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Abstract. This work addresses the Vehicle Routing Problem with Simultaneous
Pickup and Delivery, where routes must be created to satisfythe pickup and de-
livery requests of a set of customers. Each customer must be served once and
by only one route, the load it receives is brought from a central depot, to where
the picked-up load is also taken. The capacity of the used vehicles must not be
violated at any point of the routes. We propose some heuristics based on ideas of
many metaheuristics, specially ILS, GRASP, and VND. We compare the developed
heuristics with the best algorithms of the literature and obtain competitive results.
keywords: Vehicle Routing Problem, Pickup and Delivery Problem, Heuristics.
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1. Introduction

The main reasons to study Vehicle Routing Problems are: The high costs of transportation,
which also affect product costs. The environmental concern, which has lead to an increase
of effort to protect the environment, both by industry and legislative bodies. The problem
difficulty itself, vehicle routing problems are NP-Hard, asthey are generalizations of the
Traveling Salesman Problem (Parragh et al., 2008; Lenstra and Kan, 1981).

This work addresses the Vehicle Routing Problem with Simultaneous Pickup and
Delivery. We develop three heuristics based on many metaheuristics. These heuristics are
composed of two phases. In the first phase, a good initial solution is found with the Greedy
Randomized Adaptive Search Procedure (GRASP). In the second phase, this solution is
used as a starting point to an Iterated Local Search (ILS). Local search is performed with
the Variable Neighborhood Descent (VND). These three heuristics differ by the acceptance
criterion on ILS, the first uses a simple acceptance criterion, the second uses a Simulated
Annealing (SA) criterion and the third employs ideas of the Guided Local Search (GLS).

The text is organized in the following way. Section 2 introduces the addressed prob-
lem. Section 3 introduces the developed heuristics and briefly discusses the metaheuristics
used. Results are presented in Section 4. Finally, Conclusion is given in Section 5.

2. The Vehicle Routing Problem with Simultaneous Pickup and Delivery

The Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD) is de-
fined over a complete graphG = (V,E). There arenc customers, represented by vertices
1 to nc = |V | − 1, a depot, represented by vertex 0, and a set of vehicles with load ca-
pacityQ. Each customeri is associated to a delivery quantitydi and a pickup quantitypi.
A cost cij is associated to each edgee = (i, j) ∈ E. We denote as route a sequence of
customersr = {i0, i1, . . . , inr−1} that starts and ends at the depot (i.e.i0 = inr−1 = 0),
wherenr = |r|, and uses only edges ofE (i.e. (ik, ik+1) ∈ E, 0 ≤ k < nr − 1).
A feasible route is a router such that the maximum load of the vehicle is not violated
(i.e.

∑
0<k<nr−1

dik ≤ Q,
∑

0<k<nr−1
pik ≤ Q, and

∑
0<j≤k pij +

∑
k<j<nr−1

dij ≤ Q,
0 < k < nr−1), and no customer is visited more than once (i.e.ij 6= ik, 0 < j, k < nr−1,
j 6= k). The costcr of a route is given by the sum of the edge costs connecting its customers
(i.e. cr =

∑
j<nr−1

cijij+1
). The problem consists on finding a setR of feasible routes of

minimum cost, such that each customer is assigned to exactlyone route (i.e.i 6= j; i, j 6= 0;
i ∈ r′; j ∈ r′′; r′, r′′ ∈ R; r′ 6= r′′).

The Traveling Salesman Problem with Simultaneous Deliveries and Pickups de-
notes the situation in which there is only one vehicle (see (Gendreau et al., 1999)).

If the pickup amount on each customer is less than or equal thedelivery amount,
the problem is reduced to the Vehicle Routing Problem, whichis NP-hard, what suggests
that so is the VRPSPD (Dell’amico and Righini, 2005).

We now introduce an interesting property related to the VRPSPD:

Property 1. Let I andI ′ be instances of the VRPSPD defined over the same graph, edge
costs, and vehicle capacity, but with pickup and delivery quantities on each customer ex-
changed (d′i = pi, p

′
i = di). Given a feasible solutions to I, the solutions′, with the routes

of s traversed in opposite direction, is feasible toI ′.
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Proof. Suppose a feasible router in s with nr edges andnr customers (including the
depot). Lets considernr − 1 situations in this route, where situationk corresponds to the
load of the vehicle right after serving customerik−1, 0 < k < nr − 1. Since the route is
feasible, all these situations are feasible. Inr, the vehicle leaves the depot with loadDr

(situation 1) and returns with loadPr (situationnr −1). In the router′ in s′, corresponding
to r in reverse direction, the vehicle will leave with loadPr (situationnr − 1) since it will
have to deliver the entire pickup load ofr. When the vehicle gets to its first customer, which
is elementnr − 2 in r, it will deliver what was picked-up , and pick-up what was deliverd
in r, thus, returning to situationnr − 2. When it proceeds to element(nr − 3), the same
thing will happen, and it will get to situationnr − 3. The vehicle will continue to traverse
the customers in reverse order, undoing operations that were done inr, repeating situations
from nr − 1 to 1, which were all feasible. Thus, we conclude thatr′ is feasible.

This result shows that to any solution toI there is an equivalent solution, with the
same cost, but in reverse direction, toI ′. In the instances of Salhi and Nagy (1999), widely
adopted in the literature, instances of type X and Y express this situation, they are identical
but with pickups and deliveries exchanged in each customer.However, most heuristics in
the literature produce a result to instance of type X (Y), andhas trouble finding the same
result in Y (X), what suggests that if we have a problem to be solved, our heuristic may be
able to find a better result if we invert the demands of pickup and delivery of the problem.

3. Developed Heuristics

In this section we introduce the developed heuristics. The main component of these heuris-
tics is the ILS method. GRASP is used to generate a starting point to the search. VND is
used as local search strategy. Ideas of SA and GLS are used to define criteria for accepting
candidate solutions. A brief introduction to each of these methods is given as needed.

3.1. GRASP

The Greedy Randomized Adaptive Search Procedure (Feo and Resende, 1995) is a meta-
heuristic that can be seen as a solution space sampling technique. Each iteration of GRASP
consists of a construction phase, where a randomized solution is built, and a local search
phase, where the initial solution is improved. This procedure is repeated until certain stop-
ping criterion is met and then the best obtained solution is returned.

3.1.1. Initial Solution

An initial solution of good quality can accelerate the localsearch process. ACluster-First
Route-Secondheuristic, proposed in Assis (2007), based on Kruskal’s Algorithm, is used
to generate initial solutions. This algorithm was chosen due to its simplicity, computational
speed and quality of solutions.

Initially, the customers are clustered and then, routes aregenerated for each cluster.
Two conditions can be used during the cluster construction.

1. Cluster customers while the route which visits all delivery customers before the
pickup customers in clusterg is feasible. LetM1

g be the maximum load in this
route.
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2. Cluster customers while the route which visits all pickupcustomers before the de-
livery customers in clusterg is feasible. LetM2

g be the maximum load in this route.

If clusters are created using condition 1, the customers in each resulting cluster
must be routed using an algorithm for the TSPSDP. If condition 2 is used, asM2

g is the
maximum possible load in any routing over the customers ofg, as, by the construction
process, this load is feasible, any algorithm for the TSP canbe used.

The heuristic is based on Kruskal’s algorithm for Minimum Spanning Trees. Ini-
tially, each customer represents a cluster. Then, the edgesof the graph are analyzed in non
decreasing order and if the customers of the current edge belong to different clusters and
the condition being used is satisfied, the clusters are merged. We modify the algorithm
slightly to generate randomized solutions, before the clustering phase, the edge weights
are modified with a parameterα ∈ [0, 1]. Algorithm 1 describes the process,cmax andcmin

denote the biggest and smallest edge weight, respectively,andM con
g denotes the maximum

load on a route over the clusterg according to the condition being used (con ∈ {1, 2}).

Algorithm 1 DKRUSKAL
Input: Problem Instance
Output: SetR of feasible routes

1: for all (i, j) ∈ E do
2: a = random number in the interval[−α(cmax − cmin), α(cmax − cmin)]
3: ĉij = max(0, cij + a)
4: end for
5: Create a new setE ′ with the edges inE ordered in non decreasing order according to

the modified costŝcij
6: Create a setG = ∅ of clusters
7: For each customeri ∈ V , create a clustergi containing it and addgi to G
8: for each(i, j) ∈ E ′ (in sequence)do
9: if gi 6= gj andM con

gi∪gj
≤ Q then

10: G = G \ {gi, gj}
11: Unitegi andgj and add the resulting cluster toG
12: end if
13: end for
14: Create a setR = ∅ of routes
15: for eachg ∈ G do
16: Create a feasible router with the customer ofg
17: R = R ∪ {r}
18: end for
19: return R

Our implementation uses condition 2 and the Nearest Neighbor Heuristic for the
TSP for the creation of routes for each cluster.

3.1.2. Local Search

The Variable Neighborhood Descent (Hansen and Mladenovic,2003) is used for local
search on GRASP. VND is a metaheuristic in which the basic idea consists on the com-
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bination of local search (Descents) in many neighborhoods, based on the fact that a local
minimum in a neighborhood is not necessarily a local minimumin another neighborhood.
Hence, VND iterates through a list of neighborhoods, whenever a better solution is found,
it is taken as current solution and the method goes back to thefirst neighborhood. At the
end of the procedure, VND reaches a solution that is a local minimum on all neighborhoods
used, and consequently, with good chances of being a good solution.

VND is a variant of the strategyVariable Neighborhood Search(VNS), which the
basic idea the systematic change of neighborhoods, and fromwhich many other meta-
heuristics are derived.

The following neighborhoods are used in VND. They are used inthe same order
they are presented below.

1. Route Inversion. Consists of solutions in which customers are served in reverse
order. This neighborhood is used only in the attempt to reduce the maximum load
of the route.

2. Or-Opt. A sequence of customers in some route is moved to another position of the
same route. First, a local minimum is obtained with a sequence of three customers,
then with a sequence of two customers, and finally with only one customer.

3. 2-Opt. This neighborhood consists of solutions obtained when twonon adjacent
edges of some route are removed and the route is reconnected by the addition of
other two edges.

4. 3-Opt. Consists of solutions obtained by the removal of three non adjacent edges of
some route and replacement of these edges by other three edges such that the route
is reconnected.

5. Crossover. Consists of solutions obtained by the removal of an edge(i, j) from a
router1 and of an edge(k, l) from another router2, followed by the insertion of
the edges(i, l) and(k, j). That is,r1 andr2 are replaced byr′1 andr′2, wherer′1 is
formed by the first part ofr1 (from 0 until vertexi) and by the second part ofr2
(from l until the depot), andr′2 is formed by the first part ofr2 (from 0 until vertex
k) and by the second part ofr1 (from j until the depot).

6. Shift(n). This neighborhood consists of solutions obtained when a sequence ofn
customers of a route is transferred to another route. First,a local minimum is ob-
tained with a sequence of three customers, then with a sequence of two customers,
and finally with only one customer.

7. Swap(n,m). It is comprised by solutions obtained by the removal of a sequences1
of n customers and of a sequences2 of sizem from two different routesr1 andr2,
respectively, followed by the insertion ofs1 into some position ofr2 and insertion
of s2 into some position ofr1. Initially, a local minimum in the neighborhood with
n = 2 andm = 2 is achieved, next, local search is performed withn = 2 and
m = 1, and finally, withn = 1 andm = 1.

At each step of the local search in one of these neighborhoods, the best neighbor
becomes the current solution until a local minimum is found.

Basically, this sequence was determined by two criteria. The first is to use intra-
route neighborhoods first and inter-route neighborhoods later. Intra-route neighborhoods
are less computationally expensive and reorganize the routes after inter-route changes. The
second criterion is to use the neighborhoods that work over larger sequences of customers
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first, since after a local search has been done in neighborhoods that work over smaller
sequences it can be harder to find good neighbors in neighborhoods defined over larger
sequences.

3.2. ILS

The basic idea ofIterated Local Search(ILS) (Lourenço et al., 2003) is to do a stochastic
search in the space of local minima. ILS maintains a current solution and at each step,
it finds a new solution by the perturbation of the current solution and local search on the
perturbed solution. The new solution may or not be accepted as current solution. The ideal
would be this process to generate a biased search through thesearch space. However, very
strong perturbations of the current solution will cause thesolution space to be explored in a
random way, leading to a random restart algorithm, while weak perturbations can make the
search go back to the previous solution and thus only a few newsolutions will be explored.

Our starting point to ILS is generated with the GRASP implementation discussed
in Section 3.1. The local search function defines the search space to be explored and
hence it is crucial to the quality of the solutions. We use as local search function the VND
implementation discussed in Section 3.1.2.

The acceptance criterion and perturbations guide the search through the search
space. The most common approach would be not to take into account any information
about the search history in this process and to accept only solutions of better quality. Nev-
ertheless, more complete mechanisms can lead to more robustsearch procedures. We use
three kinds of perturbation, with a strategy to avoid the method to be trapped into specific
solutions, these perturbations are discussed in Section 3.2.1. Three different strategies to
exchange current solutions are tested, these strategies are discussed in Section 3.2.2.

3.2.1. Perturbation

For perturbations, random neighbors are alternately selected on the following neighbor-
hoods:

• H(p). This neighborhood consists of solutions in which upp to customers of the
current solution are in different positions and was proposed in (Oliveira et al.,
2006). In perturbation,p elements are randomly removed from the solution and
reinserted into some feasible position. In the case it is notpossible to reinsert any
customer, a new route is created to serve it. The same customer can be considered
more than once.

• Relocate(p). It is characterized by the solutions in which up top elements, in each
route, are in different positions of the same route. In perturbation, on each route, for
p times, a customer is randomly removed and inserted into another feasible position
of the same route (if there is one). The same customer can be considered more than
once.

• Swap(p). Swap(1, 1) neighborhood, discussed in section 3.1.2. We makep random
movements in this neighborhood.

The use of random movements in perturbations avoids cycling. Defining a pa-
rameterp neither too big nor too small depends on the problem instance. To soften this
problem, we used a functionω(n), which returns an integeri in the interval[1, n] with
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probability(n− i+ 1)2/
∑n

j=1
j. That is, the probability of choosingi decreases quadrat-

ically as its value increases. Intervals[pmin, pmax] were defined for each kind of pertur-
bation. At the perturbation phase, a numberp is drawn from this interval as follows,
p = (pmin − 1 + ω(pmax + 1)). These intervals are established using percentages of
customers on the instance, for example, given an instance ofnc customers, we can use
pmin = 0, 1 × nc andpmin = 0, 5 × nc. With this strategy, different sizes of perturba-
tion will be used, keeping the search from being trapped intoa solution for too long and
reducing the need to optimize the parameterp according to the instance being solved.

3.2.2. Acceptance Criteria

We tested three kinds of acceptance criteria:

1. Accept if it is better. The new solution is accepted in case it has total cost smaller
than the current solution.

2. Accept according to SA. Simulated Annealing (Kirkpatrick et al., 1983; Hender-
son and Jacobson, 2003; Fleischer, 1995) is a metaheuristicinspired in cooling
processes of certain materials. In SA, the candidate solution s′ replaces the cur-
rent solutions if it has smaller cost, or with probabilityexp−δ/t, otherwise, where
δ = f(s′)− f(s). Hence, the solution acceptance depends on its quality and on the
current temperaturet. By accepting worsening solutions, SA escapes local min-
ima. During the algorithm, the temperature is decreased, making it harder to accept
worsening solutions.
In our implementation, to obtaint0, a solution is generated withp = pmax for each
perturbation andt0 is calculated such that the worst of these solutions has at least
95% of chances of being accepted. The temperature is updated at each ILS iteration,
t = t × γ, whereγ is an algorithm parameter. Different values ofγ were tested e
are discussed in Section 4.

3. Accept according to a strategy based on GLS. Guided Local Search (Voudouris and
Tsang, 2003) is a metaheuristic that sits on top of local search algorithms guiding
them through the search space. Features of solutions of the problem are selected.
Solutions have their cost modified by the penalty of having certain features. When
facing a local minimum, new features are penalized. The objective functionf(s)
is replaced byh(s) = f(s) + λ

∑
(piIi(s)), wherepi is the penalty of featurei,

Ii(s) is a binary variable that takes value1 in case the solution possess featurei
and value0 otherwise, andλ is an algorithm parameter. Initially, all penalties are
set to0. In face of a local minimums∗, a valueui(s

∗) = Ii(s
∗)ci/(1 + pi), which

defines the utility of penalizing every featurei is calculated. The feature with the
biggest valueu has its penalty increased by one unit. This mechanism penalizes
features with high cost in the current solution that were notmuch penalized during
the execution of the algorithm.
Our idea is to use GLS to guide ILS. The strategy consists on replacing the current
solutions by the candidate solutions′ if h(s′) ≤ h(s). That is, in cases′ is a so-
lution with good cost and attractive features (not penalized to much). Whens′ is
accepted as current solution, the penalties are updated. Local search and perturba-
tion are done using the simple cost function. With this strategy we try to introduce
some memory in the walk of ILS trough the solution space.
Different valuesλ of were tested in Section 4.
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4. Computational Results

Summarizing what has been discussed in the previous sections: three methods were imple-
mented, all of them use GRASP/VND to find an initial solution,used as a starting point
for an ILS/VND search. The three methods differ on the acceptance criterion for the ex-
change of the current solution during the ILS/VND search. The first method accept only
solutions with smaller total distance (we will refer to thisas method 1) , the second accepts
according to SA (method 2), and the third accepts in case the penalized cost of the new
solution is smaller than the penalized cost of the current solution according to the method
GLS (method 3).

The instances proposed by Salhi and Nagy (1999) and by Dethloff (2001) are
widely adopted in the literature and were used in our computational experiments. The
instances of Salhi and Nagy are generated from the instancesof Christofides et al. (1979),
which comprise 14 problems containing from 50 to 199 customers. Two instances, called
X and Y, are generated from each instance of Christofides. Foreach customeri, with deliv-
ery request̂di, in an instance of Christofides, a valueri = min{xi/yi, yi/xi} is calculated,
wherexi andyi are the coordinates of the customer, then, a delivery request di = rid̂i
and pickup requestpi = (1 − ri)d̂i are generated. This is the instance of the X type. The
instance of the Y type is generated by shifting the pickup anddelivery requests (Property 1
shows that X and Y are equivalent). Some of these instances possess distance constraints,
these instances were not used.

The instances of Dethloff comprise 40 problems of 50 customers each, and are
generated stochastically. In instances of the SCA type, thecoordinates of the customers
are uniformly distributed in the interval[0, 100]. In instances of the CON type, half of
the customers are distributed as in SCA and the other half is distributed in the interval
[100/3, 200/3], producing a more urban configuration, according to the author. The deliv-
ery requestdi of each customeri is uniformly distributed in the interval[0, 100] and the
corresponding pickup requestpi is given by(0.5+ ri)/di, whereri is uniformly distributed
in the interval[0, 1].The vehicle capacity is given byQ =

∑
i∈V,i 6=0

di/µ, whereµ has value
3 or 8 (this value appears after the letters in the name of the instance).

At each execution of the algorithm based on Kruskal’s, a randomization parameter
α = ω(10)/30 is used, whereω(n) returns a number between1 andn, as stated in Section
3.2.1. Therefore, values{0, 0333; 0, 0666; 0, 1; . . . ; 0, 3} are used, with smaller probability
to bigger numbers (quadratically decreases as its index increases).

We used perturbation sizes in the intervals[0, 1 × nc; 0, 3 × nc] for H, [0, 1 ×
nc/nr; 0, 5 × nc/nr] for Relocate, and[0, 05 × nc; 0, 15 × nc] for Swap. Wherenc is
the number of customers andnr is the number of routes in the solution. Values are drawn
from these intervals as described in Section 3.2.1.

For the choice of parameterγ, used in the update of the SA temperature, prelimi-
nary tests were performed with values between0, 9 and0, 99. To choose parameterλ, used
as to weight penalties in the GLS method, preliminary tests were performed with values
in the set{0, 5; 1, 0; 1, 5; . . . ; 5}. The programs were ran 10 times with each parameter
and instance. Valuesγ = 0, 92 andλ = 1, 5 obtained the best results and are used in the
experiments that followed.

Each method was executed 100 times with each instance. At each execution, 100
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GRASP/VND iterations and 500 ILS/VND iterations were performed.

Tables 1 and 2 presents our best results and the current best results in the literature,
for the instances of Salhi and Nagy (1999) and instances of Dethloff (2001), respectively,
considering the total distance. For each of our implementations, the total distance (column
TD), number of vehicles in the solution (column NV), and gap to the literature best are
presented (column Gap). The gap was calculated as(TD − TDbest) ∗ 100/TDbest, where
TD is the obtained result andTDbest is the best known result. For each instance of Salhi
and Nagy, we present the best result between the instance of type X and the instance of type
Y, since by property 1, given a result for one of them, there will be an equivalent result to
the other.

Lit. Met. 1 Met. 2 Met. 3
Inst. TD NV TD NV Gap TD NV Gap TD NV Gap

cmt1X/Y 458,96 3 466,77 3 1,7 466,77 3 1,7 466,77 3 1,7
cmt2X/Y 663,25 6 684,21 6 3,16 684,21 6 3,16 684,21 6 3,16
cmt3X/Y 721,27 5 721,27 5 0 721,27 5 0 721,27 5 0
cmt4X/Y 852,35 7 852,46 7 0,01 852,46 7 0,01 852,83 7 0,05
cmt5X/Y 1030,55 10 1030,27 10 -0,02 1032,59 10 0,19 1029,8 10 -0,07
cmt11X/Y 830,39 4 836,22 4 0,7 840,77 4 1,25 837,07 4 0,8
cmt12X/Y 644,7 5 662,22 5 2,71 662,22 5 2,71 662,22 5 2,71

Média 743,06 5,71 750,48 5,71 1,18 751,47 5,71 1,28 750,59 5,71 1,19

Table 1. Results for the instances of Salhi and Nagy Salhi and Nagy (1999).

To our knowledge, the best results for the instances of Salhiand Nagy (1999) are
found in the works of:

• Wassan et al. (2008): cmt1, cmt2, cmt6, and cmt7.
• Zachariadis et al. (2009): cmt3 and cmt5.
• Subramanian et al. (2009): cmt5.

The best results for the instances of Dethloff (2001) are found in the works of:

• Subramanian et al. (2009): Obtains the best result in all instances, except CON8-9.
• Montané and Galvão (2006): SCA3-1, SCA3-2, SCA3-3, SCA3-4,SCA3-5, SCA3-

6, SCA3-7, SCA3-8, SCA3-9, SCA8-3, CON3-1, CON3-3, CON3-5,CON3-8,
CON8-1, CON8-3, CON8-4, and CON8-6.

• Ropke and Pisinger (2006): SCA3-1, SCA3-2, SCA3-3, SCA3-4,SCA3-5, SCA3-
6, SCA3-8, SCA3-9, SCA8-2, SCA8-4, SCA8-5, SCA8-8, SCA8-9,CON3-0,
CON3-1, CON3-3, CON3-4 ,CON3-5, CON3-6, CON3-7, CON3-8, CON3-9, CON8-
0, CON8-1 , CON8-3, and CON8-4.

• Zachariadis et al. (2009): SCA3-1, SCA3-2, SCA3-3, SCA3-4,SCA3-5, SCA3-6,
SCA3-7, SCA3-8, SCA3-9, SCA8-0, SCA8-2, SCA8-3, SCA8-4, SCA8-5, SCA8-
6, SCA8-8, SCA8-9, CON3-0, CON3-1, CON3-3, CON3-5, CON3-7,CON3-8,
CON8-0, CON8-1, CON8-3, CON8-4, CON8-6, CON8-7, and CON8-8.

• Chen et al. (2007): CON8-9.

Analyzing table 1, we see that the proposed methods performed similar to each
other. The average gap to the literature best was close to 1%.The third method found a
new best result for instance cmt5X/Y (method 1 also found a result better than the previous
known one, but it is a little worse than the one found by method3).
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By analyzing table 2, it can be seen that the proposed methodsobtained good re-
sults. Almost all of the best know results were achieved. Method 1 didn’t find the best
result in 3 of the 40 instances (SCA8-2, SCA8-7, and CON8-9).Method 2 didn’t find the
best result in only 1 instance (CON8-8). Method 3 didn’t find the best result in 2 instances
(SCA8-2 e CON8-9). Average gap was very small, close to 0,01%.

Lit. Met. 1 Met. 2 Met. 3
Inst. TD NV TD NV Gap TD NV Gap TD NV Gap

SCA3-0 635,62 4 635,62 4 0 635,62 4 0 635,62 4 0
SCA3-1 697,84 4 697,83 4 0 697,83 4 0 697,83 4 0
SCA3-2 659,34 4 659,33 4 0 659,33 4 0 659,33 4 0
SCA3-3 680,04 4 680,04 4 0 680,04 4 0 680,04 4 0
SCA3-4 690,5 4 690,5 4 0 690,5 4 0 690,5 4 0
SCA3-5 659,9 4 659,9 4 0 659,9 4 0 659,9 4 0
SCA3-6 651,09 4 651,08 4 0 651,08 4 0 651,08 4 0
SCA3-7 659,17 4 659,16 4 0 659,16 4 0 659,16 4 0
SCA3-8 719,47 4 719,47 4 0 719,47 4 0 719,47 4 0
SCA3-9 681 4 680,99 4 0 680,99 4 0 680,99 4 0
SCA8-0 961,5 9 961,49 9 0 961,49 9 0 961,49 9 0
SCA8-1 1049,65 9 1049,65 9 0 1049,65 9 0 1049,65 9 0
SCA8-2 1039,64 9 1039,71 9 0 1039,64 9 0 1044,48 9 0,46
SCA8-3 983,34 9 983,33 9 0 983,33 9 0 983,33 9 0
SCA8-4 1065,49 9 1065,49 9 0 1065,49 9 0 1065,49 9 0
SCA8-5 1027,08 9 1027,08 9 0 1027,08 9 0 1027,08 9 0
SCA8-6 971,82 9 971,82 9 0 971,82 9 0 971,82 9 0
SCA8-7 1051,28 9 1053,84 9 0,24 1051,28 9 0 1051,28 9 0
SCA8-8 1071,18 9 1071,18 9 0 1071,18 9 0 1071,18 9 0
SCA8-9 1060,5 9 1060,5 9 0 1060,5 9 0 1060,5 9 0
CON3-0 616,52 4 616,52 4 0 616,52 4 0 616,52 4 0
CON3-1 554,47 4 554,47 4 0 554,47 4 0 554,47 4 0
CON3-2 518 4 518 4 0 518 4 0 518 4 0
CON3-3 591,19 4 591,18 4 0 591,18 4 0 591,18 4 0
CON3-4 588,79 4 588,79 4 0 588,79 4 0 588,79 4 0
CON3-5 563,7 4 563,69 4 0 563,69 4 0 563,69 4 0
CON3-6 499,05 4 499,05 4 0 499,05 4 0 499,05 4 0
CON3-7 576,48 4 576,48 4 0 576,48 4 0 576,48 4 0
CON3-8 523,05 4 523,05 4 0 523,05 4 0 523,05 4 0
CON3-9 578,24 4 578,24 4 0 578,24 4 0 578,24 4 0
CON8-0 857,17 9 857,17 9 0 857,17 9 0 857,17 9 0
CON8-1 740,85 9 740,85 9 0 740,85 9 0 740,85 9 0
CON8-2 712,89 9 712,88 9 0 712,88 9 0 712,88 9 0
CON8-3 811,07 10 811,06 10 0 811,06 10 0 811,06 10 0
CON8-4 772,25 9 772,25 9 0 772,25 9 0 772,25 9 0
CON8-5 754,88 9 754,88 9 0 754,88 9 0 754,88 9 0
CON8-6 678,92 9 678,92 9 0 678,92 9 0 678,92 9 0
CON8-7 811,96 9 811,95 9 0 811,95 9 0 811,95 9 0
CON8-8 767,53 9 767,52 9 0 767,52 9 0 767,52 9 0
CON8-9 806,72 - 809 9 0,28 809 9 0,28 809 9 0,28
Média 758,47 6,46 758,59 6,52 0,01 758,53 6,52 0 758,65 6,52 0,01

Table 2. Results for the instances of Dethloff Dethloff (2001).
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5. Conclusion
In this work, we proposed three heuristics based on metaheuristics to the Vehicle Rout-
ing Problem with Simultaneous Pickup and Delivery. The three methods are ILS/VND
searches, with GRASP/VND to generate the starting point. The difference between them
is the criterion to accept new solutions. The first has a simple criterion, accept if the new
solution is better. The second accepts according to SA. The third does it according to a
strategy similar to the GLS method. Several of the best literature results were reached by
the best results of the heuristics. Considering average solutions, the gaps in relation to the
best results of the literature were small. On average, the three methods performed simi-
larly. We associate this fact to the quality of the VND local search. However, the GLS
strategy led the third method to improve the literature’s best result in one of the Salhi and
Nagy instances.
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