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Abstract. This work addresses the Vehicle Routing Problem with Sametius

Pickup and Delivery, where routes must be created to satefypickup and de-
livery requests of a set of customers. Each customer mustrbedsonce and
by only one route, the load it receives is brought from a adrdepot, to where

the picked-up load is also taken. The capacity of the usettleshmust not be
violated at any point of the routes. We propose some hecsibased on ideas of
many metaheuristics, specially ILS, GRASP, and VND. Wea@tipe developed
heuristics with the best algorithms of the literature andkeoty competitive results.
keywords: Vehicle Routing Problem, Pickup and Delivery Problem, Higigs.
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1. Introduction

The main reasons to study Vehicle Routing Problems are: igedosts of transportation,

which also affect product costs. The environmental conaghich has lead to an increase
of effort to protect the environment, both by industry angiséative bodies. The problem

difficulty itself, vehicle routing problems are NP-Hard, tagy are generalizations of the
Traveling Salesman Problem (Parragh et al., 2008; Lenstid&an, 1981).

This work addresses the Vehicle Routing Problem with Siamdbus Pickup and
Delivery. We develop three heuristics based on many metegties. These heuristics are
composed of two phases. In the first phase, a good initiatisalis found with the Greedy
Randomized Adaptive Search Procedure (GRASP). In the degglbase, this solution is
used as a starting point to an Iterated Local Search (ILS)aLsearch is performed with
the Variable Neighborhood Descent (VND). These three kaosidiffer by the acceptance
criterion on ILS, the first uses a simple acceptance critetivze second uses a Simulated
Annealing (SA) criterion and the third employs ideas of theded Local Search (GLS).

The textis organized in the following way. Section 2 introdsithe addressed prob-
lem. Section 3 introduces the developed heuristics anfljpdscusses the metaheuristics
used. Results are presented in Section 4. Finally, Comelusigiven in Section 5.

2. The Vehicle Routing Problem with Simultaneous Pickup and Delivery

The Vehicle Routing Problem with Simultaneous Pickup antivesy (VRPSPD) is de-
fined over a complete gragh = (V, E)). There aren,. customers, represented by vertices
lton. = |V| — 1, a depot, represented by vertex 0, and a set of vehicles wodith ¢a-
pacity (). Each customeris associated to a delivery quantityand a pickup quantity;.

A costc;; is associated to each edge= (i, j) € E. We denote as route a sequence of
customers: = {ig, i1, ...,i,._1} that starts and ends at the depot (ig¢~= i,._1 = 0),
wheren, = |r|, and uses only edges @& (i.e. (ig,ir4y1) € E,0 < k < n, — 1).

A feasible route is a route such that the maximum load of the vehicle is not violated
(e D ochan,—1din < Qv X pcpan, 1P < QaNdd i pi; + 3 icn 1 di; < Q,

0 < k < n,—1), and no customer is visited more than once (i;8# i, 0 < j, k < n, —1,

j # k). The cost, of aroute is given by the sum of the edge costs connectingst®mers
(ie. ¢, = ijr_l Ci;i;4,)- The problem consists on finding a def feasible routes of
minimum cost, such that each customer is assigned to exawtlyoute (i.ei # 7; 7, j # 0;
ieryjer”; ' r" e Rr £ "),

The Traveling Salesman Problem with Simultaneous Dekgedand Pickups de-
notes the situation in which there is only one vehicle (seenffeeau et al., 1999)).

If the pickup amount on each customer is less than or equaldheery amount,
the problem is reduced to the Vehicle Routing Problem, wigdiP-hard, what suggests
that so is the VRPSPD (Dell'amico and Righini, 2005).

We now introduce an interesting property related to the VIRP'S

Property 1. Let / and/’ be instances of the VRPSPD defined over the same graph, edge
costs, and vehicle capacity, but with pickup and delivergrgities on each customer ex-
changedd, = p;, p; = d;). Given a feasible solutionto 7, the solutions’, with the routes

of s traversed in opposite direction, is feasible/to
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Proof. Suppose a feasible routein s with n, edges and:, customers (including the
depot). Lets consider, — 1 situations in this route, where situatiércorresponds to the
load of the vehicle right after serving customigr;, 0 < £ < n, — 1. Since the route is
feasible, all these situations are feasible.r Jthe vehicle leaves the depot with loal
(situation 1) and returns with loafd. (situationn,. — 1). In the route”’ in s/, corresponding
to r in reverse direction, the vehicle will leave with lo&H (situationn, — 1) since it will
have to deliver the entire pickup loadofWhen the vehicle gets to its first customer, which
is elementz, — 2 in r, it will deliver what was picked-up , and pick-up what wasideid
in r, thus, returning to situation, — 2. When it proceeds to elemeft, — 3), the same
thing will happen, and it will get to situatiom. — 3. The vehicle will continue to traverse
the customers in reverse order, undoing operations tha& ehae in-, repeating situations
fromn, — 1 to 1, which were all feasible. Thus, we conclude tHas feasible. O

This result shows that to any solution tdhere is an equivalent solution, with the
same cost, but in reverse direction /toln the instances of Salhi and Nagy (1999), widely
adopted in the literature, instances of type X and Y exptassituation, they are identical
but with pickups and deliveries exchanged in each custokh@never, most heuristics in
the literature produce a result to instance of type X (Y), had trouble finding the same
resultin Y (X), what suggests that if we have a problem to beesh our heuristic may be
able to find a better result if we invert the demands of pickug @elivery of the problem.

3. Developed Heuristics

In this section we introduce the developed heuristics. Tammomponent of these heuris-
tics is the ILS method. GRASP is used to generate a starting fwthe search. VND is
used as local search strategy. Ideas of SA and GLS are usefinie driteria for accepting
candidate solutions. A brief introduction to each of thesthuds is given as needed.

3.1. GRASP

The Greedy Randomized Adaptive Search Procedure (Feo asah&= 1995) is a meta-
heuristic that can be seen as a solution space samplinggeehitach iteration of GRASP
consists of a construction phase, where a randomized goligtibuilt, and a local search
phase, where the initial solution is improved. This proceds repeated until certain stop-
ping criterion is met and then the best obtained solutioetisrned.

3.1.1. Initial Solution

An initial solution of good quality can accelerate the losaérch process. &luster-First
Route-Seconteuristic, proposed in Assis (2007), based on Kruskal’'soAtgm, is used
to generate initial solutions. This algorithm was choseatduts simplicity, computational
speed and quality of solutions.

Initially, the customers are clustered and then, routeganerated for each cluster.
Two conditions can be used during the cluster construction.

1. Cluster customers while the route which visits all delyveustomers before the
pickup customers in cluster is feasible. LetMg1 be the maximum load in this
route.
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2. Cluster customers while the route which visits all pickugtomers before the de-
livery customers in clusteris feasible. Let\/; be the maximum load in this route.

If clusters are created using condition 1, the customersaah e@esulting cluster
must be routed using an algorithm for the TSPSDP. If conalilds used, aMﬁ is the
maximum possible load in any routing over the customersg,ds, by the construction
process, this load is feasible, any algorithm for the TSPoeansed.

The heuristic is based on Kruskal's algorithm for Minimuma8ping Trees. Ini-
tially, each customer represents a cluster. Then, the exfgles graph are analyzed in non
decreasing order and if the customers of the current edgadpéd different clusters and
the condition being used is satisfied, the clusters are rdergée modify the algorithm
slightly to generate randomized solutions, before thetetusy phase, the edge weights
are modified with a parametere [0, 1]. Algorithm 1 describes the procegg,.. andcy,
denote the biggest and smallest edge weight, respectaredyy/;°" denotes the maximum
load on a route over the clustgraccording to the condition being used®{ € {1, 2}).

Algorithm 1 DKRUSKAL
Input: Problem Instance
Output: SetR of feasible routes
. for all (i,5) € E do
2. a =random number in the intervgt o (cpax — Cmin), (Cmax — Cmin)]
3 ¢ =max(0, ¢y + a)
4: end for
5: Create a new sdi’ with the edges i ordered in non decreasing order according to
the modified costs;;
Create a seff = () of clusters
For each customére V, create a clustey; containing it and adg; to G
for each(i, j) € E’ (in sequencejlo
if g; # g; andM;?ng S Q then
0 G =G\ {gg)
11: Unite g; andg; and add the resulting cluster ¢
122 endif
13: end for
14: Create a seR = () of routes
15: for eachg € G do
16: Create a feasible routewith the customer of
172 R=RU{r}
18: end for
19: return R

v

Our implementation uses condition 2 and the Nearest NeigHearistic for the
TSP for the creation of routes for each cluster.

3.1.2. Local Search

The Variable Neighborhood Descent (Hansen and Mladen@@@3) is used for local
search on GRASP. VND is a metaheuristic in which the basia mmsists on the com-
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bination of local searchescentsin many neighborhoods, based on the fact that a local
minimum in a neighborhood is not necessarily a local minimianother neighborhood.
Hence, VND iterates through a list of neighborhoods, whenewetter solution is found,

it is taken as current solution and the method goes back térgteneighborhood. At the
end of the procedure, VND reaches a solution that is a logalhnum on all neighborhoods
used, and consequently, with good chances of being a gooticsul

VND is a variant of the strategyariable Neighborhood SeardvNS), which the
basic idea the systematic change of neighborhoods, androich many other meta-
heuristics are derived.

The following neighborhoods are used in VND. They are useithénsame order
they are presented below.

1. Route Inversion Consists of solutions in which customers are served inrseve
order. This neighborhood is used only in the attempt to redie maximum load
of the route.

2. Or-Opt. A sequence of customers in some route is moved to anothitiopas the
same route. First, a local minimum is obtained with a seqa@hthree customers,
then with a sequence of two customers, and finally with only curstomer.

3. 2-Opt This neighborhood consists of solutions obtained whennwo adjacent
edges of some route are removed and the route is reconngctee hddition of
other two edges.

4. 3-Opt Consists of solutions obtained by the removal of three mijecant edges of
some route and replacement of these edges by other three sdgethat the route
IS reconnected.

5. Crossover Consists of solutions obtained by the removal of an gdgg from a
router; and of an edgék, [) from another route-,, followed by the insertion of
the edgesi, ) and(k, j). That is,r; andr, are replaced by, andr,, wherer] is
formed by the first part of, (from 0 until vertexi) and by the second part of
(from [ until the depot), and, is formed by the first part af, (from 0 until vertex
k) and by the second part of (from j until the depot).

6. Shiftn). This neighborhood consists of solutions obtained whergaesece ofn
customers of a route is transferred to another route. Firstcal minimum is ob-
tained with a sequence of three customers, then with a sequéitwo customers,
and finally with only one customer.

7. Swapin,m). Itis comprised by solutions obtained by the removal of aiseges;
of n customers and of a sequengeof sizem from two different routes; andr,,
respectively, followed by the insertion ef into some position of, and insertion
of s, into some position of,. Initially, a local minimum in the neighborhood with
n = 2 andm = 2 is achieved, next, local search is performed with= 2 and
m = 1, and finally, withn = 1 andm = 1.

At each step of the local search in one of these neighborhdlee$est neighbor
becomes the current solution until a local minimum is found.

Basically, this sequence was determined by two criteriae fliist is to use intra-
route neighborhoods first and inter-route neighborhoois. ldntra-route neighborhoods
are less computationally expensive and reorganize thesaiter inter-route changes. The
second criterion is to use the neighborhoods that work @argel sequences of customers
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first, since after a local search has been done in neighbdshtt@at work over smaller
sequences it can be harder to find good neighbors in neigbbdshdefined over larger
sequences.

3.2. ILS

The basic idea ofterated Local SearclILS) (Lourenco et al., 2003) is to do a stochastic
search in the space of local minima. ILS maintains a currehitisn and at each step,
it finds a new solution by the perturbation of the current g8otuand local search on the
perturbed solution. The new solution may or not be accegediaent solution. The ideal
would be this process to generate a biased search througbdheh space. However, very
strong perturbations of the current solution will causesthieition space to be explored in a
random way, leading to a random restart algorithm, whilekyeturbations can make the
search go back to the previous solution and thus only a fewsaéutions will be explored.

Our starting point to ILS is generated with the GRASP implataBon discussed
in Section 3.1. The local search function defines the segvahesto be explored and
hence it is crucial to the quality of the solutions. We useoaallsearch function the VND
implementation discussed in Section 3.1.2.

The acceptance criterion and perturbations guide the lsg¢hrough the search
space. The most common approach would be not to take intauatemy information
about the search history in this process and to accept ohltiaus of better quality. Nev-
ertheless, more complete mechanisms can lead to more s#arsh procedures. We use
three kinds of perturbation, with a strategy to avoid thelradtto be trapped into specific
solutions, these perturbations are discussed in Sectibh. 3Three different strategies to
exchange current solutions are tested, these strategiessaussed in Section 3.2.2.

3.2.1. Perturbation

For perturbations, random neighbors are alternately ezlean the following neighbor-
hoods:

e H(p). This neighborhood consists of solutions in whichpufp customers of the
current solution are in different positions and was propgose(Oliveira et al.,
2006). In perturbationy elements are randomly removed from the solution and
reinserted into some feasible position. In the case it ipossible to reinsert any
customer, a new route is created to serve it. The same custamde considered
more than once.

e Relocatép). It is characterized by the solutions in which ugtelements, in each
route, are in different positions of the same route. In pb#tion, on each route, for
p times, a customer is randomly removed and inserted intdané&tasible position
of the same route (if there is one). The same customer camis&deved more than
once.

e Swapp). Swap1, 1) neighborhood, discussed in section 3.1.2. We maieadom
movements in this neighborhood.

The use of random movements in perturbations avoids cyclidgfining a pa-
rameterp neither too big nor too small depends on the problem instamoesoften this
problem, we used a functian(n), which returns an integerin the interval[l, n| with
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probability (n — i + 1)%/ Z?le. That is, the probability of choosinglecreases quadrat-
ically as its value increases. Intervais,,, pmax] Were defined for each kind of pertur-
bation. At the perturbation phase, a numbpeis drawn from this interval as follows,

P = (Pmin — 1 + w(pmax + 1)). These intervals are established using percentages of
customers on the instance, for example, given an instaneg ofistomers, we can use
Pmin = 0,1 X n, andp,iy, = 0,5 x n.. With this strategy, different sizes of perturba-
tion will be used, keeping the search from being trapped ansolution for too long and
reducing the need to optimize the parametaccording to the instance being solved.

3.2.2. Acceptance Criteria

We tested three kinds of acceptance criteria:

1. Accept if it is better The new solution is accepted in case it has total cost smalle
than the current solution.

2. Accept according to SASimulated Annealing (Kirkpatrick et al., 1983; Hender-
son and Jacobson, 2003; Fleischer, 1995) is a metaheunspaed in cooling
processes of certain materials. In SA, the candidate solutireplaces the cur-
rent solutions if it has smaller cost, or with probabilityxp—?/*, otherwise, where
0 = f(s') — f(s). Hence, the solution acceptance depends on its quality mitto
current temperature By accepting worsening solutions, SA escapes local min-
ima. During the algorithm, the temperature is decreasellingat harder to accept
worsening solutions.

In our implementation, to obtaify, a solution is generated wih= p,,., for each
perturbation and, is calculated such that the worst of these solutions hasat le
95% of chances of being accepted. The temperature is updatadratleS iteration,

t =t x v, wherey is an algorithm parameter. Different valuesoivere tested e
are discussed in Section 4.

3. Accept according to a strategy based on GG8ided Local Search (Moudouris and
Tsang, 2003) is a metaheuristic that sits on top of localckealgorithms guiding
them through the search space. Features of solutions oftfséem are selected.
Solutions have their cost modified by the penalty of havintaie features. When
facing a local minimum, new features are penalized. Theablugefunction f (s)
is replaced byh(s) = f(s) + A > (piL;(s)), wherep; is the penalty of featuré
I;(s) is a binary variable that takes valtien case the solution possess feature
and value) otherwise, and\ is an algorithm parameter. Initially, all penalties are
set to0. In face of a local minimums*, a valueu;(s*) = 1;(s*)¢;/(1 + p;), which
defines the utility of penalizing every featurés calculated. The feature with the
biggest value: has its penalty increased by one unit. This mechanism Eesali
features with high cost in the current solution that weremoth penalized during
the execution of the algorithm.

Our idea is to use GLS to guide ILS. The strategy consists placeng the current
solutions by the candidate solutiost if A(s") < h(s). Thatis, in case’ is a so-
lution with good cost and attractive features (not pendlizemuch). Whery' is
accepted as current solution, the penalties are updatedl kearch and perturba-
tion are done using the simple cost function. With this stgggtwe try to introduce
some memory in the walk of ILS trough the solution space.

Different values\ of were tested in Section 4.

1633



XLIISBPO ST CATE 1

4. Computational Results

Summarizing what has been discussed in the previous ssctlmee methods were imple-
mented, all of them use GRASP/VND to find an initial solutiosed as a starting point
for an ILS/VND search. The three methods differ on the acueg# criterion for the ex-
change of the current solution during the ILS/VND searche Titst method accept only
solutions with smaller total distance (we will refer to thssmethod 1) , the second accepts
according to SA (method 2), and the third accepts in case ¢haljzed cost of the new
solution is smaller than the penalized cost of the currehitiem according to the method
GLS (method 3).

The instances proposed by Salhi and Nagy (1999) and by De(@@01) are
widely adopted in the literature and were used in our contjutal experiments. The
instances of Salhi and Nagy are generated from the instafic&sristofides et al. (1979),
which comprise 14 problems containing from 50 to 199 custsm&wo instances, called
Xand Y, are generated from each instance of Christofidese&ar customer, with deliv-
ery requestZZ-, in an instance of Christofides, a value= min{z;/y;, y;/z;} is calculated,
wherez; andy; are the coordinates of the customer, then, a delivery reglies ricii
and pickup request; = (1 — ri)cZZ- are generated. This is the instance of the X type. The
instance of the Y type is generated by shifting the pickupdeltvery requests (Property 1
shows that X and Y are equivalent). Some of these instancseps distance constraints,
these instances were not used.

The instances of Dethloff comprise 40 problems of 50 custeneach, and are
generated stochastically. In instances of the SCA typecdoedinates of the customers
are uniformly distributed in the interval, 100]. In instances of the CON type, half of
the customers are distributed as in SCA and the other halistslaited in the interval
[100/3,200/3], producing a more urban configuration, according to theauirhe deliv-
ery request/; of each customer is uniformly distributed in the intervdD, 100] and the
corresponding pickup requestis given by(0.5+ ;) /d;, wherer; is uniformly distributed
in the interval0, 1].The vehicle capacity is given iy = >, .., ., i/ p, whereu has value
3 or 8 (this value appears after the letters in the name ofistamce).

At each execution of the algorithm based on Kruskal’'s, acamdation parameter
a = w(10)/30 is used, where(n) returns a number betwedrandn, as stated in Section
3.2.1. Therefore, value®), 0333; 0, 0666; 0, 1; . ..;0, 3} are used, with smaller probability
to bigger numbers (quadratically decreases as its indegases).

We used perturbation sizes in the intervélsl x n.;0,3 x n. for H, [0,1 x
ne/n-;0,5 x n./n,| for Relocate, ando0, 05 x n.; 0,15 x n.| for Swap. Wheren, is
the number of customers ang is the number of routes in the solution. Values are drawn
from these intervals as described in Section 3.2.1.

For the choice of parametet used in the update of the SA temperature, prelimi-
nary tests were performed with values betweehand0, 99. To choose parameter used
as to weight penalties in the GLS method, preliminary testeevperformed with values
in the set{0,5;1,0;1,5;...;5}. The programs were ran 10 times with each parameter
and instance. Values = 0,92 and\ = 1,5 obtained the best results and are used in the
experiments that followed.

Each method was executed 100 times with each instance. Ate@cution, 100
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GRASP/VND iterations and 500 ILS/VND iterations were penfied.

Tables 1 and 2 presents our best results and the currenelseadisrin the literature,
for the instances of Salhi and Nagy (1999) and instances tfl&fé(2001), respectively,
considering the total distance. For each of our implemantstthe total distance (column
TD), number of vehicles in the solution (column NV), and gagtlie literature best are
presented (column Gap). The gap was calculatgd'@s— T Dys;) * 100/T Dyesi, Where
T D is the obtained result arilD,..; is the best known result. For each instance of Salhi
and Nagy, we present the best result between the instangesoXtand the instance of type
Y, since by property 1, given a result for one of them, therélva an equivalent result to
the other.

Lit. Met. 1 Met. 2 Met. 3
Inst. TD NV TD NV  Gap TD NV Gap| TD NV  Gap
cmtlX/Y | 458,96 3 | 466,77 3 1,7| 466,77 3 1,7| 466,77 3 1,7
cmt2X/Y | 663,25 6 | 684,21 6 3,16| 684,21 6 3,1668421 6 3,16
5
7
1

cmt3X/Y | 721,27 721,27 5 0 | 721,27 5 072127 5 0
cmt4X/Y | 852,35 852,46 7 0,01 852,46 7 0,01 852,83 0,05
cmt5X/Y | 1030,55 0| 1030,27 10 -0,02|1032,59 10 0,1910298 1 -0,07
cmtl1X/Y | 830,39 4 | 836,22 4 0,7 | 840,77 4 1,285 837,07 0,8
cmtl2X/Y | 6447 5 | 662,22 5 2,71 662,22 5 27166222 5 271
Média 743,06 5,71 750,48 5,71 1,18 751,47 5,71 1,28 750,59 5,71 1,19

HIOIN

Table 1. Results for the instances of Salhi and Nagy Salhi and Nagy (1999).

To our knowledge, the best results for the instances of SaltiNagy (1999) are
found in the works of:

e Wassan et al. (2008): cmtl, cmt2, cmt6, and cmt7.
e Zachariadis et al. (2009): cmt3 and cmt5.
e Subramanian et al. (2009): cmt5.

The best results for the instances of Dethloff (2001) aredon the works of:

e Subramanian et al. (2009): Obtains the best result in ahntes, except CON8-9.

e Montané and Galvéo (2006): SCA3-1, SCA3-2, SCA3-3, SCASEA3-5, SCA3-
6, SCA3-7, SCA3-8, SCA3-9, SCA8-3, CON3-1, CON3-3, CONFHN3-8,
CONB8-1, CON8-3, CON8-4, and CONS8-6.

e Ropke and Pisinger (2006): SCA3-1, SCA3-2, SCA3-3, SCAS@A3-5, SCA3-
6, SCA3-8, SCA3-9, SCA8-2, SCA8-4, SCA8-5, SCA8-8, SCA8®N3-0,
CON3-1, CON3-3, CON3-4 ,CON3-5, CON3-6, CON3-7, CON3-8 N30, CON8-
0, CON8-1, CON8-3, and CON8-4.

e Zachariadis et al. (2009): SCA3-1, SCA3-2, SCA3-3, SCABGA3-5, SCA3-6,
SCAS3-7, SCA3-8, SCA3-9, SCA8-0, SCA8-2, SCA8-3, SCA8-4A8G%, SCA8-
6, SCA8-8, SCA8-9, CON3-0, CON3-1, CON3-3, CON3-5, CONIFEDON3-8,
CONS8-0, CON8-1, CON8-3, CON8-4, CON8-6, CON8-7, and CON8-8

e Chenetal. (2007): CON8-9.

Analyzing table 1, we see that the proposed methods pertbsimilar to each
other. The average gap to the literature best was close toTt#third method found a
new best result for instance cmt5X/Y (method 1 also foundaltdetter than the previous
known one, but it is a little worse than the one found by metBjd
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By analyzing table 2, it can be seen that the proposed methiatdsned good re-
sults. Almost all of the best know results were achieved. Hddtl didn't find the best
result in 3 of the 40 instances (SCA8-2, SCA8-7, and CON8v&thod 2 didn't find the
best result in only 1 instance (CON8-8). Method 3 didn’t fihd best result in 2 instances

(SCA8-2 e CONB8-9). Average gap was very small, close to 0,01%

Lit. Met. 1 Met. 2 Met. 3

Inst. TD NV TD NV  Gap TD NV  Gap TD NV  Gap
SCA3-0| 635,62 4 | 635,62 4 0 | 635,62 4 0 | 635,62 4 0
SCA3-1| 697,84 4 | 697,83 4 0 | 697,83 4 0 | 697,83 4 0
SCA3-2| 659,34 4 | 659,33 4 0 | 659,33 4 0 | 659,33 4 0
SCA3-3| 680,04 4 | 680,04 4 0 | 680,04 4 0| 680,04 4 0
SCA3-4| 690,5 4 | 690,5 4 0 | 690,5 4 0 | 6905 4 0
SCA3-5| 659,9 4 | 6599 4 0 | 6599 4 0 | 659,9 4 0
SCA3-6 | 651,09 4 | 651,08 4 0 | 651,08 4 0 | 651,08 4 0
SCA3-7 | 659,17 4 | 659,16 4 0 | 659,16 4 0 | 659,16 4 0
SCA3-8| 719,47 4 | 719,47 4 0| 719,47 4 0| 719,47 4 0
SCA3-9| 681 4 | 680,99 4 0 | 680,99 4 0 | 680,99 4 0
SCA8-0| 961,55 9 | 961,49 9 0 | 961,49 9 0 | 961,49 9 0
SCA8-1| 1049,65 9 | 1049,65 9 0 | 1049,65 9 0 | 104965 9 0
SCA8-2| 1039,64 9 | 1039,71 9 0 |1039,64 9 0 |1044,48 9 0,46
SCA8-3| 983,34 9 | 983,33 9 0 | 983,33 9 0 | 983,33 9 0
SCA8-4| 1065,49 9 | 1065,49 9 0 | 1065,49 9 0 | 106549 9 0
SCA8-5| 1027,08 9 | 1027,08 9 0 | 1027,08 9 0 |1027,08 9 0
SCA8-6 | 971,82 9 | 971,82 9 0 | 971,82 9 0| 971,82 9 0
SCA8-7|1051,28 9 |1053,84 9 0,24 1051,28 9 0 ]1051,28 9 0
SCA8-8| 1071,18 9 |1071,18 9 0 |1071,28 9 0 |1071,18 9 0
SCA8-9| 1060,5 9 | 1060,5 9 0 | 1060,5 9 0 | 1060,5 9 0
CON3-0| 616,52 4 | 616,52 4 0 | 616,52 4 0 | 616,52 4 0
CONS3-1| 554,47 4 | 554,47 4 0 | 554,47 4 0 | 554,47 4 0
CON3-2| 518 4 518 4 0 518 4 0 518 4 0
CON3-3| 591,19 4 | 591,18 4 0 | 591,18 4 0 | 591,18 4 0
CON3-4| 588,79 4 | 588,79 4 0 | 588,79 4 0 | 588,79 4 0
CON3-5| 563,7 4 | 563,69 4 0 | 563,69 4 0 | 563,69 4 0
CON3-6| 499,05 4 | 499,05 4 0 | 499,05 4 0 | 499,05 4 0
CON3-7| 576,48 4 | 576,48 4 0 | 576,48 4 0 | 576,48 4 0
CON3-8| 523,05 4 | 523,05 4 0 | 523,05 4 0 | 523,05 4 0
CON3-9| 578,24 4 | 578,24 4 0 | 578,24 4 0| 578,24 4 0
CON8-0| 857,17 9 | 857,17 9 0 | 857,17 9 0 | 857,17 9 0
CON8-1| 740,85 9 | 740,85 9 0 | 740,85 9 0 | 740,85 9 0
CON8-2| 712,89 9 | 712,88 9 0 | 712,88 9 0| 712,88 9 0
CON8-3| 811,07 10| 811,06 10 0| 811,06 10 0| 811,06 10 0
CON8-4| 772,25 9 | 772,25 9 0| 772,25 9 0| 772,25 9 0
CONB8-5| 754,88 9 | 754,88 9 0 | 754,88 9 0 | 754,88 9 0
CONB8-6| 678,92 9 | 678,92 9 0 | 678,92 9 0 | 678,92 9 0
CONS8-7| 811,96 9 | 811,95 9 0 | 811,95 9 0 | 811,95 9 0
CONB8-8| 767,53 9 | 767,52 9 0| 767,52 9 0| 767,52 9 0
CONB8-9| 806,72 - 809 9 0,28 809 9 0,28 809 9 0,28
Média | 758,47 6,46 758,59 6,52 0,01 75853 6,52 0| 758,65 6,52 0,01

Table 2. Results for the instances of Dethloff Dethloff (2001).
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5. Conclusion

In this work, we proposed three heuristics based on metadtiesrto the Vehicle Rout-
ing Problem with Simultaneous Pickup and Delivery. The ¢hmeethods are ILS/VND
searches, with GRASP/VND to generate the starting poine difierence between them
is the criterion to accept new solutions. The first has a snopgterion, accept if the new
solution is better. The second accepts according to SA. Ring does it according to a
strategy similar to the GLS method. Several of the bestlitee results were reached by
the best results of the heuristics. Considering averaggisos, the gaps in relation to the
best results of the literature were small. On average, treetmethods performed simi-
larly. We associate this fact to the quality of the VND locabsch. However, the GLS
strategy led the third method to improve the literature’stivesult in one of the Salhi and
Nagy instances.
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