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ABSTRACT 
The Container Loading Problem consists, in this approach, in how to maximize the 

loaded cargo in a single container. We apply packing heuristics on integer linear programming to 
construct walls, layers and blocks of boxes. A backtracking algorithm chooses the best heuristics 
that make up the solution. We have used a well-known benchmark test suite to compare our 
results with other approaches. This paper also presents a case study of our implementation using 
some real data from ESMALTEC, a stove and refrigerator manufacturer in Brazil. The results of 
our approach represented a significant improvement over the current practice within 
ESMALTEC. 

KEYWORDS. Container Loading Problem. Heuristics. Integer Linear Programming. PO 
na Indústria (IND). 
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1. Introduction 
In recent years a significant amount of research has been devoted to variants of the 

Container Loading Problem (CLP). For example the Knapsack Container Loading Problem 
consists of packing boxes of various sizes within one or more containers, while optimizing a 
criterion such as the total loaded volume in a single container or the quantity of containers used. 
Some recent papers have also dealt with a weight distribution constraint. 

This work describes a novel backtracking heuristic for the CLP, which attempts to pack 
the maximum volume of boxes with dimensions (li, wi, hi ), and quantity bi, i = 1, …, m, into a 
single container with dimensions (L, W, D). Additional constraints include space limitations (no 
overlapping) and a weight limit. Thus, we are concerned with the maximization of the packed 
volume. 

Instances of the CLP are typically classified according to the diversity of box types that 
can be loaded into the container. According to Dyckhoff (1990) and Pisinger (2002) the cargo 
can be regarded weakly heterogeneous (many items of relatively few different box types) or 
strongly heterogeneous (many items of many different box types). We evaluate our proposed 
algorithm on both homogeneous and weakly heterogeneous instances. 

The paper is organized as follows. We present in Section 2 the related work. In Section 
3, we show our methodology. In Section 4, we list the computational results. Finally, we draw 
conclusions regarding the quality of the solutions provided by our algorithm, as compared to 
those provided by other approaches, and make some considerations concerning future 
development. 

2. Related Works 
The CLP is a type of cutting and packing problems cf. the typology introduced by 

Dyckhoff (1990) and Wäscher et al (2007). The CLP is admittedly a NP-hard problem. 
However, an instance of the CLP can be described as an integer programming model, 

such that of Chen, Lee, and Shen (1993). That model has O(n2) number of constraints or variables 
and applying a solver to directly solve it is impractical, for any reasonably sized instance. Chen, 
Lee, and Shen (1993) used that model to solve problems with up to 6 boxes. Martello, Pisinger, 
and Vigo (2000) presented an exact branch-and-bound method for solving CLP instances with up 
to 90 boxes. Although it finds the optimal solution, the implementation only works for small 
problems and requires high execution running time. 

In face of the impracticality of the exact methods available for solving the CLP, many 
works proposed strategies, heuristics, for avoiding direct solution and improving the execution 
time. One of several heuristics proposed in the literature involves the building of box blocks, 
called layers (which can be vertical or horizontal), in which the dimensions of a layer are 
determined by the  first box in the block, c.f. Bortfeldt and Gehring (2001) and George and 
Robinson (1980). Another relevant work is Pisinger (2002) that uses a tree search to decide the 
size of the layers. Morabito and Arenales (1994) present a guillotine cuts to split the empty space 
in the container and to fill it. 

In addition to the proposed heuristics, other authors use metaheuristics such as Tabu 
Search, for example Bortfeldt, Gehring, and Mack (2002), or Genetic Algorithm (GA). For 
example Gehring and Bortfeldt (1997), that built stacks to the top of the container. Then, 
applying a GA to determine the order of placement of stacks and choose the configuration which 
results in the best use of container. 

We increasingly find proposals that seek to combine the best of the exact method with 
heuristic methods. These ideas fall under a category of algorithm that has been commonly 
referred to as hybrid methods. A successful work along these lines was Nepomuceno, Pinheiro 
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and Coelho (2007), that generate reduced instances of the problem using genetic algorithms and 
solve these subproblems by linear programming. That proposal achieved an average allocation 
between 92 and 95%, but in very large running time. Another work was presented by Mack, 
Bortfeldt, and Gehring (2004), which combined Parallel Tabu Search with Simulated Annealing. 

There is not a single approach that is the best for all problem types. Each one of the 
heuristics is better or worse in specific cases or instances of problems. 

 

3. Methodology 
This work is inspired on Pisinger (2000), which makes an allocation of layers 

coordinated by means by a tree search in order to determine the best depth or width of a layer. 
The backtracking algorithm navigates through the tree search to determine the best size for each 
layer. In other hand, our algorithm tries to determine the best heuristics instead of the best 
dimensions. 

 
Data Structure The algorithm builds a tree that consists of nodes for controlling the 

processing flow, as presented in Fig. 1. The root node receives the input problem of the 
algorithm, that is to say, a definition of the empty space inside the container and a list of available 
boxes for packaging. Each node tests a heuristic to do some packing. If it cannot apply the 
heuristic, it attempts to apply another heuristic. The result of the successful application of a 
heuristic is a list of packed boxes and an output problem, i.e., the definition of a residual space to 
be filled and a new list of boxes. This output problem is the input problem to a new node in the 
tree, hierarchically below the node that preceded it. This process continues until we can no longer 
pack any box, regardless of the heuristic. 

 

 
 
Fig. 1 A node and its role in our algorithm. 
 
The algorithm maintains a tree, a set of nodes and their attributes. This tree is a solution 

of the input problem. Fig. 2 depicts two examples of resolutions found for a certain input 
problem. 

Another data structure in our implementation is the box type, set of boxes with the same 
characteristics. Each box type is associated with a coefficient, which we call relevance, utilized 
for sorting the box types according to their volume. The higher the volume, the greater the 
relevance. This constant will allow us to prioritize the large packing boxes, leaving the smaller 
boxes (easier to be coefficient) to the end of the process, when residual space is small. 

The function used in our implementation to calculate the relevance coefficient of the ith 
greatest box type in a list of n box types: 

innir −= 2),(  
In next topic, we present the using of the relevance coefficient. 
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Fig. 2 (a) First found solution. (b) Better solution for the same problem. 
 

Heuristics We discussed in Section 2 some popular heuristics (e.g. construction of layers, blocks 
or stacks) that are better or worse for certain problem types. In our algorithm, each heuristic 
resolves a mathematical model in integer linear programming. Each of these models has O(n) 
variables and about the same amount of constraints. Therefore, the application of a heuristic on 
an instance of the problem shows up extremely fast. 

We illustrate how one of the heuristics used, the XZ Layer as presented in Fig. 3-a, 
works. Using this heuristic we intend to maximize the total relevance of packed boxes, not 
necessarily the volume. First, we select the type of boxes to be used in the model. Criterions: 

 
 Little waste in Z-axis: The algorithm verify if, for the box type s, 

04,0/)%( ≤DdD s . D is the depth of the container and sd  is the depth of the box 
type s. The value of 0,04 is the tolerance parameter for little waste used in our 
implementation. The tolerance parameter for little waste can be as close to zero as 
we intend. 

 The height of layer is multiple of the selected box type: The algorithm verify if, for 
the box type s, 0% =sl hh , that is, the remainder of division of the height of the 
layer (presented as lh , the input parameter to this heuristic) by the height of the box 
type s (presented as sh ) should be equals to zero. In Fig. 3-a, for the first box type, 

3/ 1 =hhl  and 0% 1 =hhl . 
 
The input parameter lh , the height of the XZ Layer, is the minimum common multiple 

of a subset of box types’ heights. There are at most 12 −m  possible values to this parameter, 
where m is the number of different heights of boxes types. 

For each select box type s we calculate two constants:  
 
 ss dDnz /= , snz  integer. D is the depth of the container and sd  is the depth of 

the box type s; 
 sls hhny /= , sny  integer. lh  is the height of the layer (input parameter to this 

heuristic) and sh  is the height of the box type s. 
 
As follow the integer linear programming model: 
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Max ∑
∈ Ss

ssss rnynznx )***(  

Subject to: 

∑
∈

≤
Ss

ssss qnynznx )**(                     s∀  R1 

∑
∈

≥
Ss

snx 1 R2 

∑
∈

≥
Ss

ss Wwnx 96,0**  R3.1 

∑
∈

≤
Ss

ss Wwnx *  R3.2 

 
Where S is the set of all select box types and W is the weight of the container. sr  is the 

relevance,  sq  is the quantity and sw  is the weight of the box type s. snz  is the number of boxes 
(from the box type s) along the Z-axis. sny  is the number of boxes (from the box type s) along 
the Y-axis. snx  is the variable in this integer linear programming model and represents the 
number of boxes (from the box type s) along the X-axis. 

The objective function intends to maximize the total relevance on the packed boxes. 
The R1 constraint guarantees that there are enough boxes to build the layer. The R2 

constraint guarantees at least on box type should be used. 
The R3.1 and R3.2 constraints guarantee the little waste in X-axis, between up to 4%. 
If there is not viable solution to the presented model, the algorithm considers that this 

heuristic was not succeeding for the input problem. So the algorithm tries another heuristic. 
All heuristics used in the algorithm are: Layer XZ (a), Layer XY (b), Layer ZY (c), 

Partition on X (d), Partition on Z (e), Partition on XZ - Stack (f), Block on X (g) and Block on Z 
(h). They are all illustrated in Fig. 3. 

 

 
 
Fig. 3 The heuristics used in the algorithm. 
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We list in Table 1 some general characteristics of each heuristic, the objective function 

and needed parameters. Each one resolves an Integer Linear Programming Model. 
 
Table 1 Characteristics of the used heuristics. 
 

Heuristic Objective 
function 

Characteristics Parameter 

XZ Layer Max. loaded 
relevance 

- Horizontal layer; 
- Little waste of space in X-axis and Z-axis; 
- Stacks, even different types of boxes, must 

have the same height; 

Layer’s height 

XY Layer Max. loaded 
relevance 

- Vertical layer; 
- Little waste of space in X-axis and Y-axis; 
- Ranks, even different types of boxes, must 

have the same width. 

Layer’s width 

ZY Layer Max. loaded 
relevance 

- Vertical layer; 
- Little waste of space in Z-axis and Y-axis; 
- Ranks, even different types of boxes, must 

have the same depth. 

Layer’s depth 

Partition 
on X 

Max. loaded 
relevance 

- Horizontal block; 
- Little waste of space in Z-axis; 
- Stacks, even different types of boxes, must 

have the same height. 

Layer’s height 

Partition 
on Z 

Max. loaded 
relevance 

- Horizontal block; 
- Little waste of space in X-axis; 
- Stacks, even different types of boxes, must 

have the same height. 

Layer’s height 

Partition 
on XZ 
(Stack) 

Max. loaded 
relevance 

- Stack block; 
- Little waste of space in Y-axis; 
- Stacks, even different types of boxes, must 

have the same height and depth. 

Layer’s width 
and depth 

Block on X Max. loaded 
volume 

- Horizontal block with just one column of 
boxes; 

- Just one type of box. 

None 

Block on Z Max. loaded 
volume 

- Horizontal block with just one line of 
boxes; 

- Just one type of box. 

None 

 
The expression “little waste in X-axis”, for example, means the container is almost full 

in dimension X, between 96% and 100% (values used in our implementation). 
 

Backtracking In Fig. 2-a, we could notice that in the second node the algorithm was successful 
using the first heuristic (XZ Layer). But the heuristic that would lead to a better use of the 
container at a later node, in that specific case, was the third heuristic, as illustrated in Fig. 2-b. 
Therefore, a bad solution may be due to a bad choice of a heuristic in the previous node. We use 
backtracking heuristics to find the best solution though tree states. 
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4. Computational Results 
We use a benchmark test suite to compare the quality of the solutions found by our 

algorithm to those found by other approaches. We also present a case study in which we 
compared our results with those in use within ESMALTEC, a stove and refrigerator manufacturer 
in Brazil. 

The computational results were obtained using an Intel Core 2 Duo 2.1 GHz with 3 GB 
of RAM. The operating system is Windows Vista Home Edition. The development platform is 
Java 6.0 and Eclipse 3.1.1 tool. The used solver was CPLEX 9.0. 
 
Benchmarking problems We have used the collection of test data sets for a variety of 
Operational Research problems, originally described by Beasley (1990). These data sets contain 
several types of problems, from homogeneous to strongly heterogeneous. The library is divided 
into files named BR1 to BR5. In BR1 library, the problems have 3 types of boxes (weakly 
heterogeneous problems). In BR2, there are 5 types of boxes and so forth. 
 

 
 
Fig. 4 The problem libraries used in our implementation. 

 
We compare the average of use of the container space of our algorithm, cf. presented by 

Araújo and Pinheiro (2010) (represented in Table 2 by HBGA) with: a genetic algorithm 
proposed by Gehring and Bortfeldt (1997) (GA), the constructive algorithm on Bischoff and 
Ratcliff (1995) (CA), a constructive algorithm by Bischoff, Janetz and Ratcliff (1995) (HBal), the 
hybrid genetic algorithm described by Bortfeldt and Gehring (2001) (HGA), the parallel genetic 
algorithm by Gehring and Bortfeldt (2002) (PGA), a proposed heuristic by Bischoff (2006) (PH) 
and Tabu Search proposed in Bortfeldt, Gehring, and Mack (2002) (TS). 

We present the average of use of the container space of our algorithm and its standard 
deviation (σ ). We have limited the execution time to 10 minutes (execution timeout parameter). 

 
Table 2 Comparing some proposals. 

 
HBGA File GA CA HBal HGA PGA PH TS % σ  

BR1 86.77 83.37 81.76 87.81 88.10 89.39 93.23 92.13 2.76 
BR2 88.12 83.57 81.70 89.40 89.56 90.26 93.27 91.09 3.15 
BR3 88.87 83.59 82.98 90.48 90.77 91.08 92.86 90.38 2.72 
BR4 88.68 84.16 82.60 90.63 91.03 90.90 92.40 89.07 3.02 
BR5 88.78 83.89 82.76 90.73 91.23 91.05 91.61 88.17 3.44 
 
We observe better results, comparing with most other approaches, for homogeneous 

and weakly heterogeneous problems described in the OR-Library instances. These results will 
still be improved by extending the timeout parameter although the high computational cost as 
time and resources. 
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Our application automatically generates a MATLAB file which shows the packing 
result for each problem. Fig. 4 presents the solution for the first problem in BR1 library. 

 

 
 
Fig. 5 A packing solution: (a) front view and (b) back view. 
 

Case study ESMALTEC is a highly regarded Brazilian company, founded on 1963, that 
produces stoves, refrigerators, freezers and water coolers. It is one of the most modern factories 
in Latin America, and sells its products in over 50 countries. 
 

The Containers are used to transport the many type of products. Real data about the 
most common cases were used by Nepomuceno, Pinheiro and Coelho (2007) to compare the 
company’s results with results of the Hybrid Algorithm (HA). We add a work, Davies and 
Bischoff (1999), that lists some results of problems with a single type of box (not the same 
instances of problems that in this work). The work cites Gehring, Menschner, and Meyer (1990) 
(represented by GMM in Fig. 5), the layering approach (LA) and the column building procedure 
of Bischoff and Ratcliff (1995) (CB). Our proposal is represented by HBGA. 
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Fig. 6 Comparing results of the works. 
 
We can notice that, for all problems used, our results were better or equals to those by 

factory’s system. Fig. 6 shows the solution for the problem 5 (best result). 
 

 
 

Fig. 7 The found solution for the problem 5. 
 
We emphasize the low average running time, about 45.17 seconds. 
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5. Final Remarks 
The current algorithm finds good solutions in order to maximize the loaded volume. 

These results, in most cases, are better than results from others approaches to the same library 
used on tests. 

We hope to improve the execution time by changing the backtracking method by 
another search algorithm as well to do more computational tests using other test suites. 

We also intend to implement some heuristics on non-linear programming model in 
order to not use parameters for most the heuristics. 

Finally, we expect to use the implemented algorithm and its results in our case study, 
suggesting better results to ESMALTEC Company. 
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