asymmetric instances belonging to the TSP-LIB2 and they
were executed as Anytime Algorithms (ZHANG 1993; ZHANG, 2000) during five hours.

In the first stage, each search strategy (Jurema and DFS) received an ATSP instance.
These instances had four to forty cities and they were generated by the pseudorandom numbers
generator rand(), provided by GNU C Library (glibc)3. These instances are Cnxn and also
represent complete graphs where each element cij can vary from zero to one thousand, in a closed
interval, when i and j are different values. When i and j are the same value, cij receives the value
equal to infinity.

The first stage was divided in two steps. In the first step, the lower bound was not
considered and only the instances of four to twenty-five cities were utilized, because DFS-BnB
cost-based only took a long time to solve instances greater than twenty-five cities. In the second
step, the lower bound for the ATSP presented in (LITTLE et al., 1963), based on the Hungarian
Method for the Assignment Problem, was applied and all the random asymmetric instances of
four to forty cities were considered.

To perform the comparison between Jurema and DFS performances, the tree size and
the elapsed time, in minutes, to perform a complete search, were used as a parameter.

1 Instance of five cities created for didactic purpose and solved by Jurema not using LB (only based on
cost), so a lot of branches can be seen even in this small instance.
2 Available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp
3 The GNU C Library Project: http://www.gnu.org/software/libc/

2059

The well known TSP-LIB asymmetric instances were utilized in the second stage.
These instances have seventeen to four hundred forty-three cities and they represent complete
weighted asymmetrical graphs.

Data collected in the second stage were: elapsed time to find the first solution, elapsed
time to find the last solution, elapsed time for searching the entire solution space and the number
of solutions found.

3.1.1 Testing environment

The experiments were done on an Intel Core 2 Duo E6600 @ 2.4GHz, 2 GB DDR2 800
MHz RAM workstation.

The operative system was Arch Linux (kernel 2.6.27) and codes were compiled with
Gnu Compiler Collection 4.3.4 using flag –O2. CPU times were measured by time() function,
provided by glibc.

3.1.2 Results

3.1.2.1 Results of stage one

In Graphic 3-1, where the size of the Branch-and-Bound tree is represented on a
logarithmic scale, can be concluded that in the first step, where lower bounds were not
considered (cost-only based BnB) and only instances of four to twenty-five cities were used, the
Jurema Method is slightly better than the DFS-BnB. Otherwise, when the lower bound were
considered and all the random asymmetric instances were utilized, the Jurema Method’s
performance was much better than the traditional DFS-BnB (Graphic 3-2). In Graphic 3-2 the Y
axis point for instance of sizes four and six (both methods) and size five (Jurema method) were
not plotted because there were no branches. The DFS-BnB points for instances of size 37 to 40,
in Graphic 3-2, were not plotted because DFS-BnB took a really huge amount of time, if
compared to the time required by the Jurema to proof the optimality, without finding any
solution.

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

1,E+11

1,E+12

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of cities

Tr
ee

 s
iz

e

Jurema DFS-BnB
Graphic 3-1 (step one) – This Graphic presents, on logarithmical notation, a

comparison between Jurema and DFS-BnB, both of them are not using lower bound, for random
asymmetric instances of four to twenty-five cities.

2060

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

1,E+11

1,E+12

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Number of cities

Tr
ee

 s
iz

e

Jurema DFS-BnB
Graphic 3-2 (step 2): This Graphic presents, on logarithmical notation, a comparison between

Jurema and DFS-BnB, both for random asymmetric instances of four to forty cities.

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

1,00E+11

1,00E+12

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of cities

Tr
ee

 s
iz

e

DFS-NLB Jurema-NLB Jurema DFS
Graphic 3-3: This Graphic presents, on logarithmical notation, a comparison between

the tests using lower bound, and not using lower bound (NLB), for random asymmetric instances
of four to twenty-five cities.

3.1.2.2 Results of stage two

Details of the instances used in this stage of tests are shown bellow (Table 3-1).

2061

Instance
name

Number of
cities

Initial
LB

LB
Gap(%)

 Initial
UB

UB
Gap(%)

Optimal
Solution

br17 17 0 -X- 41 5.13% 39
ftv33 34 1099 -14.54% 1563 21.54% 1286
ftv35 36 1248 -15.27% 1662 12.83% 1473
ftv38 39 1321 -13.66% 1719 12.35% 1530
ftv44 45 1392 -13.70% 1946 20.64% 1613

kro124p 100 32649 -9.88% 42161 16.63% 36230
rbg323 323 630 -52.49% 1866 40.72% 1326
rbg358 358 358 -69.22% 1775 52.62% 1163
rbg403 403 304 -87.67% 2848 15.54% 2465
rbg443 443 384 -85.88% 3179 16.88% 2720

p43 43 141 -97.49% 5631 0.18% 5620
 Average gap: -50.89% 20.5%

Table 3-1: Details of instances used in this stage of tests solved using FITSP + 2Opt. Lower
bound presented in (LITTLE et al., 1963) were considered.

Table 3-2 and 3-3 shows the results of searches performed by Jurema Method and DFS-

BnB through instances presented in Table 3-1, during the period of three hundred minutes (5h).

DFS-BnB
Name Time of first

solution found
(min) 4

Time of last
solution found

(min)

Cost of last
solution

Gap(%) Amount of
solutions found

Optimality
proved?

br17 0.017 0.217 39 0.00% 2 Yes
ftv33 0.983(4) 135.800 1286 0.00% 36 Yes
ftv35 0.567 253.850 1489 1.00% 31 No
ftv38 24.4 84.75 1644 7.45% 16 No
ftv44 24.033 27.833(2) 1894 17.42% 5 No

kro124p - - - 13.63% 0 No
rbg323 - - - 40.72% 0 No
rbg358 - - - 52.62% 0 No
rbg403 - - - 15.54% 0 No
rbg443 - - - 16.51% 0 No

p43 - - - 0.18% 0 No
Average gap: 15.01%

Table 3-2: Results of searches performed by DFS-BnB through the TSP-LIB instances.

4 “0.000(11)” means that eleven solutions were found at 0.000.

2062

JUREMA
Name Time of first

solution found
(min)

Time of last
solution found

(min)

Cost of last
solution.

Gap(%) Amount of
solutions found

Optimality
proved?

br17 0.000 0.000 39 0.00% 1 Yes
ftv33 0.000(11) 276.117 1395 8.00% 16 No
ftv35 0.000(4) 208.967 1473 0.00% 26 Yes
ftv38 0.000(6) 146.15 1536 0.30% 19 No
ftv44 0.000(3) 67.517(2) 1862 15.43% 10 No

kro124p 0.000 258.63 40976 13.00% 34 No
rbg323 0.000 0.13 1862 40.42% 2 No
rbg358 0.033 0.033 1769 52.11% 1 No
rbg403 13.683(2) 14.150(2) 2839 15.17% 4 No
rbg443 0.000 0.500 3168 16.47% 3 No

p43 0.000 0.000 5629 0.14% 1 No
Average gap: 14.64%

Table 3-3: Results of searches performed by Jurema through the TSP-LIB instances.

3.2 Analysis of the results

A first consideration to be made is about the quality of the bounds used. For the random
instances (Step One), the strategy to calculate the initial upper bound had a poor performance,
finding, for some instances, solution two times bigger than the optimal solution (Graphic 3-1,
instances 15, 21, 23 and 24, for example). It is not good for the Jurema Method, since Jurema’s
performance is affected by the quality of the Guiding Solution. Not the numeric quality, but
structural quality. If the upper bound value is a number far from the optimal, but the first vertexes
of the optimal Hamilton Cicle are in the Guiding Solution, Jurema Search will not be affected,
will find the optimal solution quicky and will terminate its search soon. This is the spirit of the
Jurema Method.

For the TSPLIB instances, the strategy applied to LB calculation, had results as poor as
the FITSP + 2-Opt presented for the upper bound calculation step. One reason to justify this is
that the strategy presented in Little et al. (1963) always removes the great constant present in
each row and column of the initial cost matrix. The more columns and rows containing zeros
exists in the instance, lower is the lower bound.

Another point to be considered is the following: if the original cost matrix’s elements
are into a closed interval [0, X], where this X is a very big value, the quality of the lower bound
can be affected, once the strategy used in the tests removes only the greatest constant, but this
constant can be very small if compared to the others elements of the row or column,
compromising the quality of the lower bound.

The good overall results obtained in the first stage of the tests (Graphic 3-3), in the tests
that do not consider the lower bound (NLB), show that the Jurema Method’s proposed search
way, a combination of DFS, BeFS and leaf-root search is a more effective search strategy than
the widely used DFS.

All tests of the step number one considering upper and lower bounds are superior to the
tests that considerer only upper bound as a way to restrict the search, emphasizing the importance
of using upper and lower bounds to make the search more efficient.

In the tests considering the lower bounds (Graphic 3-2), the Jurema Method performed
some memorable reductions in comparison to the DFS-BnB. In instances 15, 22, 23 and 24, for
example, Jurema Method performed a reduction of almost ninety percent, compared to the size of
DFS-BnB tree. It shows that Jurema Method can promote a really premature pruning of subtrees.

On the second stage it can be seen that the Jurema Method’s initial proposal, to find
new solutions (upper bounds) really quickly, is accomplished. In almost all tested instances the
Jurema Method found a burst of new upper bounds in less than one second (see tables 3-2 and 3-
3).

2063

After finding a good amount of new solutions quickly, the Jurema Method behaves just
like the DFS-BnB, in other words, spend much time without finding new upper bounds (see
Table 3-2 and 3-3). As was presented (section 2), the Jurema Search uses this same DFS to
branch the nodes discovered by the BFS (algorithm 2-2). Despite being able to find solutions
quickly (ZHANG, 2000), the DFS have some issues: to get stuck in branches that do not led to
the optimal solution (Van LE, 1993), the most recently discovered node is always explored first,
even though it shows signs that its subtree will be pruned soon, and the recursiveness. The great
number of recursive calls causes a very large computational effort to handle them.

Since the Jurema Method uses this DFS implementation to branch the nodes discovered
by the BFS step, as the search approaches the root (the search is performed from leaf to root), the
more the Jurema Search suffers due to the DFS’s issues presented before.

4. Conclusions
It was presented in this paper an algorithm to solve the Asymmetric Travelling

Salesmen Problem, different from everything that has been proposed in the specialized literature,
called Jurema Method.

The proposed Branch-and-Bound algorithm accomplishes its original mission, to find,
starting from a solution previously found, new solutions quickly (upper bounds). This property
makes the Jurema Method a better anytime algorithm than the DFS-BnB. In spite of finding new
solutions quickly, the implementation of Jurema Method is compromised by the DFS
implementation used, but this problem can be easily solved.

The Jurema Method, even in tests that did not consider the lower bounds, once its
search is a leaf-root based and uses a composition of search strategies, is a more efficient search
algorithm than the popular DFS-BnB, because as it approaches the root, since the Jurema Method
can find new solutions quickly, few steps down to the leafs to find new solutions are necessary.

Any method of lower and upper bound calculation can be used with Jurema Method,
but is important to say that Jurema Method’s performance is closely related to the quality of the
Guiding Solution. Not the numeric quality, but structural quality. If the solution is not good in its
structure, i.e. the optimal Hamilton Cycles’ first vertexes are not in the Guiding Solution, the
search must walk toward the root and return to the levels closer to the leaf in order to find better
solutions, what makes Jurema Search inefficient.

The quality of upper and lower bounds used here are lower than the expected, but they
were used since they are easy to implement and the purpose of this paper is to evaluate the search
step of the algorithm and the algorithm’s anytime capability. Bounds presented in (FISCHETTI;
TOTH, 1992; TURKENSTEEN et al., 2007) will be considered further.

The DFS can, in some scenarios, be more effective than Jurema Search. For example, in
a scenario where the DFS, in one of its first step down, finds the global optimum, promoting
really premature pruning of subtrees and proving optimality quickly or in a scenario where the
structure of the Guiding Solution is not good.

It is possible to be more effective in the searching space using the proposed method. A
step forward in the future is to parallelize the Jurema Method. In this case, different starting trunk
solutions (guiding solutions) would be built in different processors, and then the Jurema search
can be placed, communicating the bounds in a master-slave parallel architecture. To make this
work, a non recursive BnB using Jurema search may be designed. This method is already
scratched and called the Black Jurema. It may be used to solve other ATSP difficult instances
still not solved.

Finally Jurema Method can be largely used as a BnB Anytime algorithm to find new
better solutions after a metaheuristic or heuristic performs its evaluation over an ATSP instance,
even for large scale instances. The gain is that it is still possible to find new bounds in reasonable
time, knowing better the distance from the optimum solution (not enclosed in any heuristic), and
also explore more efficiently the searching space.

2064

References
Bakke, I. A. et al. (2006), “Regeneração Natural da Jurema Preta em Áreas Sob Pastejo
Bovino”. Caatinga (Mossoró, Brasil), v.19, n.3, pp.228-235.
Blum, C and Roli, A. (2003). “Metaheuristics in Combinatorial Optimization: Overviewand
Conceptual Comparison”. ACM Computing Surveys, Vol. 35, No. 3, pp. 268–308.
Crainic, G. T; Le Cun, B; Roucairol, C. (2006),“Parallel Branch-and-Bound Algorithms”.
Parallel Combinatorial Optimization. John Wiley & Sons, Inc.
Croes, A. (1954), “A method for solving traveling salesmen problems”, Operations Research vol
2, pp.392-410.
Fischetti, M; Toth, P. (1992), “An additive bounding procedure for the asymmetric travelling
salesman problem”. Mathematical Programming: Series A and B, v.53 n.2, pp.173-197.
Grass, J. (1996), “Reasoning about computational resource allocation”. Crossroads 3, 1. pp 16-
20.
Gutin, G; Prunner, A. (2002), “The Travelling Salesman Problem and Its Variatons”. Series:
Combinatorial Optimization, Volume 12. Kluwer Academic Publishers. New York, Boston,
Dordrecht, London, Moscow.
Helsgaun, K. (2006), “An Effective Implementation of K-opt Moves for the Lin-Kernighan TSP
Heuristic”. Datalogiske Skrifter (Writings on Computer Science), No. 109.
Kanabogy, A. (2009), “Caboclo Tupinambá da Cobra Coral”. Disponível em
<http://www.kanabogy.com.br/jurema_sagrada_4.html>. Acesso em: 22 de setembro de 2009.
Laporte, G. (2006), “A short history of the traveling salesman problem”. Molde University
College, Norvège.
Little, J. D. C. et. al. (1963), “An Algorithm for The Traveling Salesman Problem”. Operations
Research Vol. 11, No. 6, pp.972-989.
Papadimitriou, C. H; Steiglitz. (1998), “Combinatorial Optimization. Algorithms and
Complexity”. Dover Science. p. 443-452.
Turkensteen, M. et al. (2007), “Tolerance-based Branch and Bound algorithms for the ATSP.
European Journal of Operation Research, volume 189, issue 3. pp.755-788.
Van LE, T., (1993). “Techniques of Prolog Programming”. John Wiley and Sons inc. New York,
NY, USA. pp. 272 – 340.
Volpatto, R. (2009), “A Cerimônia do Jucá”. Disponível em
<http://www.rosanevolpatto.trd.br/lendacerimoniaajuca.html>. Acesso em: 21 de Setembro de
2009.
Voudoris, C; Tsang, E. (1999), “Guided local search and its application to the traveling
salesman problem”. European Journal of Operational Research 113.
Zhang, W. (1996), “Branch-and-Bound search algorithms and their computational complexity”.
Research report no. ISI-RR- 96-44318, South-Carolina University, USA.
Zhang, W. (2000), “Depth-first branch-and-bound vs. local search: A case study”. Proc. 17-th
National Conf. on Artificial Intelligence (AAAI-2000). pp.930-5. Austin, Texas, July 30-August
3.
Zhang, W. (2004), “Phase transitions and backbones of the asymmetric Traveling Salesman
Problem”. J. Artificial Intelligence Research, 20:471-97.
Zhang, W; Korf, R.E. (1996), “A study of complexity transitions on the asymmetric traveling
salesman problem”. Artificial Intelligence, 81(1-2):223-39.

2065

