
A HIGH QUALITY SOLUTION HEURISTIC FOR NO-WAIT FLOW SHOP
SCHEDULING

Marcelo Seido Nagano
School of Engineering of São Carlos, University of São Paulo

Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos-SP
drnagano@usp.br

Fábio José Ceron Branco
School of Engineering of São Carlos, University of São Paulo

Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos-SP
fbranco@hotmail.com

João Vitor Moccellin
School of Engineering of São Carlos, University of São Paulo

Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos-SP
jvmoccel@sc.usp.br

ABSTRACT
This paper deals with the basic no-wait Flow Shop Sequencing in order to minimize the total time
to complete the schedule. It is introduced a constructive heuristic which builds the production
schedule from job partial sequences by using an appropriate combination of both shift and
interchange job-sequence neighborhoods. An extensive computational experiment has been
performed for the performance evaluation of the proposed heuristic. Experimental results have
clearly shown that the presented heuristic provides better solutions than those from the best three
existing ones.

KEYWORDS: Production scheduling. No-wait flow shop. Heuristics.

24

1. Introduction

 This paper deals with the basic n-job m-machine no-wait flow shop scheduling problem.
 A flow shop scheduling problem is a production problem where a set of n jobs have to be
processed on m different machines with identical machine routing. The traditional problem model
considers that job processing times are known, fixed, and include machine setup times.
Moreover, job operations on the machines may not be preempted. Usually, the jobs have the
same sequencing on all machines. This processing environment is known as permutation flow
shop. If job passing is not allowed, and all jobs have equals release dates the number of possible
schedules is n!. Therefore, the scheduling problem consists of finding a job sequence that
optimizes an appropriate schedule performance measure. In this paper, such a performance
measure is the makespan, that is, the total time to complete the schedule. This traditional n-job,
m-machine permutation flow shop scheduling problem can be mathematically defined as follows.
 Let [1] [2] []J J ... J n σ = be a job sequence, that is a possible permutation schedule,

where [] J i denotes the job in the ith position of σ . The processing time of job [] J i on machine

k (k = 1, 2,, m) is given by [] p i k , which includes the machine setup time.

 According to the general assumptions for the traditional flow shop scheduling problem,
the processing start time of job [] J i on machine k is given by

 [] [] (-1) [-1] E = max C , C⎡ ⎤
⎢ ⎥⎣ ⎦i k i k i k (1)

where [] (-1)C i k is the completion time of job [] J i on machine (k-1) , and [-1] C i k the

completion time of job [1] J i− on machine k. Therefore, the completion time of job [] J i on

machine k is obtained by [] [] [] C E p= +i k i k i k , that is

[] [] (-1) [-1] [] C = max C , C + p⎡ ⎤
⎢ ⎥⎣ ⎦i k i k i k i k (2)

Where [] 0C i = 0 and [0] C k = 0.

 If all job release dates are equals, which are adopted to be zero, then the makespan equals
the maximum job completion time max [] C = C n m .

 As aforementioned, the scheduling problem consists of finding a sequence for the jobs
that minimizes the makespan [] C n m .

 According to expression (1) the processing start time [] E i k of job [] J i on machine k

is given by either [] (-1)C i k or [-1] C i k , unless [] (-1)C i k = [-1] C i k .

 Suppose that [] (-1)C i k ≠ [-1] C i k . If [] E i k = [] (-1)C i k , then there will be an idle

time on machine k between the end of job [1] J i− and the start of job [] J i . Otherwise, the

operation of job [] J i on machine k must wait for the end of job [1] J i− on the same machine,

resulting in a waiting time between the successive operations of job [] J i on machines (k-1) and

k. Therefore, it is usual to have in a feasible schedule both idle times on machines and waiting
times between successive operations of a job. It is worth noting that in this traditional flow shop
scheduling problem there is no idle times between successive jobs on the first machine.
 The Flow Shop environment is common in a number of production systems. For some of
them the processing of a job cannot be interrupted once started. Some examples of such
production systems are chemical, metal, and food processing industries. For these production

25

environments the traditional flow shop scheduling model is not an appropriate one. However, the
traditional scheduling model can easily be adapted to those production systems. Assuming that
the general assumptions for the traditional flow shop scheduling problem can be accepted, it is
sufficient the addition of a constraint concerning the waiting times between successive operations
of the jobs, that is, these waiting times must always be zero. This is the basic no-wait flow shop
scheduling problem that is treated in this paper.
 Due to the constraint regarding the waiting times between successive operations of the
jobs, it is expected the occurrence of idle times on the first machines between successive jobs.
 Consider a feasible schedule for the no-wait problem given by an arbitrary job sequence

[1] [2] []J J ... J n σ = , and let [-1] [] I i i (i = 2, 3, …, n) be the idle time on the first machine

between the successive jobs [1] J i− and [] J i . According to the no-wait scheduling structure

there are as many feasible schedules as it is desired with the same job sequence σ . Of course, the
σ -schedule with the minimum makespan is the best. Such a schedule is given when the idle
times [-1] []I i i reach their minimum values in order to keep the schedule feasibility. These

minimum [-1] [] I i i , denoted by [-1] [] min
I i i , are calculated as a function of the processing

times of jobs [1] J i− , and [] J i . Wismer (1972) presents the procedure to obtain

 [-1] [] min
I i i for i = 2, 3, ….., n, and for any job pair from the set of n jobs.

 Taking into account the idles times [-1] [] min I i i on the first machine, the makespan is

calculated by the following expression:

 min [] [] 1 [1] [] []
1 2 2

 C p I + p −
= = =

= +∑ ∑ ∑
n n m

n m i i i n k
i i k

 (3)

 Therefore, the basic n-job m-machine no-wait flow shop scheduling problem considered
in this paper consists of finding a sequence for the jobs that minimizes the makespan [] C n m

given by expression (3).
 Another usual production scheduling performance measure is the mean flow time, which
is the same as total flow time. Concerning this performance measure, Van Deman and Baker
(1974) were the first to deal with the basic no-wait flow shop scheduling problem. After them,
Adiri and Pohoryles (1982), Rajendran and Chaudhuri (1990), Van Der Veen and Van Dal
(1991), Chen et al. (1996), Bertolissi (2000), Fink and Voβ (2003), Aldowaisan and Allahverdi
(2004), Kumar et al. (2006), Pan et al. (2008), and recently Framinan et al (2010).
 For makespan minimization, some of the early researches are reported by Reddi and
Ramamoorthy (1972), Wismer (1972), Bonney and Gundry (1976), and King and Spachis (1980).
Gangadharan and Rajendran (1993), and Rajendran (1994) have developed heuristics which
perform better than the heuristics presented by Bonney and Gundry (1976), and King and Spachis
(1980).
 The heuristic presented by Rajendran (1994) is a constructive heuristic that yields good
solutions with small computational effort. The author has observed in expression (3) that the
minimum makespan is obtained by the best matching for all possible pairs of adjacent jobs,
which is related to the minimum idles times [-1] [] min I i i . In addition, the total processing time

of the last job [] J n should be reduced. Moreover, it was also used the concept of Johnson’s

algorithm (1954) concerning both increasing and decreasing trend in job processing times.
 An early survey of the basic no-wait flow shop scheduling can be found in Hall and
Sriskandarajah (1996).
 Aldowaisan and Allahverdi (2003) have proposed meta-heuristics by using Genetic
Algorithm, and Simulated Annealing. As it is well-known, meta-heuristics generally yields high

26

quality solutions but they are inefficient regarding computation times. As expected, the best two
of the proposed meta-heuristics, denoted by SA2 and GEN2, obtain schedules with smaller
makespan than Rajendran’s method (1994).
 Li et al. (2008) have presented a composite heuristic for the basic no-wait flow shop
scheduling. A heuristic is named as a composite one when it involves one or more another
existing heuristics. The composite heuristic by Li et al. has three phases. In the first phase the
jobs are arranged according to non-descending order of their total processing time. Phase two
constructs a n-job sequence by using a procedure similar to the solution construction procedure of
the existing FL heuristic proposed by Framinan and Leisten (2003) for the traditional flow shop
scheduling problem with the objective of minimizing mean flow time. At the end of the second
heuristic phase, there are two complete sequences. One of them is that given by the initial job
arrangement from the first phase and the second one is that obtained in the phase two. The last
heuristic phase consists of a solution improvement, as follows: If the makespan for the sequence
from phase two is smaller than that concerning the initial job arrangement, then phase two is
performed again assuming as a new initial job arrangement the complete sequence that has been
constructed in phase two. Otherwise, the heuristic stop criterion is reached. This iterative
procedure may be done at most three times. Experimental results show that the heuristic
presented by Li et al. (2008) outperforms in solution quality the existing algorithms SA2
(Aldowaisan and Allahverdi, 2003), RAJ (Rajendran, 1994), and GR (Gangadharan and
Rajendran, 1993). Moreover, its CPU time was the least among the computation times required
by the compared algorithms.
 Recently, Laha and Chakraborty (2009) introduced a new constructive heuristic which is
similar to the well-known NEH heuristic (Nawaz et al., 1983) which was originally developed for
the traditional flow shop scheduling problem with the objective of minimizing makespan. The
heuristic by Nawaz et al. has two basic phases. In the first phase an initial job arrangement is
obtained by sequencing the jobs according to non-ascending order of their total processing time.
The second phase consists of an iterative job insertion procedure, which starts with a partial 2-job
sequence, and according to the job ordering from phase 1 the remaining jobs are one at a time
successively scheduled. In the heuristic proposed by Laha and Chakraborty, the initial
arrangement for the jobs is obtained by two steps. In the first step the jobs are arranged according
to non-ascending order of their total processing time, as it is made in the NEH heuristic. Then,
the second step generates 2(n-1) shift neighbors of the job ordering from step 1. The n-job
neighbor sequence with the minimum makespan is selected as the initial job arrangement. By
using this initial job arrangement, and starting from a partial sequence with the first pair of jobs,
an iterative 2-job insertion procedure is performed up to a complete job sequence is constructed.
Results from computational experience show that the proposed heuristic is superior to four of the
best-known methods that have been reported in the literature, that is: GR (Gangadharan and
Rajendran, 1993), RAJ (Rajendran, 1994), an insertion heuristic presented by Aldowaisan and
Allahverdi (2003), and the Simulated Annealing meta-heuristic by Osman and Potts (1989)
which was originally proposed for the traditional flow shop sequencing.
 According to the literature examination for the basic n-job m-machine no-wait flow shop
scheduling problem, the best heuristics with an appropriate trade-off between solution quality
(minimum makespan) and computational effort are the RAJ heuristic (Rajendran, 1994), LWW
heuristic (Li et al., 2008), and LC heuristic (Laha and Chakraborty, 2009).

 In this paper, it is proposed a new constructive heuristic for minimizing makespan in
basic no-wait flow shop scheduling problems. The remainder of this paper is organized as
follows: Section 2 presents the proposed heuristic method. Computational results are presented in
Section 3, where comparisons with the performance of three of the best-known existing heuristics
are provided. Finally, conclusions are presented in Section 4.

27

2. The new heuristic

 Similarly to existing heuristics as for instance the aforementioned heuristic by Laha and
Chakraborty (2009), the new heuristic introduced in this paper is also related to the NEH one
(Nawaz et al., 1983), having two stages. The first one is the same as the initial stage from NEH
heuristic. The second stage uses local search procedures based on both shift and interchange
neighborhoods of successive partial sequences, in order to obtain a complete job sequence.

 The new heuristic, which is denoted by NBM-NWFS, can be stated as follows:

{Stage I – Initial arrangement for the jobs}
Step 1: For each job j calculate the total processing time on all the machines, given by

1
P = p

=
∑
m

j jk
k

 (j = 1, 2, ….., n).

Step 2: Arrange the n jobs according to non- ascending order of P j .

{Stage II – Solution construction}
Step 3: Select the two jobs from the first and second position of the arrangement for the jobs of
Step 2, and find the best sequence for these two jobs by calculating the makespan for the two
possible partial sequences.
Step 4: For 3l = to n do
Select the job in the l -th position of the list generated in Step 2, and insert it at the last position
of the current best partial sequence.
Denote this l -job sequence by S .
Find the best sequence from the entire shift neighborhood of sequence S . If the makespan of the
best neighbor is better than that of S assign it to S .
Next, find the best sequence from the entire interchange neighborhood of sequence S . If the
makespan of the best neighbor is better than that of S assign it to S .
The best n-job sequence S obtained by Step 4 is the solution sequence.

3. Computational results

 The new constructive heuristic has been compared with three of the best-known existing
algorithms, that is, RAJ heuristic (Rajendran, 1994), LWW heuristic (Li et al., 2008), and LC
heuristic (Laha and Chakraborty, 2009).
 In the computational tests, the heuristics were coded in Delphi and have been run on a
microcomputer Intel Core 2 Quad, 2.4 GHz, 2 Gb RAM.
 The computational experience was performed on two instance groups. The first group
concerns small and medium size problems having 10, 20, 30, 40, 50, 60, and 70 jobs with 5, 10,
15, 20, 25, and 30 machines. The second group consists of large size problems having 80, 90,
100, 110, 120, 130, 140, and 150 jobs, with 5, 10, 15, 20, 25, and 30 machines. Each of the m x n
combinations was replicated 100 times. The operation processing times were randomly generated
from the discrete uniform distribution over the interval [1, 99]. Therefore, a total of 9000 problem
instances were solved, where 4200 have had small/medium sizes, and 4800 large size test
problems.
 In the computational experience, two traditional statistics are used in order to evaluate
the heuristic performances: percentage of success (in finding the best solution), and relative
deviation (between the heuristics).
 The percentage of success PS is given by the number of times the heuristic obtains the
best makespan (alone or in conjunction with other) divided by the number of solved instances.

28

 The relative deviation RD is given by:
()*

*

M - M
RD =

M
h

h

Where M h is the makespan of the best sequence obtained by the heuristic h, and *M the best
makespan obtained by the heuristics, for a given test problem.

 Table 1 shows the experimental results for small and medium size problems, while Table
2 presents the results related to large size problems.
 As can be noted from Tables 1 and 2, the proposed NBM-NWFS heuristic clearly
outperforms in solution quality all others compared heuristics.
 Taking into account the percentages of success (PS), it is observed that for the smallest
instances (number of jobs n = 10) the average PS is 73.16% growing up to 100 % for n ≥ 60 jobs.
The relative deviations (RD), given by average percentage, substantiate the results concerning the
percentages of success.
 The results presented in Tables 1 and 2, with reference to solution quality (PS combined
with RD), show that the compared heuristics could be arranged as follows: NBM-NWFS, LC,
LWW, and RAJ.

 Concerning the computation times, the fastest are the RAJ and LC heuristics followed by
the proposed NBM-NWFS, and then by the LWW heuristic. However, the NBM-NWFS heuristic
has taken on average 1.4467 seconds for solving the largest instances with n = 150 jobs. Of
course, such a computational effort is not a constrained factor.

29

Table 1 – RD, PS and CPU times of the compared heuristics for small/medium size problems

Problem RAJ LWW LC NBM-NWFS
n M RD

(%)
PS
(%)

CPU time
(seconds)

RD
(%)

PS
(%)

CPU time
(seconds)

RD
(%)

PS
(%)

CPU time
(seconds)

RD
(%)

PS
(%)

CPU time
(seconds)

10 5 2.343 21 0.0003 2.278 15 0.0024 2.166 22 0.0002 0.282 71 0.0006
 10 2.816 9 0.0003 1.922 20 0.0019 1.821 25 0.0001 0.436 69 0.0005
 15 3.084 10 0.0006 1.918 19 0.0020 1.804 29 0.0003 0.182 82 0.0006
 20 3.169 13 0.0002 1.810 22 0.0019 1.993 23 0.0005 0.372 74 0.0003
 25 2.982 11 0.0006 1.857 21 0.0020 1.975 27 0.0001 0.352 73 0.0006
 30 2.779 10 0.0003 1.634 21 0.0024 1.707 28 0.0002 0.298 70 0.0008

Average 2.862 12.33 0.0004 1.903 19.66 0.0021 1.911 25.66 0.0002 0.321 73.16 0.0006
20 5 3.791 0 0.0005 2.697 5 0.0148 2.748 6 0.0001 0.092 89 0.0016

 10 3.447 4 0.0003 3.451 7 0.0147 2.971 5 0.0001 0.187 84 0.0014
 15 3.559 3 0.0003 3.281 4 0.0144 2.599 7 0.0003 0.107 86 0.0014
 20 3.377 1 0.0002 3.505 3 0.0145 2.456 6 0.0001 0.070 91 0.0044
 25 3.489 2 0.0006 3.324 6 0.0148 2.372 12 0.0003 0.102 83 0.0019
 30 3.399 6 0.0008 3.149 5 0.0146 2.420 8 0.0005 0.167 83 0.0020

Average 3.511 2.66 0.0005 3.234 5 0.0146 2.594 7.33 0.0002 0.121 86 0.0021
30 5 4.885 0 0.0005 3.007 1 0.0491 3.309 5 0.0006 0.010 95 0.0045

 10 4.221 2 0.0005 3.998 1 0.0489 3.419 1 0.0006 0.036 96 0.0042
 15 4.107 0 0.0005 4.154 0 0.0492 3.009 3 0.0008 0.015 98 0.0050
 20 4.244 1 0.0006 3.884 0 0.0491 3.013 3 0.0008 0.031 96 0.0047
 25 4.109 1 0.0006 3.667 2 0.0491 3.111 4 0.0005 0.074 93 0.0055
 30 3.985 3 0.0008 4.066 1 0.0499 3.091 2 0.0006 0.049 94 0.0055

Average 4.258 1.16 0.0006 3.796 0.83 0.0492 3.158 3 0.0007 0.036 95.33 0.0049
40 5 5.741 0 0.0003 3.019 2 0.1170 3.236 0 0.0009 0.007 98 0.0109

 10 4.411 0 0.0008 4.088 0 0.1174 3.234 1 0.0011 0.004 99 0.0119
 15 4.134 0 0.0006 4.363 0 0.1172 3.778 0 0.0008 0.000 100 0.0117
 20 3.834 1 0.0009 4.280 1 0.1183 3.363 1 0.0011 0.019 97 0.0125
 25 3.894 0 0.0009 4.392 1 0.1178 3.285 1 0.0013 0.021 98 0.0130
 30 4.043 2 0.0014 4.526 1 0.1181 3.122 2 0.0017 0.031 95 0.0138

Average 4.343 0.50 0.0008 4.111 0.83 0.1176 3.336 0.83 0.0012 0.014 97.83 0.0123

30

50 5 6.202 0 0.0006 3.015 1 0.2322 3.667 0 0.0006 0.007 99 0.0238
 10 4.343 0 0.0011 4.137 0 0.2325 3.514 0 0.0013 0.000 100 0.0250
 15 4.753 0 0.0014 4.297 1 0.2331 3.810 0 0.0014 0.012 99 0.0264
 20 4.369 0 0.0016 4.632 0 0.2344 3.495 0 0.0017 0.000 100 0.0272
 25 4.482 0 0.0016 4.632 0 0.2335 3.483 1 0.0019 0.006 99 0.0280
 30 4.063 1 0.0019 4.415 0 0.2342 3.515 0 0.0017 0.001 99 0.0289

Average 4.702 0.16 0.0014 4.188 0.33 0.2333 3.581 0.16 0.0014 0.004 99.33 0.0266
60 5 6.717 0 0.0011 3.115 0 0.4063 3.695 0 0.0017 0.000 100 0.0488

 10 4.459 0 0.0012 4.060 0 0.4067 3.588 0 0.0020 0.000 100 0.0475
 15 4.718 0 0.0020 4.774 0 0.4077 3.701 0 0.0017 0.000 100 0.0492
 20 4.522 0 0.0019 4.840 0 0.4075 3.728 0 0.0022 0.000 100 0.0513
 25 4.133 0 0.0022 4.714 0 0.4091 3.525 0 0.0025 0.000 100 0.0517
 30 4.145 0 0.0028 4.499 0 0.4088 3.616 0 0.0028 0.000 100 0.0534

Average 4.782 0 0.0019 4.334 0 0.4077 3.642 0 0.0022 0.000 100 0.0503
70 5 7.312 0 0.0016 3.079 0 0.6564 3.851 0 0.0025 0.000 100 0.0805

 10 4.643 0 0.0020 3.827 0 0.6580 3.537 0 0.0028 0.000 100 0.0822
 15 4.853 0 0.0022 4.502 0 0.6584 3.842 0 0.0025 0.000 100 0.0869
 20 4.537 0 0.0025 4.683 0 0.6594 3.668 0 0.0033 0.000 100 0.1044
 25 4.571 0 0.0028 4.746 0 0.6588 3.666 0 0.0036 0.000 100 0.1386
 30 4.551 0 0.0036 4.700 0 0.6605 3.410 0 0.0041 0.000 100 0.0931

Average 5.077 0 0.0025 4.256 0 0.6586 3.662 0 0.0031 0.000 100 0.0976

31

Table 2 – RD, PS and CPU times of the compared heuristics for large size problems

Problem RAJ LWW LC NBM-NWFS
n m RD

(%)
PS
(%)

CPU time
(seconds)

RD
(%)

PS
(%)

CPU time
(seconds)

RD
(%)

PS
(%)

CPU time
(seconds)

RD
(%)

PS
(%)

CPU time
(seconds)

80 5 7.485 0 0.0023 2.988 0 1.0920 3.913 0 0.0027 0.000 100 0.1305
 10 5.065 0 0.0025 4.510 0 1.0249 3.852 0 0.0033 0.000 100 0.1331
 15 4.602 0 0.0030 4.811 0 1.0020 3.631 0 0.0036 0.000 100 0.1436
 20 4.613 0 0.0034 4.882 0 1.0028 3.819 0 0.0045 0.000 100 0.1478
 25 4.449 0 0.0041 5.039 0 1.0042 3.685 0 0.0047 0.000 100 0.1458
 30 4.537 1 0.0044 5.141 0 1.0208 3.874 0 0.0053 0.001 99 0.1500

Average 5.125 0.16 0.0033 4.562 0 1.0245 3.796 0 0.0040 0.000 99.83 0.1418
90 5 7.741 0 0.0027 3.184 0 1.4633 4.018 0 0.0038 0.000 100 0.2058

 10 4.866 0 0.0033 4.291 0 1.4533 3.803 0 0.0041 0.000 100 0.2105
 15 4.529 0 0.0041 4.593 0 1.4653 3.734 0 0.0048 0.000 100 0.2252
 20 4.550 0 0.0044 5.008 0 1.4755 3.723 0 0.0053 0.000 100 0.2286
 25 4.410 0 0.0052 5.073 0 1.4556 3.692 0 0.0058 0.000 100 0.2252
 30 4.481 0 0.0056 5.099 0 1.4553 3.838 0 0.0067 0.000 100 0.2309

Average 5.096 0 0.0042 4.541 0 1.4614 3.801 0 0.0051 0.000 100 0.2210
100 5 7.891 0 0.0034 3.019 0 2.0233 4.028 0 0.0047 0.000 100 0.3047

 10 4.809 0 0.0042 4.167 0 2.0241 3.867 0 0.0053 0.000 100 0.3023
 15 4.513 0 0.0050 4.615 0 2.0259 3.765 0 0.0061 0.000 100 0.3288
 20 4.596 0 0.0056 4.873 0 2.0505 3.664 0 0.0066 0.000 100 0.3374
 25 4.597 0 0.0063 5.233 0 2.0748 3.919 0 0.0073 0.000 100 0.3285
 30 4.615 0 0.0070 5.102 0 2.0392 3.897 0 0.0078 0.000 100 0.3339

Average 5.170 0 0.0053 4.501 0 2.0396 3.856 0 0.0063 0.000 100 0.3226
110 5 8.306 0 0.0042 2.938 0 2.7366 3.900 0 0.0055 0.000 100 0.4316

 10 4.715 0 0.0053 4.086 0 2.7381 3.671 0 0.0066 0.000 100 0.4327
 15 4.505 0 0.0064 4.824 0 2.7392 3.770 0 0.0075 0.000 100 0.4641
 20 4.712 0 0.0072 5.005 0 2.7402 3.852 0 0.0080 0.000 100 0.4720
 25 4.609 0 0.0078 5.015 0 2.7655 3.972 0 0.0088 0.000 100 0.5214
 30 4.440 0 0.0089 5.291 0 2.7405 4.026 0 0.0094 0.000 100 0.4739

Average 5.214 0 0.0066 4.526 0 2.7434 3.865 0 0.0076 0.000 100 0.4660

32

120 5 8.481 0 0.0055 2.914 0 3.5944 4.043 0 0.0063 0.000 100 0.6031
 10 4.876 0 0.0066 4.136 0 3.5945 3.539 0 0.0072 0.000 100 0.5994
 15 4.468 0 0.0072 4.638 0 3.5978 3.619 0 0.0092 0.000 100 0.6333
 20 4.680 0 0.0085 5.154 0 3.5978 3.884 0 0.0097 0.000 100 0.7017
 25 4.438 0 0.0094 5.139 0 3.5988 3.926 0 0.0105 0.000 100 0.6492
 30 4.418 0 0.0105 5.140 0 3.5983 3.878 0 0.0117 0.000 100 0.6586

Average 5.227 0 0.0080 4.521 0 3.5969 3.815 0 0.0091 0.000 100 0.6409
130 5 8.428 0 0.0067 2.766 0 4.6239 3.952 0 0.0080 0.000 100 0.8156

 10 4.834 0 0.0081 3.991 0 4.6478 3.621 0 0.0094 0.000 100 0.8850
 15 4.594 0 0.0092 4.774 0 4.6353 3.860 0 0.0103 0.000 100 0.8545
 20 4.604 0 0.0106 5.000 0 4.6380 3.774 0 0.0117 0.000 100 0.8649
 25 4.289 0 0.0114 5.286 0 4.6394 3.927 0 0.0125 0.000 100 0.9191
 30 4.347 0 0.0123 5.297 0 4.6453 3.833 0 0.0141 0.000 100 0.8830

Average 5.1827 0 0.0097 4.519 0 4.6383 3.8278 0 0.0110 0.000 100 0.8704
140 5 8.775 0 0.0081 2.858 0 5.8372 4.049 0 0.0094 0.000 100 1.0820

 10 5.063 0 0.0095 4.077 0 5.8255 3.672 0 0.0108 0.000 100 1.0664
 15 4.505 0 0.0108 4.752 0 5.8306 3.958 0 0.0125 0.000 100 1.1739
 20 4.440 0 0.0119 4.990 0 5.8331 3.682 0 0.0134 0.000 100 1.1364
 25 4.352 0 0.0134 5.227 0 5.8364 3.982 0 0.0147 0.000 100 1.1375
 30 4.619 0 0.0147 5.414 0 5.8514 3.811 0 0.0159 0.000 100 1.2161

Average 5.2923 0 0.0114 4.553 0 5.8357 3.859 0 0.0128 0.000 100 1.1354
150 5 8.967 0 0.0097 2.885 0 7.2222 3.997 0 0.0111 0.000 100 1.4011

 10 4.723 0 0.0114 3.998 0 7.2294 3.475 0 0.0127 0.000 100 1.3769
 15 4.426 0 0.0133 4.915 0 7.2313 3.859 0 0.0144 0.000 100 1.4773
 20 4.418 0 0.0142 5.210 0 7.2534 3.913 0 0.0158 0.000 100 1.4628
 25 4.448 0 0.0161 5.337 0 7.2377 3.919 0 0.0165 0.000 100 1.4720
 30 4.540 0 0.0175 5.448 0 7.2409 3.983 0 0.0186 0.000 100 1.4900

Average 5.254 0 0.0137 4.632 0 7.2358 3.857 0 0.0149 0.000 100 1.4467

33

4. Final remarks

 As it is well-known, desired features of heuristic methods are: simplicity, easy
implementation, computational efficiency, and effectiveness, in order to yield near-optimal
solutions. Having this in mind, this paper has introduced a new simple heuristic for the basic no-
wait Flow Shop Sequencing with the objective of minimizing makespan.
Regarding solution quality, results from computational experience have shown that the proposed
heuristic performs better than the best three ones that have been presented in the literature.
Moreover, the computational effort is not significant to be worth considering.

Acknowledgements – The research reported in this paper is partially supported by a grant from
the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasil.

References

Adiri, I. and Pohoryles, D. (1982), Flow shop/no-idle or no-wait scheduling to minimize the
sum of completion times, Naval Research Logistics, 29, 495-504.
Aldowaisan, T. and Allahverdi, A. (2003), New heuristics for no-wait flow shops to minimize
makespan, Computers & Operations Research, 30, 1219-1231.
Aldowaisan, T. and Allahverdi, A. (2004), A new heuristic for m-machine no-wait flow shop to
minimize total completion time, Omega, 32, 345-352.
Bertolissi, E. (2000), Heuristic algorithm for scheduling in the no-wait flow-shop, Journal of
Materials Processing Technology, 107, 459-465.
Bonney, M. C. and Gundry, S. W. (1976), Solutions to the constrained flowshop sequencing
problem, Operations Research Quarterly, 24, 869-883.
Chen, C-L., Neppalli, R. V. and Aljaber, N. (1996), Genetic algorithms applied to the
continuous flow shop problem, Computers & Industrial Engineering, 30, 919–929.
Fink, A. and Voß, S. (2003), Solving the continuous flow-shop scheduling problem by
metaheuristics, European Journal of Operational Research, 151, 400–414.
Framinan, J. M., Nagano, M. S. and Moccellin, J. V. (2010), An efficient heuristic for total
flowtime minimisation in no-wait flowshops, International Journal of Advanced Manufacturing
Technology, 46, 1049-1057.
Framinan, J. M. and Leisten, R. (2003), An efficient constructive heuristic for flowtime
minimisation in permutation flow shops, Omega, 31, 311-317.
Gangadharan, R. and Rajendran, C. (1993), Heuristic algorithms for scheduling in the no-wait
flowshop, International Journal of Production Economics, 32, 285-290.
Hall, N.G. and Sriskandarajah C. (1996), A survey of machine scheduling problems with
blocking and no-wait in process, Operations Research, 44, 510-525.
Johnson, S.M. (1954), Optimal two-and three-stage production schedules with setup times
included, Naval Research Logistics Quarterly, 1, 61-68.
King, J. R. and Spachis, A. S. (1980), Heuristics for flowshop scheduling, International Journal
of Production Research, 18, 343-357.
Kumar, A., Prakash, A., Shankar, R. and Tiwari, M. K. (2006), Psychoclonal algorithm based
approach to solve continuous flow shop scheduling problem, Expert Systems with Applications,
31, 504-514.
Laha, D. and Chakraborty, U. K. (2009), A constructive heuristic for minimizing makespan in
no-wait flow shop scheduling, International Journal of Advanced Manufacturing Technology, 41,
97-109.
Li, X., Wang Q. and Wu, C. (2008), Heuristic for no-wait flow shops with makespan
minimization, International Journal of Production Research, 46, 2519-2530.
Nawaz, M., Enscore, E. Jr. and Ham, I. (1983), A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem, Omega, 1, 91–95.

34

Osman, I.H. and Potts, C.N. (1989), Simulated annealing for permutation flow-shop
scheduling, Omega, 17, 551–557.
Pan, Q-K., Tasgetiren, M. F. and Liang, Y-C. (2008), A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem, Computers & Operations Research, 35,
2807-2839.
Rajendran, C. (1994), A no-wait flowshop scheduling heuristic to minimize makespan, Journal
of the Operational Research Society, 45, 472-478.
Rajendran, C. and Chaudhuri, D. (1990), Heuristic algorithms for continuous flow shop
problem, Naval Research Logistics, 37, 695-705.
Reddi, S. S. and Ramamoorthy, C. V. (1972), On the flowshop sequencing problems with no
wait in process, Operational Research Quarterly, 23, 323-331.
Van Deman, J. M. and Baker, K. R. (1974), Minimizing flowtime in the flow shop with no
intermediate queues, IIE Transactions, 6, 28-34.
Van Der Veen, J. A. A. and Van Dal, R. (1991), Solvable cases of the no-wait flowshop
scheduling problem, Journal of the Operational Research Society, 42, 971-980.
Wismer, D. A. (1972), Solution of the flowshop sequencing problem with no intermediate
queues, Operations Research, 20, 689-697.

35

