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ABSTRACT 
In many different ways to solve combinatorial optimization problems, the Branch-and-Bound 
(BnB) method is one that performs implicit and complete enumeration of the solution space, and 
is one of the most popular methods because of its inherent optimality proof when in its 
termination. We show a new way to do Branch-and-Bound, evaluated to the Asymmetrical 
Traveling Salesman Problem (ATSP), called JUREMA. Jurema is an abundant tree from the 
Brazilian semi-arid, which topology in dry seasons looks like the BnB tree of the related method. 
The method Jurema showed to be of high performance for the very difficult ATSP instances, 
comparatively superior to traditional BnB-DFS commonly used for this propose. The method can 
be extended for other NP-Hard problems, once it can be combined with heuristic and 
metaheuristics with great success. Jurema is an Anytime BnB. We present the details of the 
method and the results for the difficult instances form the literature. 

KEYWORDS. ATSP. Branch & Bound. Anytime algorithms. Main area: Combinatorial 
Optimization. 
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1. Introduction 
The Travelling Salesman Problem (TSP), is the most well known and studied 

Combinatorial Optimization problem (GUTTIN; PRUNNER, 2002; ZHANG, 2004; 
HELSGAUN, 2006; LAPORTE, 2006). Due to its fame and hardness, the TSP plays a special 
role in testing and development of new optimization techniques (VAUDORIS; TSANG, 1999).  

The TSP is symmetric if the cost matrix is symmetric (cij=cji, ∀i,j), asymmetric 
otherwise (∃ cij≠cji, ∀i,j). The asymmetric case is a more general way of representation and its 
instances are frequently harder to solve than the symmetric case instances (ZHANG; KORF, 
1996; ZHANG, 2004).  

Due to the Combinatorial Optimization problems’ relevance, a large number of 
algorithms were created to solve them, algorithms that can be divided into complete and 
approximate (BLUM; ROLI, 2003).  

Complete algorithms are those that guarantee to find an optimal solution for a valid 
instance of the problem, in a certain period of time. Among the complete algorithms, a method 
called Branch-and-Bound (BnB) proves the optimality of solutions of any combinatorial problem, 
since the instance is properly adjusted. The BnB consists in a set of algorithms that have common 
characteristics and it is the most widely used method to solve hard combinatorial problems 
(CRAINIC; ROUCAIROL, 2006). 

According to Zhang (1993; 2000), BnB algorithms evaluates the search space in a 
gradual way and as the time passes, the algorithm can find better solutions till the optimality is 
proved. Thus BnB algorithms can be easily adapted as Anytime Algorithms, i.e. an algorithm that 
anytime during its execution can provide a solution to an instance of the problem (GRASS, 
1996). 

Generally, as a search strategy, Branch-and-Bound methods uses Depth-First Search 
techniques, where the most recently generated sub problem is explored first or Best-First Search 
(Breadth-First plus evaluation (Van LE, 1993)), where the most promising sub problem is 
explored first ( ZHANG, 1996; PAPADIMITRIOU; STEIGLITZ, 1998). 

It is presented here a novel way of doing BnB that uses the best of the most widely used 
search strategies. To this composition of strategies, it was given the name JUREMA, since the 
Jurema Search’s resulting tree looks like an important and abundant tree found in the Brazilian 
semi-arid region, called Jurema. In this methodology, it is observed that new solutions are more 
often found then the traditional BnB-DFS, in most cases evaluated.  

The remainder of this paper is structured as follows: in section 2 it is presented the 
Jurema Method, in section 3 is presented the computational evaluation and the results of the 
comparison between DFS and the Jurema Method; in the conclusions it’s considered the results 
achieved and future work. 

2. The Jurema Method 
The Jurema Method has three main characteristics: 

1. Is a hybrid method and starts the search from a known solution, called 
Guiding Solution; 

2. Is a different search algorithm. Its search is not performed from root to leaf, 
like traditional Branch-and-Bound algorithms. The Jurema Search is performed 
from leaf to root; 

3. As a search strategy, the Jurema method applies a Depth-First Search 
and Breadth-First Search combination. 

2.1 Origin of the chosen name 
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The Jurema Method preempts that the Guiding Solution is a good solution (Upper 
Bound), near the global optimum. The Guiding Solution can be quickly obtained using traditional 
heuristics or metaheuristcs. From this starting solution, new upper bounds (solutions) can be 
quickly found by searching the starting solution’s neighborhood, at levels closer to the leaf. 

Once quickly found, these new upper bounds would promote a premature pruning of 
subtrees present in levels closer to the Branch-and-Bound tree’s root, resulting in a tree with 
scattered branches and few leafs. 

When a sketch of what a Jurema Method’s resulting Branch-and-Bound tree would 
looks like was drawn, was noticed that this resulting tree really looked like with the Brazilian’s 
semi-arid region trees. These trees, called xerofitas or xerofilas, have a twisted and covered by 
thorns trunk, scatter branches and, during the dry season, as a way to save water, they loses its 
leafs.      

The Jurema tree, Mimosa tenuiflora (BAKKE et. al, 2006), is xerofita whom belongs to 
the acacia’s family and it is one of the most abundant species of Brazilian semi-arid’s flora, 
Figure 2-1. 

 
Figure 2-1: Three “Juremas”: Black Jurema (real one), a sketch of what a Jurema 

Method’s resulting Branch-and-Bound tree would looks like and, finally, a Jurema Method’s 
Branch-and-Bound tree. 

 
The Jurema is, for some cultures, a holy tree (Figure 2-1). For some indigenous 

cultures, the Black Jurema is the “Tree of Life” (KANABOGY, 2009; VOLPATTO, 2009). In 
Figure 2-1, it is shown, from left to right, the Black Jurema found in Brazilian’s semi-arid region, 
a sketch of what a Jurema Method’s resulting Branch-and-Bound tree would looks like and 
finally, a Jurema Method’s Branch-and-Bound tree. 

2.2 Jurema Method 

The Jurema Method is divided in three major steps (Algorithm 2-1): upper bound 
calculation; lower bound calculation and Jurema Search (Algorithm 2-2). 

To initial upper bound calculation and Guiding Solution construction, any heuristic or 
metaheuristic for the ATSP can be used. The only requirement is to store the Hamilton Cycle in a 
vector of size n+1 (in Algorithm 2-2 this vector is called guidingSolution). To construct the 
Guiding Solution and upper bound calculation, it was applied a combination of Farthest insertion 
and the 2-Opt (Croes, 1954) well known heuristic. A powerful heuristic like Helsgaun (2006) 
could also be used,  but once Helsgaun’s usually finds the optimal solution or an upper bound 
really close to the optimum,  the initial purpose of Jurema Method: to find new solutions quickly 
would not be observed since it would not be possible to observe how often new upper bounds 
would be found. 

In step two, any method to calculate a lower bound to the ATSP can be applied. Was 
used, in the current Jurema Method implementation, the lower bound calculation present in 
(LITTLE; MURTY; SWEENEY; KAROL, 1963), based on the Hungarian Method for solving 
the Assignment Problem, where a lower bound for the ATSP is the sum of the greatest constant 
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present in each row and column of the original cost matrix Cnxn. 
The third major step, Jurema Search, is described further. 

2.2.1 Formal Description 

After the initial upper bound (UB) calculation, the search step (Jurema Search) can be 
started. A pseudocode for the third step (Jurema Search) can be seen bellow (Algorithm 2-2).  

As the search begins at the leaf node (node n+1), it is necessary, before starting the 
search’s most external loop, to subtract, from the initial upper bound total cost, called cost, the 
edges guidingSolution[n] → guidingSolution[n+1] and guidingSolution[n-1] → 
guidingSolution[n] weights, since the search step cannot follow another path from nodes 
guidingSolution[n-1], guidingSolution[n] and guidingSolution[n+1] other than what has been 
taken in the construction of the Guiding Solution. These two initial steps are shown in Figure 2-2. 

         
Figure 2-2: Illustrations that represents the initial Guiding Solution (left) and the two necessaries 

steps before the Jurema Search’s most external loop (right). 
 
In algorithm 2-2, the BFS stage’s objective is to find, reachable from actualNode, all 

non visited nodes belonging to level actualLevel + 1. These nodes are enqueued and this 
resulting queue is ordered using the lower bound of each enqueued node as a parameter. The 
objective of this ordination is to explore the most promising regions of the search space first 
(Jurema Search’s Best-First Search element) and avoid DFS to get stuck in branches that could 
not lead to the optimal solution. 

 

 
 

Algorithm 2-1: Pseudocodes of Jurema Method (up) and DFS-BnB (down). Upper and lower 
bounds were the same for Jurema and DFS-BnB. 
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Algorithm 2-2: Algorithm that represents the Jurema Search. 

 
As the search is performed in a leaf-root way, the actualNode’s children 

guidingSolution[actualLevel+1] is only inserted into the active set after the BFS step, so it’s not 
discovered and branched again unnecessarily.  

Each node discovered through BFS will be a Depth-First Search (DFS) root (Figure 2-
3). After this set of steps mentioned, the Jurema Search still is into the most external loop, but 
now, the search is performing the second iteration. 

In Figure 2-3 are shown details of the most external loop’s first and second iterations. 
It’s important to underline that nodes belonging to the Guiding Solution vector were not 
discovered by the Jurema Search (gray rectangle nodes), they were discovered by the upper 
bound calculation and they were used only to guide the searching step. Nodes discovered by the 
Jurema Search have (x)_y labels, where x represents the order which the node was discovered and 
y represents the node’s index (the city number to be visited by the travelling salesman).  

A set of illustrations representing the first (left) and second (right) most internal loop’s 
iterations are shown in Figure 2-3. Figure 2-4 shows the Jurema Search’s Branch-and-Bound 
resulting tree.   

                            
Figure 2-3: Set of illustrations representing the first iteration (left) and the second iteration 

(right) of the Jurema Search’s most external loop. 
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Figure 2-4: Jurema Search’s Branch-and-Bound resulting tree1. 

3. Computational evaluation 
During the preliminary research, a C++ application was conceived. This application 

contained an implementation of a Depth-First Search Branch-and-Bound (DFS-BnB) algorithm 
and an implementation of Jurema Method.  

To generate the resulting Branch-and-Bound tree for the two methods, the application 
writes a metadata. This metadata is interpreted by the software Graphvz 2.4, which generates the 
visualization of the resulting BnB tree.  

The conceived application is able to calculate the elapsed time necessary to the Jurema 
Method and to DFS-BnB perform its searches.  

3.1 Test Methodology 

The testing step was divided into two stages: in the first stage both algorithms (Jurema 
and DFS-BnB) performed searches over random asymmetric instances. In the second stage, both 
algorithms performed searches over asymmetric instances belonging to the TSP-LIB2 and they 
were executed as Anytime Algorithms (ZHANG 1993; ZHANG, 2000) during five hours.  

In the first stage, each search strategy (Jurema and DFS) received an ATSP instance.  
These instances had four to forty cities and they were generated by the pseudorandom numbers 
generator rand( ), provided by GNU C Library (glibc)3. These instances are Cnxn and also 
represent complete graphs where each element cij can vary from zero to one thousand, in a closed 
interval, when i and j are different values. When i and j are the same value, cij receives the value 
equal to infinity. 

The first stage was divided in two steps. In the first step, the lower bound was not 
considered and only the instances of four to twenty-five cities were utilized, because DFS-BnB 
cost-based only took a long time to solve instances greater than twenty-five cities. In the second 
step, the lower bound for the ATSP presented in (LITTLE et al., 1963), based on the Hungarian 
Method for the Assignment Problem, was applied and all the random asymmetric instances of 
four to forty cities were considered. 

To perform the comparison between Jurema and DFS performances, the tree size and 
the elapsed time, in minutes, to perform a complete search, were used as a parameter. 
                                                 
1 Instance of five cities created for didactic purpose and solved by Jurema not using LB (only based on 
cost), so a lot of branches can be seen even in this small instance.   
2 Available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp 
3 The GNU C Library Project: http://www.gnu.org/software/libc/ 
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The well known TSP-LIB asymmetric instances were utilized in the second stage. 
These instances have seventeen to four hundred forty-three cities and they represent complete 
weighted asymmetrical graphs. 

Data collected in the second stage were: elapsed time to find the first solution, elapsed 
time to find the last solution, elapsed time for searching the entire solution space and the number 
of solutions found.  

3.1.1 Testing environment 

The experiments were done on an Intel Core 2 Duo E6600 @ 2.4GHz, 2 GB DDR2 800 
MHz RAM workstation.  

The operative system was Arch Linux (kernel 2.6.27) and codes were compiled with 
Gnu Compiler Collection 4.3.4 using flag –O2. CPU times were measured by time( ) function, 
provided by glibc. 

3.1.2 Results 

3.1.2.1 Results of stage one 

In Graphic 3-1, where the size of the Branch-and-Bound tree is represented on a 
logarithmic scale, can be concluded that in the first step, where lower bounds were not 
considered (cost-only based BnB) and only instances of four to twenty-five cities were used, the 
Jurema Method is slightly better than the DFS-BnB. Otherwise, when the lower bound were 
considered and all the random asymmetric instances were utilized, the Jurema Method’s 
performance was much better than the traditional DFS-BnB (Graphic 3-2). In Graphic 3-2 the Y 
axis point for instance of sizes four and six (both methods) and size five (Jurema method) were 
not plotted because there were no branches. The DFS-BnB points for instances of size 37 to 40, 
in Graphic 3-2, were not plotted because DFS-BnB took a really huge amount of time, if 
compared to the time required by the Jurema to proof the optimality, without finding any 
solution. 
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Graphic 3-1 (step one) – This Graphic presents, on logarithmical notation, a 

comparison between Jurema and DFS-BnB, both of them are not using lower bound, for random 
asymmetric instances of four to twenty-five cities. 
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Jurema and DFS-BnB, both for random asymmetric instances of four to forty cities. 
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Graphic 3-3: This Graphic presents, on logarithmical notation, a comparison between 

the tests using lower bound, and not using lower bound (NLB), for random asymmetric instances 
of four to twenty-five cities. 

3.1.2.2 Results of stage two 

Details of the instances used in this stage of tests are shown bellow (Table 3-1). 
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Instance 
name 

Number of 
cities 

Initial 
LB 

LB 
Gap(%) 

 Initial 
UB 

UB 
Gap(%) 

Optimal 
Solution 

br17 17 0 -X- 41 5.13% 39 
ftv33 34 1099 -14.54% 1563 21.54% 1286 
ftv35 36 1248 -15.27% 1662 12.83% 1473 
ftv38 39 1321 -13.66% 1719 12.35% 1530 
ftv44 45 1392 -13.70% 1946 20.64% 1613 

kro124p 100 32649 -9.88% 42161 16.63% 36230 
rbg323 323 630 -52.49% 1866 40.72% 1326 
rbg358 358 358 -69.22% 1775 52.62% 1163 
rbg403 403 304 -87.67% 2848 15.54% 2465 
rbg443 443 384 -85.88% 3179 16.88% 2720 

p43 43 141 -97.49% 5631 0.18% 5620 
 Average gap: -50.89% 20.5%  

Table 3-1: Details of instances used in this stage of tests solved using FITSP + 2Opt. Lower 
bound presented in (LITTLE et al., 1963) were considered. 

 
Table 3-2 and 3-3 shows the results of searches performed by Jurema Method and DFS-

BnB through instances presented in Table 3-1, during the period of three hundred minutes (5h).  
 

DFS-BnB
Name Time of first 

solution found 
(min) 4 

Time of last 
solution found 

(min) 

Cost of last 
solution 

Gap(%) Amount of 
solutions found 

Optimality 
proved? 

br17 0.017 0.217 39 0.00% 2 Yes 
ftv33 0.983(4) 135.800 1286 0.00% 36 Yes 
ftv35 0.567 253.850 1489 1.00% 31 No 
ftv38 24.4 84.75 1644 7.45% 16 No 
ftv44 24.033 27.833(2) 1894 17.42% 5 No 

kro124p - - - 13.63% 0 No 
rbg323 - - - 40.72% 0 No 
rbg358 - - - 52.62% 0 No 
rbg403 - - - 15.54% 0 No 
rbg443 - - - 16.51% 0 No 

p43 - - - 0.18% 0 No 
Average gap: 15.01% 

Table 3-2: Results of searches performed by DFS-BnB through the TSP-LIB instances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
4 “0.000(11)” means that eleven solutions were found at 0.000.  

2062



JUREMA
Name Time of first 

solution found 
(min)  

Time of last 
solution found 

(min) 

Cost of last 
solution. 

Gap(%) Amount of 
solutions found 

Optimality 
proved? 

br17 0.000 0.000 39 0.00% 1 Yes 
ftv33 0.000(11) 276.117 1395 8.00% 16 No 
ftv35 0.000(4) 208.967 1473 0.00% 26 Yes 
ftv38 0.000(6) 146.15 1536 0.30% 19 No 
ftv44 0.000(3) 67.517(2) 1862 15.43% 10 No 

kro124p 0.000 258.63 40976 13.00% 34 No 
rbg323 0.000 0.13 1862 40.42% 2 No 
rbg358 0.033 0.033 1769 52.11% 1 No  
rbg403 13.683(2) 14.150(2) 2839 15.17% 4 No 
rbg443 0.000 0.500 3168 16.47% 3 No 

p43 0.000 0.000 5629 0.14% 1 No 
Average gap: 14.64% 

Table 3-3: Results of searches performed by Jurema through the TSP-LIB instances. 

3.2 Analysis of the results 

A first consideration to be made is about the quality of the bounds used. For the random 
instances (Step One), the strategy to calculate the initial upper bound had a poor performance, 
finding, for some instances, solution two times bigger than the optimal solution (Graphic 3-1, 
instances 15, 21, 23 and 24, for example). It is not good for the Jurema Method, since Jurema’s 
performance is affected by the quality of the Guiding Solution. Not the numeric quality, but 
structural quality. If the upper bound value is a number far from the optimal, but the first vertexes 
of the optimal Hamilton Cicle are in the Guiding Solution, Jurema Search will not be affected, 
will find the optimal solution quicky and will terminate its search soon. This is the spirit of the 
Jurema Method. 

For the TSPLIB instances, the strategy applied to LB calculation, had results as poor as 
the FITSP + 2-Opt presented for the upper bound calculation step. One reason to justify this is 
that the strategy presented in Little et al. (1963) always removes the great constant present in 
each row and column of the initial cost matrix. The more columns and rows containing zeros 
exists in the instance, lower is the lower bound. 

Another point to be considered is the following:  if the original cost matrix’s elements 
are into a closed interval [0, X], where this X is a very big value, the quality of the lower bound 
can be affected, once the strategy used in the tests removes only the greatest constant, but this 
constant can be very small if compared to the others elements of the row or column, 
compromising the quality of the lower bound. 

The good overall results obtained in the first stage of the tests (Graphic 3-3), in the tests 
that do not consider the lower bound (NLB), show that the Jurema Method’s proposed search 
way, a combination of DFS, BeFS and leaf-root search is a more effective search strategy than 
the widely used DFS.  

All tests of the step number one considering upper and lower bounds are superior to the 
tests that considerer only upper bound as a way to restrict the search, emphasizing the importance 
of using upper and lower bounds to make the search more efficient.  

In the tests considering the lower bounds (Graphic 3-2), the Jurema Method performed 
some memorable reductions in comparison to the DFS-BnB. In instances 15, 22, 23 and 24, for 
example, Jurema Method performed a reduction of almost ninety percent, compared to the size of 
DFS-BnB tree. It shows that Jurema Method can promote a really premature pruning of subtrees.  

On the second stage it can be seen that the Jurema Method’s initial proposal, to find 
new solutions (upper bounds) really quickly, is accomplished. In almost all tested instances the 
Jurema Method found a burst of new upper bounds in less than one second (see tables 3-2 and 3-
3).  
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After finding a good amount of new solutions quickly, the Jurema Method behaves just 
like the DFS-BnB, in other words, spend much time without finding new upper bounds (see 
Table 3-2 and 3-3). As was presented (section 2), the Jurema Search uses this same DFS to 
branch the nodes discovered by the BFS (algorithm 2-2). Despite being able to find solutions 
quickly (ZHANG, 2000), the DFS have some issues: to get stuck in branches that do not led to 
the optimal solution (Van LE, 1993), the most recently discovered node is always explored first, 
even though it shows signs that its subtree will be pruned soon, and the recursiveness. The great 
number of recursive calls causes a very large computational effort to handle them.  

Since the Jurema Method uses this DFS implementation to branch the nodes discovered 
by the BFS step, as the search approaches the root (the search is performed from leaf to root), the 
more the Jurema Search suffers due to the DFS’s issues presented before. 

4. Conclusions 
It was presented in this paper an algorithm to solve the Asymmetric Travelling 

Salesmen Problem, different from everything that has been proposed in the specialized literature, 
called Jurema Method. 

The proposed Branch-and-Bound algorithm accomplishes its original mission, to find, 
starting from a solution previously found, new solutions quickly (upper bounds). This property 
makes the Jurema Method a better anytime algorithm than the DFS-BnB. In spite of finding new 
solutions quickly, the implementation of Jurema Method is compromised by the DFS 
implementation used, but this problem can be easily solved. 

The Jurema Method, even in tests that did not consider the lower bounds, once its 
search is a leaf-root based and uses a composition of search strategies, is a more efficient search 
algorithm than the popular DFS-BnB, because as it approaches the root, since the Jurema Method 
can find new solutions quickly, few steps down to the leafs to find new solutions are necessary.   

Any method of lower and upper bound calculation can be used with Jurema Method, 
but is important to say that Jurema Method’s performance is closely related to the quality of the 
Guiding Solution. Not the numeric quality, but structural quality. If the solution is not good in its 
structure, i.e. the optimal Hamilton Cycles’ first vertexes are not in the Guiding Solution, the 
search must walk toward the root and return to the levels closer to the leaf in order to find better 
solutions, what makes Jurema Search inefficient.  

The quality of upper and lower bounds used here are lower than the expected, but they 
were used since they are easy to implement and the purpose of this paper is to evaluate the search 
step of the algorithm and the algorithm’s anytime capability. Bounds presented in (FISCHETTI; 
TOTH, 1992; TURKENSTEEN et al., 2007) will be considered further.  

The DFS can, in some scenarios, be more effective than Jurema Search. For example, in 
a scenario where the DFS, in one of its first step down, finds the global optimum, promoting 
really premature pruning of subtrees and proving optimality quickly or in a scenario where the 
structure of the Guiding Solution is not good. 

It is possible to be more effective in the searching space using the proposed method. A 
step forward in the future is to parallelize the Jurema Method. In this case, different starting trunk 
solutions (guiding solutions) would be built in different processors, and then the Jurema search 
can be placed, communicating the bounds in a master-slave parallel architecture. To make this 
work, a non recursive BnB using Jurema search may be designed. This method is already 
scratched and called the Black Jurema. It may be used to solve other ATSP difficult instances 
still not solved.  

Finally Jurema Method can be largely used as a BnB Anytime algorithm to find new 
better solutions after a metaheuristic or heuristic performs its evaluation over an ATSP instance, 
even for large scale instances. The gain is that it is still possible to find new bounds in reasonable 
time, knowing better the distance from the optimum solution (not enclosed in any heuristic), and 
also explore more efficiently the searching space. 
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