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ABSTRACT 
This paper deals with the basic no-wait Flow Shop Sequencing in order to minimize the total time 
to complete the schedule. It is introduced a constructive heuristic which builds the production 
schedule from job partial sequences by using an appropriate combination of both shift and 
interchange job-sequence neighborhoods. An extensive computational experiment has been 
performed for the performance evaluation of the proposed heuristic. Experimental results have 
clearly shown that the presented heuristic provides better solutions than those from the best three 
existing ones. 
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1. Introduction 
 
 This paper deals with the basic n-job m-machine no-wait flow shop scheduling problem. 
 A flow shop scheduling problem is a production problem where a set of n jobs have to be 
processed on m different machines with identical machine routing. The traditional problem model 
considers that job processing times are known, fixed, and include machine setup times. 
Moreover, job operations on the machines may not be preempted. Usually, the jobs have the 
same sequencing on all machines. This processing environment is known as permutation flow 
shop. If job passing is not allowed, and all jobs have equals release dates the number of possible 
schedules is n!. Therefore, the scheduling problem consists of finding a job sequence that 
optimizes an appropriate schedule performance measure. In this paper, such a performance 
measure is the makespan, that is, the total time to complete the schedule. This traditional n-job, 
m-machine permutation flow shop scheduling problem can be mathematically defined as follows. 
 Let [1] [2] [ ]J J ... J n    σ =  be a job sequence, that is a possible permutation schedule, 

where [ ] J i  denotes the job in the ith position of σ . The processing time of job [ ] J i  on machine 

k (k = 1, 2, ...., m)  is given by [ ] p i k , which includes the machine setup time. 

 According to the general assumptions for the traditional flow shop scheduling problem, 
the processing start time of job [ ] J i  on machine k is given by 

 [ ] [ ] ( -1) [ -1] E  = max  C  , C⎡ ⎤
⎢ ⎥⎣ ⎦i k i k i k                                                                                (1) 

where [ ] ( -1)C i k  is the completion time of job [ ] J i  on machine ( k-1 ) , and [ -1] C i k  the 

completion time of job [ 1] J i−  on machine k. Therefore, the completion time of job [ ] J i  on 

machine k is obtained by [ ]  [ ]  [ ]  C   E   p= +i k i k i k  , that is 

[ ] [ ] ( -1) [ -1]   [ ] C  = max  C  , C  + p⎡ ⎤
⎢ ⎥⎣ ⎦i k i k i k i k                                                               (2) 

Where  [ ] 0C i  = 0   and    [0] C k  = 0. 

 If all job release dates are equals, which are adopted to be zero, then the makespan equals 
the maximum job completion time max  [ ] C  = C n m . 

 As aforementioned, the scheduling problem consists of finding a sequence for the jobs 
that minimizes the makespan  [ ]  C n m . 

 According to expression (1) the processing start time [ ]  E  i k  of job [ ] J i  on machine k 

is given by either  [ ] ( -1)C i k  or [ -1] C i k , unless [ ] ( -1)C i k  = [ -1] C i k . 

 Suppose that [ ] ( -1)C i k  ≠ [ -1] C i k . If  [ ] E  i k = [ ] ( -1)C i k , then there will be an idle 

time on machine k between the end of job [ 1] J i−  and the start of job [ ] J i . Otherwise, the 

operation of job [ ] J i  on machine k must wait for the end of job [ 1] J i−  on the same machine, 

resulting in a waiting time between the successive operations of job [ ] J i  on machines (k-1) and 

k. Therefore, it is usual to have in a feasible schedule both idle times on machines and waiting 
times between successive operations of a job. It is worth noting that in this traditional flow shop 
scheduling problem there is no idle times between successive jobs on the first machine. 
 The Flow Shop environment is common in a number of production systems. For some of 
them the processing of a job cannot be interrupted once started. Some examples of such 
production systems are chemical, metal, and food processing industries. For these production 
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environments the traditional flow shop scheduling model is not an appropriate one. However, the 
traditional scheduling model can easily be adapted to those production systems. Assuming that 
the general assumptions for the traditional flow shop scheduling problem can be accepted, it is 
sufficient the addition of a constraint concerning the waiting times between successive operations 
of the jobs, that is, these waiting times must always be zero. This is the basic no-wait flow shop 
scheduling problem that is treated in this paper. 
 Due to the constraint regarding the waiting times between successive operations of the 
jobs, it is expected the occurrence of idle times on the first machines between successive jobs. 
 Consider a feasible schedule for the no-wait problem given by an arbitrary job sequence 

[1] [2] [ ]J J ... J n    σ = , and let [ -1] [ ] I i i  (i = 2, 3, …, n) be the idle time on the first machine 

between the successive jobs [ 1] J i−  and [ ] J i . According to the no-wait scheduling structure 

there are as many feasible schedules as it is desired with the same job sequence σ . Of course, the 
σ -schedule with the minimum makespan is the best. Such a schedule is given when the idle 
times  [ -1] [ ]I i i  reach their minimum values in order to keep the schedule feasibility. These 

minimum [ -1] [ ] I i i , denoted by  [ -1] [ ] min
I i i , are calculated as a function of the processing 

times of jobs [ 1] J i− , and [ ] J i . Wismer (1972) presents the procedure to obtain  

 [ -1] [ ] min
I i i  for  i = 2, 3, ….., n, and for any job pair from the set of n jobs. 

 Taking into account the idles times [ -1] [ ] min I i i  on the first machine, the makespan is 

calculated by the following expression: 

 min [ ]  [ ] 1 [ 1] [ ] [ ] 
1 2 2

 C p  I  + p −
= = =

= +∑ ∑ ∑
n n m

n m i i i n k
i i k

                                                 (3) 

 Therefore, the basic n-job m-machine no-wait flow shop scheduling problem considered 
in this paper consists of finding a sequence for the jobs that minimizes the makespan  [ ]  C n m  

given by expression (3). 
 Another usual production scheduling performance measure is the mean flow time, which 
is the same as total flow time. Concerning this performance measure, Van Deman and Baker 
(1974) were the first to deal with the basic no-wait flow shop scheduling problem. After them, 
Adiri and Pohoryles (1982), Rajendran and Chaudhuri (1990), Van Der Veen and Van Dal 
(1991), Chen et al. (1996), Bertolissi (2000), Fink and Voβ (2003), Aldowaisan and Allahverdi 
(2004), Kumar et al. (2006), Pan et al. (2008), and recently Framinan et al (2010). 
 For makespan minimization, some of the early researches are reported by Reddi and 
Ramamoorthy (1972), Wismer (1972), Bonney and Gundry (1976), and King and Spachis (1980). 
Gangadharan and Rajendran (1993), and Rajendran (1994) have developed heuristics which 
perform better than the heuristics presented by Bonney and Gundry (1976), and King and Spachis 
(1980). 
 The heuristic presented by Rajendran (1994) is a constructive heuristic that yields good 
solutions with small computational effort. The author has observed in expression (3) that the 
minimum makespan is obtained by the best matching for all possible pairs of adjacent jobs, 
which is related to the minimum idles times [ -1] [ ] min I i i . In addition, the total processing time 

of the last job [ ] J n  should be reduced. Moreover, it was also used the concept of Johnson’s 

algorithm (1954) concerning both increasing and decreasing trend in job processing times. 
 An early survey of the basic no-wait flow shop scheduling can be found in Hall and 
Sriskandarajah (1996). 
 Aldowaisan and Allahverdi (2003) have proposed meta-heuristics by using Genetic 
Algorithm, and Simulated Annealing. As it is well-known, meta-heuristics generally yields high 
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quality solutions but they are inefficient regarding computation times. As expected, the best two 
of the proposed meta-heuristics, denoted by SA2 and GEN2, obtain schedules with smaller 
makespan than Rajendran’s method (1994). 
 Li et al. (2008) have presented a composite heuristic for the basic no-wait flow shop 
scheduling. A heuristic is named as a composite one when it involves one or more another 
existing heuristics. The composite heuristic by Li et al. has three phases. In the first phase the 
jobs are arranged according to non-descending order of their total processing time. Phase two 
constructs a n-job sequence by using a procedure similar to the solution construction procedure of 
the existing FL heuristic proposed by Framinan and Leisten (2003) for the traditional flow shop 
scheduling problem with the objective of minimizing mean flow time. At the end of the second 
heuristic phase, there are two complete sequences. One of them is that given by the initial job 
arrangement from the first phase and the second one is that obtained in the phase two. The last 
heuristic phase consists of a solution improvement, as follows: If the makespan for the sequence 
from phase two is smaller than that concerning the initial job arrangement, then phase two is 
performed again assuming as a new initial job arrangement the complete sequence that has been 
constructed in phase two. Otherwise, the heuristic stop criterion is reached. This iterative 
procedure may be done at most three times. Experimental results show that the heuristic 
presented by Li et al. (2008) outperforms in solution quality the existing algorithms SA2 
(Aldowaisan and Allahverdi, 2003), RAJ (Rajendran, 1994), and GR (Gangadharan and 
Rajendran, 1993). Moreover, its CPU time was the least among the computation times required 
by the compared algorithms. 
 Recently, Laha and Chakraborty (2009) introduced a new constructive heuristic which is 
similar to the well-known NEH heuristic (Nawaz et al., 1983) which was originally developed for 
the traditional flow shop scheduling problem with the objective of minimizing makespan. The 
heuristic by Nawaz et al. has two basic phases. In the first phase an initial job arrangement is 
obtained by sequencing the jobs according to non-ascending order of their total processing time. 
The second phase consists of an iterative job insertion procedure, which starts with a partial 2-job 
sequence, and according to the job ordering from phase 1 the remaining jobs are one at a time 
successively scheduled. In the heuristic proposed by Laha and Chakraborty, the initial 
arrangement for the jobs is obtained by two steps. In the first step the jobs are arranged according 
to non-ascending order of their total processing time, as it is made in the NEH heuristic. Then, 
the second step generates 2(n-1) shift neighbors of the job ordering from step 1. The n-job 
neighbor sequence with the minimum makespan is selected as the initial job arrangement. By 
using this initial job arrangement, and starting from a partial sequence with the first pair of jobs, 
an iterative 2-job insertion procedure is performed up to a complete job sequence is constructed. 
Results from computational experience show that the proposed heuristic is superior to four of the 
best-known methods that have been reported in the literature, that is: GR (Gangadharan and 
Rajendran, 1993), RAJ (Rajendran, 1994), an insertion heuristic presented by Aldowaisan and 
Allahverdi (2003), and the Simulated Annealing meta-heuristic by Osman and Potts (1989) 
which was originally proposed for the traditional flow shop sequencing. 
 According to the literature examination for the basic n-job m-machine no-wait flow shop 
scheduling problem, the best heuristics with an appropriate trade-off between solution quality 
(minimum makespan) and computational effort are the RAJ heuristic (Rajendran, 1994), LWW 
heuristic (Li et al., 2008), and LC heuristic (Laha and Chakraborty, 2009). 
 
 In this paper, it is proposed a new constructive heuristic for minimizing makespan in 
basic no-wait flow shop scheduling problems. The remainder of this paper is organized as 
follows: Section 2 presents the proposed heuristic method. Computational results are presented in 
Section 3, where comparisons with the performance of three of the best-known existing heuristics 
are provided. Finally, conclusions are presented in Section 4. 
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2. The new heuristic 
 
 Similarly to existing heuristics as for instance the aforementioned heuristic by Laha and 
Chakraborty (2009), the new heuristic introduced in this paper is also related to the NEH one 
(Nawaz et al., 1983), having two stages. The first one is the same as the initial stage from NEH 
heuristic. The second stage uses local search procedures based on both shift and interchange 
neighborhoods of successive partial sequences, in order to obtain a complete job sequence. 
 
 The new heuristic, which is denoted by NBM-NWFS, can be stated as follows: 
 
{Stage I – Initial arrangement for the jobs} 
Step 1: For each job j calculate the total processing time on all the machines, given by 

1
P  = p

=
∑
m

j jk
k

     ( j = 1, 2, ….., n ). 

Step 2: Arrange the n  jobs according to non- ascending order of P  j . 

{Stage II – Solution construction} 
Step 3: Select the two jobs from the first and second position of the arrangement for the jobs of 
Step 2, and find the best sequence for these two jobs by calculating the makespan for the two 
possible partial sequences. 
Step 4: For 3l =  to n  do 
Select the job in the l -th position of the list generated in Step 2, and insert it at the last position 
of the current best partial sequence. 
Denote this l -job sequence by S . 
Find the best sequence from the entire shift neighborhood of sequence S . If the makespan of the 
best neighbor is better than that of S  assign it to S . 
Next, find the best sequence from the entire interchange neighborhood of sequence S . If the 
makespan of the best neighbor is better than that of S  assign it to S . 
The best n-job sequence S  obtained by Step 4 is the solution sequence. 
 
 
3. Computational results 
 
 The new constructive heuristic has been compared with three of the best-known existing 
algorithms, that is, RAJ heuristic (Rajendran, 1994), LWW heuristic (Li et al., 2008), and LC 
heuristic (Laha and Chakraborty, 2009). 
 In the computational tests, the heuristics were coded in Delphi and have been run on a 
microcomputer Intel Core 2 Quad, 2.4 GHz, 2 Gb RAM. 
 The computational experience was performed on two instance groups. The first group 
concerns small and medium size problems having 10, 20, 30, 40, 50, 60, and 70 jobs with 5, 10, 
15, 20, 25, and 30 machines. The second group consists of large size problems having 80, 90, 
100, 110, 120, 130, 140, and 150 jobs, with 5, 10, 15, 20, 25, and 30 machines. Each of the m x n 
combinations was replicated 100 times. The operation processing times were randomly generated 
from the discrete uniform distribution over the interval [1, 99]. Therefore, a total of 9000 problem 
instances were solved, where 4200 have had small/medium sizes, and 4800 large size test 
problems. 
 In the computational experience, two traditional statistics are used in order to evaluate 
the heuristic performances: percentage of success (in finding the best solution), and relative 
deviation (between the heuristics). 
 The percentage of success PS is given by the number of times the heuristic obtains the 
best makespan (alone or in conjunction with other) divided by the number of solved instances. 
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 The relative deviation RD is given by: 
( )*

*

M  - M
RD =

M
h

h  

Where M h  is the makespan of the best sequence obtained by the heuristic h, and *M  the best 
makespan obtained by the heuristics, for a given test problem. 
 
 Table 1 shows the experimental results for small and medium size problems, while Table 
2 presents the results related to large size problems. 
 As can be noted from Tables 1 and 2, the proposed NBM-NWFS heuristic clearly 
outperforms in solution quality all others compared heuristics. 
 Taking into account the percentages of success (PS), it is observed that for the smallest 
instances (number of jobs n = 10) the average PS is 73.16% growing up to 100 % for n ≥ 60 jobs. 
The relative deviations (RD), given by average percentage, substantiate the results concerning the 
percentages of success. 
 The results presented in Tables 1 and 2, with reference to solution quality (PS combined 
with RD), show that the compared heuristics could be arranged as follows: NBM-NWFS, LC, 
LWW, and RAJ. 
 
 Concerning the computation times, the fastest are the RAJ and LC heuristics followed by 
the proposed NBM-NWFS, and then by the LWW heuristic. However, the NBM-NWFS heuristic 
has taken on average 1.4467 seconds for solving the largest instances with n = 150 jobs. Of 
course, such a computational effort is not a constrained factor. 
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Table 1 – RD, PS and CPU times of the compared heuristics for small/medium size problems 

Problem RAJ LWW LC NBM-NWFS 
n M RD 

(%) 
PS 
(%) 

CPU time 
(seconds) 

RD 
(%) 

PS 
(%) 

CPU time 
(seconds) 

RD 
(%) 

PS 
(%) 

CPU time 
(seconds) 

RD 
(%) 

PS 
(%) 

CPU time 
(seconds) 

10 5 2.343 21 0.0003 2.278 15 0.0024 2.166 22 0.0002 0.282 71 0.0006 
 10 2.816 9 0.0003 1.922 20 0.0019 1.821 25 0.0001 0.436 69 0.0005 
 15 3.084 10 0.0006 1.918 19 0.0020 1.804 29 0.0003 0.182 82 0.0006 
 20 3.169 13 0.0002 1.810 22 0.0019 1.993 23 0.0005 0.372 74 0.0003 
 25 2.982 11 0.0006 1.857 21 0.0020 1.975 27 0.0001 0.352 73 0.0006 
 30 2.779 10 0.0003 1.634 21 0.0024 1.707 28 0.0002 0.298 70 0.0008 

Average 2.862 12.33 0.0004 1.903 19.66 0.0021 1.911 25.66 0.0002 0.321 73.16 0.0006 
20 5 3.791 0 0.0005 2.697 5 0.0148 2.748 6 0.0001 0.092 89 0.0016 

 10 3.447 4 0.0003 3.451 7 0.0147 2.971 5 0.0001 0.187 84 0.0014 
 15 3.559 3 0.0003 3.281 4 0.0144 2.599 7 0.0003 0.107 86 0.0014 
 20 3.377 1 0.0002 3.505 3 0.0145 2.456 6 0.0001 0.070 91 0.0044 
 25 3.489 2 0.0006 3.324 6 0.0148 2.372 12 0.0003 0.102 83 0.0019 
 30 3.399 6 0.0008 3.149 5 0.0146 2.420 8 0.0005 0.167 83 0.0020 

Average 3.511 2.66 0.0005 3.234 5 0.0146 2.594 7.33 0.0002 0.121 86 0.0021 
30 5 4.885 0 0.0005 3.007 1 0.0491 3.309 5 0.0006 0.010 95 0.0045 

 10 4.221 2 0.0005 3.998 1 0.0489 3.419 1 0.0006 0.036 96 0.0042 
 15 4.107 0 0.0005 4.154 0 0.0492 3.009 3 0.0008 0.015 98 0.0050 
 20 4.244 1 0.0006 3.884 0 0.0491 3.013 3 0.0008 0.031 96 0.0047 
 25 4.109 1 0.0006 3.667 2 0.0491 3.111 4 0.0005 0.074 93 0.0055 
 30 3.985 3 0.0008 4.066 1 0.0499 3.091 2 0.0006 0.049 94 0.0055 

Average 4.258 1.16 0.0006 3.796 0.83 0.0492 3.158 3 0.0007 0.036 95.33 0.0049 
40 5 5.741 0 0.0003 3.019 2 0.1170 3.236 0 0.0009 0.007 98 0.0109 

 10 4.411 0 0.0008 4.088 0 0.1174 3.234 1 0.0011 0.004 99 0.0119 
 15 4.134 0 0.0006 4.363 0 0.1172 3.778 0 0.0008 0.000 100 0.0117 
 20 3.834 1 0.0009 4.280 1 0.1183 3.363 1 0.0011 0.019 97 0.0125 
 25 3.894 0 0.0009 4.392 1 0.1178 3.285 1 0.0013 0.021 98 0.0130 
 30 4.043 2 0.0014 4.526 1 0.1181 3.122 2 0.0017 0.031 95 0.0138 

Average 4.343 0.50 0.0008 4.111 0.83 0.1176 3.336 0.83 0.0012 0.014 97.83 0.0123 

30



50 5 6.202 0 0.0006 3.015 1 0.2322 3.667 0 0.0006 0.007 99 0.0238 
 10 4.343 0 0.0011 4.137 0 0.2325 3.514 0 0.0013 0.000 100 0.0250 
 15 4.753 0 0.0014 4.297 1 0.2331 3.810 0 0.0014 0.012 99 0.0264 
 20 4.369 0 0.0016 4.632 0 0.2344 3.495 0 0.0017 0.000 100 0.0272 
 25 4.482 0 0.0016 4.632 0 0.2335 3.483 1 0.0019 0.006 99 0.0280 
 30 4.063 1 0.0019 4.415 0 0.2342 3.515 0 0.0017 0.001 99 0.0289 

Average 4.702 0.16 0.0014 4.188 0.33 0.2333 3.581 0.16 0.0014 0.004 99.33 0.0266 
60 5 6.717 0 0.0011 3.115 0 0.4063 3.695 0 0.0017 0.000 100 0.0488 

 10 4.459 0 0.0012 4.060 0 0.4067 3.588 0 0.0020 0.000 100 0.0475 
 15 4.718 0 0.0020 4.774 0 0.4077 3.701 0 0.0017 0.000 100 0.0492 
 20 4.522 0 0.0019 4.840 0 0.4075 3.728 0 0.0022 0.000 100 0.0513 
 25 4.133 0 0.0022 4.714 0 0.4091 3.525 0 0.0025 0.000 100 0.0517 
 30 4.145 0 0.0028 4.499 0 0.4088 3.616 0 0.0028 0.000 100 0.0534 

Average 4.782 0 0.0019 4.334 0 0.4077 3.642 0 0.0022 0.000 100 0.0503 
70 5 7.312 0 0.0016 3.079 0 0.6564 3.851 0 0.0025 0.000 100 0.0805 

 10 4.643 0 0.0020 3.827 0 0.6580 3.537 0 0.0028 0.000 100 0.0822 
 15 4.853 0 0.0022 4.502 0 0.6584 3.842 0 0.0025 0.000 100 0.0869 
 20 4.537 0 0.0025 4.683 0 0.6594 3.668 0 0.0033 0.000 100 0.1044 
 25 4.571 0 0.0028 4.746 0 0.6588 3.666 0 0.0036 0.000 100 0.1386 
 30 4.551 0 0.0036 4.700 0 0.6605 3.410 0 0.0041 0.000 100 0.0931 

Average 5.077 0 0.0025 4.256 0 0.6586 3.662 0 0.0031 0.000 100 0.0976 
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Table 2 – RD, PS and CPU times of the compared heuristics for large size problems 

Problem RAJ LWW LC NBM-NWFS 
n m RD 

(%) 
PS 
(%) 

CPU time 
(seconds) 

RD 
(%) 

PS 
(%)

CPU time 
(seconds) 

RD 
(%) 

PS 
(%)

CPU time 
(seconds) 

RD 
(%) 

PS 
(%) 

CPU time 
(seconds) 

80 5 7.485 0 0.0023 2.988 0 1.0920 3.913 0 0.0027 0.000 100 0.1305 
 10 5.065 0 0.0025 4.510 0 1.0249 3.852 0 0.0033 0.000 100 0.1331 
 15 4.602 0 0.0030 4.811 0 1.0020 3.631 0 0.0036 0.000 100 0.1436 
 20 4.613 0 0.0034 4.882 0 1.0028 3.819 0 0.0045 0.000 100 0.1478 
 25 4.449 0 0.0041 5.039 0 1.0042 3.685 0 0.0047 0.000 100 0.1458 
 30 4.537 1 0.0044 5.141 0 1.0208 3.874 0 0.0053 0.001 99 0.1500 

Average 5.125 0.16 0.0033 4.562 0 1.0245 3.796 0 0.0040 0.000 99.83 0.1418 
90 5 7.741 0 0.0027 3.184 0 1.4633 4.018 0 0.0038 0.000 100 0.2058 

 10 4.866 0 0.0033 4.291 0 1.4533 3.803 0 0.0041 0.000 100 0.2105 
 15 4.529 0 0.0041 4.593 0 1.4653 3.734 0 0.0048 0.000 100 0.2252 
 20 4.550 0 0.0044 5.008 0 1.4755 3.723 0 0.0053 0.000 100 0.2286 
 25 4.410 0 0.0052 5.073 0 1.4556 3.692 0 0.0058 0.000 100 0.2252 
 30 4.481 0 0.0056 5.099 0 1.4553 3.838 0 0.0067 0.000 100 0.2309 

Average 5.096 0 0.0042 4.541 0 1.4614 3.801 0 0.0051 0.000 100 0.2210 
100 5 7.891 0 0.0034 3.019 0 2.0233 4.028 0 0.0047 0.000 100 0.3047 

 10 4.809 0 0.0042 4.167 0 2.0241 3.867 0 0.0053 0.000 100 0.3023 
 15 4.513 0 0.0050 4.615 0 2.0259 3.765 0 0.0061 0.000 100 0.3288 
 20 4.596 0 0.0056 4.873 0 2.0505 3.664 0 0.0066 0.000 100 0.3374 
 25 4.597 0 0.0063 5.233 0 2.0748 3.919 0 0.0073 0.000 100 0.3285 
 30 4.615 0 0.0070 5.102 0 2.0392 3.897 0 0.0078 0.000 100 0.3339 

Average 5.170 0 0.0053 4.501 0 2.0396 3.856 0 0.0063 0.000 100 0.3226 
110 5 8.306 0 0.0042 2.938 0 2.7366 3.900 0 0.0055 0.000 100 0.4316 

 10 4.715 0 0.0053 4.086 0 2.7381 3.671 0 0.0066 0.000 100 0.4327 
 15 4.505 0 0.0064 4.824 0 2.7392 3.770 0 0.0075 0.000 100 0.4641 
 20 4.712 0 0.0072 5.005 0 2.7402 3.852 0 0.0080 0.000 100 0.4720 
 25 4.609 0 0.0078 5.015 0 2.7655 3.972 0 0.0088 0.000 100 0.5214 
 30 4.440 0 0.0089 5.291 0 2.7405 4.026 0 0.0094 0.000 100 0.4739 

Average 5.214 0 0.0066 4.526 0 2.7434 3.865 0 0.0076 0.000 100 0.4660 
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120 5 8.481 0 0.0055 2.914 0 3.5944 4.043 0 0.0063 0.000 100 0.6031 
 10 4.876 0 0.0066 4.136 0 3.5945 3.539 0 0.0072 0.000 100 0.5994 
 15 4.468 0 0.0072 4.638 0 3.5978 3.619 0 0.0092 0.000 100 0.6333 
 20 4.680 0 0.0085 5.154 0 3.5978 3.884 0 0.0097 0.000 100 0.7017 
 25 4.438 0 0.0094 5.139 0 3.5988 3.926 0 0.0105 0.000 100 0.6492 
 30 4.418 0 0.0105 5.140 0 3.5983 3.878 0 0.0117 0.000 100 0.6586 

Average 5.227 0 0.0080 4.521 0 3.5969 3.815 0 0.0091 0.000 100 0.6409 
130 5 8.428 0 0.0067 2.766 0 4.6239 3.952 0 0.0080 0.000 100 0.8156 

 10 4.834 0 0.0081 3.991 0 4.6478 3.621 0 0.0094 0.000 100 0.8850 
 15 4.594 0 0.0092 4.774 0 4.6353 3.860 0 0.0103 0.000 100 0.8545 
 20 4.604 0 0.0106 5.000 0 4.6380 3.774 0 0.0117 0.000 100 0.8649 
 25 4.289 0 0.0114 5.286 0 4.6394 3.927 0 0.0125 0.000 100 0.9191 
 30 4.347 0 0.0123 5.297 0 4.6453 3.833 0 0.0141 0.000 100 0.8830 

Average 5.1827 0 0.0097 4.519 0 4.6383 3.8278 0 0.0110 0.000 100 0.8704 
140 5 8.775 0 0.0081 2.858 0 5.8372 4.049 0 0.0094 0.000 100 1.0820 

 10 5.063 0 0.0095 4.077 0 5.8255 3.672 0 0.0108 0.000 100 1.0664 
 15 4.505 0 0.0108 4.752 0 5.8306 3.958 0 0.0125 0.000 100 1.1739 
 20 4.440 0 0.0119 4.990 0 5.8331 3.682 0 0.0134 0.000 100 1.1364 
 25 4.352 0 0.0134 5.227 0 5.8364 3.982 0 0.0147 0.000 100 1.1375 
 30 4.619 0 0.0147 5.414 0 5.8514 3.811 0 0.0159 0.000 100 1.2161 

Average 5.2923 0 0.0114 4.553 0 5.8357 3.859 0 0.0128 0.000 100 1.1354 
150 5 8.967 0 0.0097 2.885 0 7.2222 3.997 0 0.0111 0.000 100 1.4011 

 10 4.723 0 0.0114 3.998 0 7.2294 3.475 0 0.0127 0.000 100 1.3769 
 15 4.426 0 0.0133 4.915 0 7.2313 3.859 0 0.0144 0.000 100 1.4773 
 20 4.418 0 0.0142 5.210 0 7.2534 3.913 0 0.0158 0.000 100 1.4628 
 25 4.448 0 0.0161 5.337 0 7.2377 3.919 0 0.0165 0.000 100 1.4720 
 30 4.540 0 0.0175 5.448 0 7.2409 3.983 0 0.0186 0.000 100 1.4900 

Average 5.254 0 0.0137 4.632 0 7.2358 3.857 0 0.0149 0.000 100 1.4467 
 
 

33



4. Final remarks 
 
 As it is well-known, desired features of heuristic methods are: simplicity, easy 
implementation, computational efficiency, and effectiveness, in order to yield near-optimal 
solutions. Having this in mind, this paper has introduced a new simple heuristic for the basic no-
wait Flow Shop Sequencing with the objective of minimizing makespan.  
Regarding solution quality, results from computational experience have shown that the proposed 
heuristic performs better than the best three ones that have been presented in the literature. 
Moreover, the computational effort is not significant to be worth considering. 
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