
Exploiting Gradient Information in Harmony Search

Bruno Figueira Lourenço
University of Brası́lia

Brası́lia, Distrito Federal - DF
brunofigueira@cic.unb.br

Marcelo Ladeira
University of Brası́lia

Brası́lia, Distrito Federal - DF
mladeira@unb.br

Abstract

Harmony Search (HS) is an optimization algorithm that mimicks the improvisation process of
jazz musicians. It was originally conceived as an derivative-free method. But what if it is feasible to
evaluate the gradient of the objective function? We believe that any optimization algorithm should
use all information available. In this article, we describe an improvement of the HS algorithm when
the gradient is indeed available.

Keywords: Harmony Search. Hybrid methods. Steepest Descent. Metaheuristics.

1

1618

1 Introduction

Harmony Search (Geem et al., 2001; Lee and Geem, 2005; Geem, 2010) is a search technique for
optimization problems that mimicks the creative process of musical improvisation. As such, it has
found many applications in several engineering problems (Geem, 2010, 2006; Geem et al., 2008; Geem,
2009).

The original technique (Lee and Geem, 2005), as described by Geem, was advertised as a derivative-
free search algorithm. But the question is: if the gradient of the objective function is indeed available,
should not we try to exploit it?

The drawback of computing the gradient is an increase of the overall computational cost of the
algorithm. There is also a certain risk of getting trapped in local minima. Fortunately, the random
mechanisms of the Harmony Search algorithm should provide a protection against this trap.

So if the gradient is available and is feasible to be evaluated, we could use it to guide our search
and to provide an useful hint that should improve the performance of the harmony search algorithm. In
this article, we propose the use of the gradient information in the Harmony Search algorithm, present
an analysis of the gains in performance and the associated overhead. We also use our new approach to
find the minimum of well-known testbed functions

Section 2 presents an overview of the Harmony Search algorithm. Section 3 discusses the steepest
descent method. Section 4 describes our approach to improve the Harmony Search algorithm by using
the gradient of the objective function. Section 6 summarizes this work and describe future works.

2 Harmony Search

Phenomenon mimicking algorithms are common in the field of optimization. Genetic Algorithms
(Goldberg, 1989), for instance, mimicks the phenomenon of natural selection and evolution. Particle
Swarm Optimization (Kennedy and Eberhart, 1995) mimicks the swarm behaviour of certain animals
and insects and tries to find a better “leader” for the swarm at each iteration.

In a similar fashion, Harmony Search (HS) mimicks the improvisation process of jazz musicians
and tries to find the best harmony, i.e., the solution for a certain problem. Consider the problem of
finding the minimum of a function f (~x) subject to xi ∈ Xi, i = 1,2, . . . ,n, where Xi is the possible range
for each variable with xL

i ≤ xi ≤ xU
i , where xL

i and xU
i are the lower and upper bounds for each variable.

HS work as follows:

1. Initialize a Harmony Memory (HM)

2. Improvise a new harmony vector from the HM

3. Update the HM with the new harmony vector.

4. Repeat steps 2 and 3 until a certain stopping criterion is satisfied.

The parameter Harmony Memory Size (HMS) represents the number of harmony vectors that the
algorithm remembers simultaneously. Initially, the HM is filled with random harmonies (solutions)
generated according to the bounds of the decision variables. At each iteration, we improvise a new
harmony and if the new solutions is better than the worst in the HM, we add it to the HM and delete the
worst harmony vector. Of course, the heart of the method lies in how to “improvise” a new harmony
vector.

1619

2.1 Improvisation

A new harmony vector ~x = (x1,x2, . . . ,xn) is generated from HM based on the following parameters:
HMCR (Harmony Memory Considering Rate), PAR (Parameter Adjustment Rate) and BW (Band-
width). So, for each xi, we generate an uniform random variable u1 between 0 and 1. If u1 ≤ HMCR,
we randomly select an xi from the HM. Otherwise, we choose an xi from the entire feasible range, i.e.
[xL

i ,x
U
i]

If we choose an xi from the HM, we generate another uniform random variable u2 between 0 and 1.
If u2 ≤ PAR, we adjust the “pitch” of xi by adding a small increment of α, where α = BW×u3 and u3
is an uniform random variable between −1 and 1.

Mahdavi et al. (Mahdavi et al., 2007) suggested that the PAR should increase linearly and BW
should decrease exponentially after each iteration. Let MI be the maximum number of iterations, and k
be the current iteration. At the k-th iteration we have:

PAR(k) = PARmin +(PARmax−PARmin)×
k

MI
(1)

BW(k) = BWmax exp
[

ln
(

BWmin

BWmax

)
k

MI

]
(2)

The entire algorithm is shown on Figure 1, where u(a,b) denotes an uniform random variable
between a and b. boundsmin(j) and boundsmax(j) denotes the lower and upper bounds for coordinate j.

3 Steepest Descent

Gradient based methods form the core of Nonlinear Programming and have been studied for decades
by researchers in the field of optimization (Luenberger, 1984; Bertsekas, 1999; Nocedal and Wright,
2006). While it is true that sometimes it is not feasible to evaluate the gradient of a certain objective
function, we should at least have ways of exploiting when it is indeed feasible.

In this work, we will only deal with the most basic form of gradient based methods, the Steepest
Descent. Future work will focus on more sophisticated methods, such as BFGS (Bertsekas, 1999).
First, we will present some basic notation. Let f : Rn→R. The gradient of f at~x, denoted by ∇ f (x) is
the vector of first-order partial derivatives.

∇ f (~x)T = (
∂ f (~x)

x1
,
∂ f (~x)

x2
, . . . ,

∂ f (~x)
xn

) (3)

The gradient ∇ f (~x) of a function points in the direction of the greatest increase. So if we want to
find a minimum of f , −∇ f (~x) gives us a natural search direction, since the it points in the direction of
the greatest decrease. Let~x0 be a initial guess on the minimum of f (~x). The steepest descent update is
given by:

~xk+1 =~xk−α
k
∇ f (~xk)T (4)

Where αk is chosen to minimize φ(αk) = f (~xk−αk∇ f (~xk)T). Therefore, to find a suitable αk we
must perform an unidimensional line search. For example, let f (~x) = x2

1 + x2
2. Of course, the minimum

is 0 at (0,0). But suppose that we would like to find the minimum with the steepest descent. Let
~x0 = (4,2), so:

φ(α0) = (4−8α
0)2 +(2−4α

0)2 (5)

1620

Input: f (~x), the bounds for each variable and the set of parameters.
1: for i = 1 to HMS do
2: Generate random solution and append to HM
3: end for
4: for k = 1 to MI do
5: Let~x = (x1,x2, . . . ,xn) be a new solution.
6: for i = 1 to n do
7: if u(0,1)≤ HMCR then
8: Select a random solution y from HM
9: xi← yi

10: PAR← PAR(k), as given by Equation 1
11: if u(0,1)≤ PAR then
12: BW← BW(k), as given by Equation 2
13: xi← xi +u(−1,1)×BW
14: end if
15: else
16: xi← u(boundsmin(i),boundsmax(i)),
17: end if
18: end for
19: Let ~w be the worst solution from HM
20: if f (~x)< f (~w) then
21: Delete ~w and append~x
22: end if
23: end for
24: return The best solution from HM

Figure 1: State-of-the-Art Harmony Search.

The minimum of φ(α0) is 0 at α0 = 0.5. So ~x1 = (4,2)− 0.5(8,4) = (0,0). In this case, we have
found the minimum in just one step, but this seldom happens. Also, we performed an exact line search
and found the exact αk that minimizes φ(αk). In real applications, it is usually too costly to perform the
line search exactly at each iteration.

A more common approach is to find an αk that provides a sufficient decrease of the objective
function. However, it is interesting to note that just asking for an αk such as f (~xk −αk∇ f (~xk)T) <
f (xk)T is not enough to ensure convergence to a minimum. The strong Wolfe’s conditions (Nocedal
and Wright, 2006), for example, ask for an αk that satisfies:

φ(αk)≤ φ(0)+ c1α
k
∇ f (~xk)T pk (6)

|∇ f (~xk +α
k pk)T pk| ≤ c2|∇ f (~xk)T pk| (7)

Where pk is a search direction and 0 < c1 < c2 < 1. Since we are using the steepest descent, we
have pk = −∇ f (~xk)T . In practice, c1 is chosen to be small, for example, c1 = 10−4 and c2 is usually
chosen in [0.1,0.9] (Nocedal and Wright, 2006). Given an initial s and 0 < β < 1, a simple but efficient
way of performing the line search is to try the stepsizes {s,sβ,sβ2, . . .} until Equations 6 and 7 are
satisfied.

1621

4 Harmony Search and the Steepest Descent

Building on the Harmony Search algorithm described in Figure 1, our idea is to give an useful tip to the
algorithm by performing one step of the steepest descent after the end of the “improvisation”.

But since it would be costly to perform this at each iteration, we introduce a parameter called “GU”
(Gradient Usage) such as 0 < GU < 1. So with probability GU we update the current solution with
gradient information. In our test implementation, the line search is performed using the strong Wolfe’s
condition, but weaker conditions such as Armijo’s rule (Nocedal and Wright, 2006) could be used if
the evaluation of the gradient is feasible but expensive. Our improved algorithm is shown on Figure 2.

5 Computational Experiments

In this section we show a few tests and examples of our improved algorithm. Most of the examples
were taken from (Mahdavi et al., 2007; Lee and Geem, 2005). We implemented our algorithm in the
Python programming language. The line search method was provided by the optimization package of
SciPy (Jones et al., 01) and it returns an step size that satisfies the strong Wolfe’s conditions.

5.1 Rosenbrock Function

f (x,y) = 100(y− x2)2 +(1− x)2 (8)

The Rosenbrock Function, also known as the “banana function”, is a well known test case for uncon-
strained optimization. It is very hard for gradient based methods to perform well because its global
minimum is hidden inside a long narrow valley. Its global minimum is 0 at (1,1). In our tests, we used
bounds between −10 and 10 for both variables.

It is true that we are using the gradient in our improved algorithm, but due to the stochastic mecha-
nisms we are able to explore several directions at the same time so we actually find the global minimum
very fast. Reportedly, 50000 iterations were needed to find the soluction vector x = (0.1000000000E +
01,0.1000002384E+01) with the original algorithm (Lee and Geem, 2005). Our own implementation,
with dynamic PAR and BW, after 100 trials of 22000 iterations each, found an average mininum of
x = (1.00126167,1.0027055).

We do not know for sure how the algorithm described in (Lee and Geem, 2005) was implemented,
but it seems clear to us that at least 50000 evaluations of the objective function were needed, since at
each step we have check if the new harmony is better than the worst harmony in the Harmony Memory.
Our own implementation of Harmony Search algorithm always evaluates the objective function MI+
HMS times, since we evaluate the function once at each iteration and once for each harmony in the HM
. The number of function evaluations in this example was 22020 for all 100 trials.

In our improved algorithm, after 100 trials of 5000 iterations each, we found an average minimum
of x = (1.004740541.01163841), with GU = 0.2. The number of function evaluations in this case
depends on the way the line search is performed. In average, using the strong Wolfe’s conditions as line
search method, the objective function was evaluated 12288 times and the gradient was evaluated 2197
times.

The parameters were the same for both the HS and the HS+Gradient Descent algorithms. HMCR =
0.90, HMS = 20, PARmin = 0.35, PARmax = 0.99, BWmin = 0.01 and BWmax = 10.

1622

Input: f (x), the bounds for each variable and the search parameters.
1: for i = 1 to HMS do
2: Generate random solution and append to HM
3: end for
4: for k = 1 to MI do
5: Let x = (x1,x2, . . . ,xn) be a new solution.
6: for i = 1 to n do
7: if u(0,1)≤ HMCR then
8: Select a random solution y from HM
9: xi← yi

10: PAR← PAR(k), as given by Equation 1
11: if u(0,1)≤ PAR then
12: BW← BW(k), as given by Equation 2
13: xi← xi +u(−1,1)×BW
14: end if
15: else
16: xi← u(boundsmin(i),boundsmax(i)),
17: end if
18: end for
19: if (u(0,1)< GU then
20: ~pk←−∇ f (~x)
21: Perform line search with ~pk as search direction and find an α that satisfies the strong Wolfe’s

conditions.
22: ~x←~x+α~pk
23: end if
24: Let ~w be the worst solution from HM
25: if f (~x)< f (~w) then
26: Delete ~w and append~x
27: end if
28: end for
29: return The best solution from HM

Figure 2: The improved harmony search.

1623

F. Evaluations G. Evaluations Minimum

HS HS+GD HS HS+GD HS HS+GD Exact
Rosenbrock 22020 12288 0 2197 0.000162 0.002128 0
Powell Quartic 30007 15683 0 3045 1.34×10−7 4.29×10−9 0
Eason and Fenton 807 265 0 103 1.7441 1.7441 1.74

Table 1: Results for the test problems

5.2 Powell Quartic Function

f (x1,x2,x3,x4) = (x1 +10x2)
2 +5(x3− x4)

2 +(x2−2x3)
4 +10(x1− x4)

4

This functions appears in (Powell, 1962; Lee and Geem, 2005) and is a standard benchmark of
unconstrained optimization algorithms. Its global minimum is 0 at (0,0,0,0). In our tests, we used
bounds between −5 and 5 for all variables.

Using the original Harmony Search algorith, 100000 iterations were needed to find the minimum
x = (−0.0008828875,0.0000882906,−0.0004372409,−0.0004372455).

With our own implementation, with dynamic BW and PAR, after 100 trials of 30000 iterations
each, we found an average minimum of x = (0.00511132,−0.00051472,0.00327625,0.00343767).
The number of function evaluations after each trial was 30007.

After 100 trials of 5000 iterations each, the average minimum found with our improved method was
x = (−1.13181229e− 03,1.17699481e− 04,−8.65751178e− 05,−6.54175718e− 05). The average
number of function evaluations was 15683 and the number of gradient evaluations was 3045.

The parameters were the same for both the HS and the HS+Gradient Descent algorithms. HMCR =
0.90, HMS = 7, PARmin = 0.35, PARmax = 0.99, BWmin = 0.01 and BWmax = 10. It seems clear that
in this example, our algorithm compares favorably against the canonical algorithm in all aspects.

5.3 Eason and Fenton’s gear train inertia function

f (x1,x2) =
1

10

{
12+ x2

1 +
1+ x2

2

x2
1

+
x2

1x2
2 +100

(x1x2)4

}
(9)

This function was also used in (Lee and Geem, 2005) to test the original Harmony Search algorithm.
In our tests, we used bounds between 0 and 10 for both variables.

With our own implementation, with dynamic BW and PAR, after 100 trials of 800 iterations each,
we found an average minimum of x = (1.74354618,2.02984523). 807 function evaluations were
needed at each trial.

After 100 trials of 150 iterations each, the average minimum found with our improved method was
x = (1.74362659,2.0307607). The average number of function evaluations was 265 and the number of
gradient evaluations was 103.

The parameters were the same for both the HS and the HS+Gradient Descent algorithms. HMCR =
0.90, HMS = 7, PARmin = 0.35, PARmax = 0.99, BWmin = 0.01 and BWmax = 10. It seems clear that
in this example, our algorithm compares favorably against the canonical algorithm in all aspects.

5.4 The GU parameter

The choice of the GU parameter is problem-specific, but there are a few guidelines. A high GU will
almost certainly increase the overall running time of the algorithm due to an increase in the number of

1624

GU F. Evaluations G. Evaluations Minimum
0.1 8606 1090 1.162883×10−2

0.2 12288 2197 2.128×10−3

0.3 15870 3261 5.698240×10−4

0.4 19580 4351 2.837852×10−8

0.5 23252 5442 2.180408×10−8

0.6 27048 6547 9.345794×10−9

0.7 30731 7642 6.060825×10−9

1.0 41900 10900 1.620176×10−9

Table 2: Different choices of GU and the minimum of the Rosenbrock Function

function and gradient evaluations, but it will make the algorithm more sensitive when the harmonies
are near to an optimum of the objective function thus converging quickier.

For the problems shown in this paper our choice of GU = 0.2 worked quite well. But what would
happen if we use different values? Table 2 shows how our improved algorithm performs with other
choices of GU for the Rosenbrock function. For each GU value, we performed 100 trials of 5000
iterations each and then we calculated the average numer of function and gradient evaluations. It is
interesting to note that even when we use the gradient at each iteration (GU = 1), the algorithm’s
stochastic mechanisms prevent us from getting trapped in local minima.

6 Conclusion

This work proposes an improvement in the original Harmony Search algorithm (Geem, 2010). By
exploiting the information provided by the gradient of the objective function, we can give an useful tip
to the Harmony Search algorithm and, hopefully, achieve better results.

We introduced a new parameter called GU (Gradient Usage). At the end of each improvisation,
with probability GU, we perform one step of the steepest descent. In our implementation, we used the
strong Wolfe’s conditions to perform the line search and to find a suitable α for the steepest descent.

Three benchmark functions were presented to demonstrate the effectiveness of our method and to
show that our improved algorithm can achieve better results than the original one. It is also interesting
to note that in all three functions, our algorithm needed far less iterations.

As a future work, we can explore other gradient based methods such as the Quasi-Newton methods
(BFGS and DFP, for example). We can also explore and analyse with detail other line search methods
that could be used when it is expensive to evaluate the gradient.

References

Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, 2 edition.

Geem, Z. (2010). State-of-the-Art in the structure of harmony search algorithm. In Recent Advances In
Harmony Search Algorithm, pages 1–10.

Geem, Z., Kim, J., and Loganathan, G. (2001). A new heuristic optimization algorithm: Harmony
search. SIMULATION, 76(2):60–68.

1625

Geem, Z. W. (2006). Optimal cost design of water distribution networks using harmony search. Engi-
neering Optimization, 38(3).

Geem, Z. W. (2009). Multiobjective optimization of Time-Cost trade-off using harmony search. Journal
of Construction Engineering and Management, 1(1).

Geem, Z. W., Fesanghary, M., Choi, J., Saka, M. P., Williams, J. C., Ayvaz, M. T., Li, L., Ryu, S., and
Vasebi, A. (2008). Recent advances in harmony search. In Advances in Evolutionary Algorithms,
pages 127–142. Witold Kosiński.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley Professional, 1 edition.

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools for Python.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. volume 4, pages 1942–1948.

Lee, K. S. and Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering op-
timization: harmony search theory and practice. Computer Methods in Applied Mechanics and
Engineering, 194(36-38):3902–3933.

Luenberger, D. G. (1984). Linear and Nonlinear Programming, Second Edition. Springer, 2 edition.

Mahdavi, M., Fesanghary, M., and Damangir, E. (2007). An improved harmony search algorithm for
solving optimization problems. Applied Mathematics and Computation, 188(2):1567–1579.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer, 2 edition.

Powell, M. J. D. (1962). An iterative method for finding stationary values of a function of several
variables. The Computer Journal, 5(2):147–151.

1626

