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Abstract

Four decades ago Durán proposed the use of dynamic programming to find the ideal num-
ber, best locations and optimal sizes for shunt capacitor banks on radial power distribution
feeders. Based on Bellman’s Principle of Optimality, Durán’s approach was attractive as it pro-
vided global optimal solutions for this problem. Conversely, the approach could only address
the capacitor allocation problem for feeders without lateral branches, a restriction that shaded
the value of his contribution. Herein, the dynamic programming approach is extended with
concepts that allow consideration of the main requirementsof the capacitor allocation prob-
lem, including representation of feeders with lateral branches and different voltage magnitudes
along the feeders. As a by-product of the dynamic programming optimization procedure the
approach also solves the capacitor control problem, obtaining the best tap adjustment for the
switchable capacitive power sources. The key new concepts are the generalization of the defi-
nition of stateproposed by Durán and the projection of the multidimensional information into
an equivalent one-dimensional representation. Case studies with real size distribution networks
put into perspective the benefits of the Extended Dynamic Programming approach. This ap-
proach has the appeal of providing global optimal solutionswith a linear time computational
complexity, which is similar to the computational complexity of the dynamic programming
approach for feeders without lateral branches. Such attributes provide the methodology with a
prominent place among the methods to address the shunt capacitor allocation problem on radial
distribution networks.

KEYWORDS:power distribution networks, distribution feed ers, technical loss reduc-
tion, shunt capacitor allocation, optimal capacitor placement and sizing, dynamic pro-
gramming, extended dynamic programming.
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1 Introduction

Distribution networks in a power system connect the distribution substation to customers. They
are designed as a set of radialfeedersrooted at the substations, which are subdivided in primary
networks, at the upper level, and secondary networks, at thelower level. Shunt capacitors are placed
on the primary networks of distribution feeders to reduce technical losses caused by reactive energy;
other potential benefits of capacitors include voltage regulation, released capacity of equipments
and deferred expenditure on system expansions. The optimalcapacitor allocation problem searches
for the best compromise between cost of capacitors and theirbenefits to a network.

Techniques to unveil the best alternatives for capacitor allocation on distribution feeders have
been developed for more than 50 years (Schmidt 1956; Neagle and Samson 1956) (most of these are
concerned with capacitor placement for loss reduction and voltage regulation). The early studies
proposed approximated models that enabled the applicationof analytical methods (Schmidt 1956;
Neagle and Samson 1956; Cook 1959; Schmill 1965). Durán relied on dynamic programming to
address the problem under a more general formulation (Durán1968), though restricted to feeders
without lateral branches (single-ended feeders).

As radial distribution feeders are designed with many lateral branches, with layouts such as the
“big trunk”, “feathered”, “multi-branch” and “mixed” (Willis 2004), the merits of Durán’s ideas
were hidden by the restriction to single-ended feeders. Furthermore, when the lateral branches are
considered, his formulation seemed to require additional state dimensions, in such a way that would
preclude the application of his concepts to real scale distribution feeders.

Presently, heuristic methods dominated the scene for optimal capacitor allocation on radial dis-
tribution feeders. Baran and Wu, for example, proposed a heuristic method guided by the solution
of a mixed integer programming problem (Baran and Wu 1989a; Baran and Wu 1989b); Gallego
et al. adopted the tabu search heuristic (Gallego et al. 2001); andMendeset al. proposed a hybrid
genetic algorithm (Mendes et al. 2005).

This paper champions the revival of dynamic programming. Durán’s restriction to single-ended
feeders is overcome and dynamic programming extended to findoptimal solutions for the capacitor
allocation problem on real-scale multi-branched distribution feeders.

2 Mathematical Formulation

The mathematical formulation is in accordance with the present-day perception of the problem.
All the technical and economic benefits of proper capacitor banks allocation can be included in the
formulation. However, to avoid unnecessary intricacy in notations, only the compromise between
cost of capacitors and loss reduction is considered here.

A graph model is adopted to represent the main entities of a primary distribution network and
their interrelationships (Ahuja et al. 1993; Cavellucci and Lyra 1997). When a graph,G = [N ,A],
represents a primary distribution network for the capacitor optimization problem,nodesin setN
represent either bus bars or substations. Substations are the root nodesfor the distribution feeders
that emanates from them.Arcs in setA represent the distribution lines.The paper is concerned with
primary distribution networks that operate radially. Figure 1 illustrates the graph model for a typical
distribution feeder.
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Figure 1: Graph model for a feeder of a primary distribution network

The problem of optimal shunt capacitor allocation on a radial distribution feeder throughout a
given planning period,PCA, can be stated as follows:

MinCk∈F [
∑

k∈N

f (Ck)+αet
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τtlt(P,Q,V)] (1)

subject to

lt(P,Q,V) =
∑

k∈N

∑

j∈Ak

rk+1, j

(Pt
k+1, j)

2+ (Qt
k+1, j)

2

(vt
k+1, j )

2
(2)

∀t ∈ T















Pt
k =
∑

j∈Ak
Pt

k+1, j +Pt
Lk

Qt
k =
∑

j∈Ak
Qt

k+1, j +Qt
Lk
−QCk

(3)

∀t ∈ T



































(vt
k+1, j )

2 = (vt
k)

2−

−2(rk+1, j Pt
k+1, j + xk+1, jQt

k+1, j)

vk ≤ vt
k ≤ vk

(4)

whereF is the set of fixed capacitors for possible installation on the network,N is the set of nodes
in the distribution network,f (Ck) is the time value of the cost of a fixed capacitorCk that gives the
reactive powerQCk, αet is the value of energy during intervalt, τt is the duration of intervalt, T is
the set of time intervals,lt(P,Q,V) is the power loss in the network during intervalt, Ak is the set
of arcs with origin at nodek (emanating from nodek), rk+1, j is the resistance of the line represented
by arck+1, j, Pt

k+1, j is the total active power flow in arck+1, j during the time intervalt, Qt
k+1, j is

the total reactive power flow in arck+1, j during the time intervalt, Pt
Lk

andQt
Lk

are, respectively,
active and reactive power loads at the nodek during the timet. The variablesvt

k (or vt
k+1, j) represent

the voltage values in nodek (or k+1, j) during the time intervalt, vk andvk are, respectively, lower
and upper bounds forvt

k.
Since distinct active and reactive power loads are considered for each nodek and each time pe-

riod t, all possible load levels combinations can be considered with this formulation of the problem.
The double indexesk+1, j are adopted here to stress the point that the nodesk+1, j aresucces-

sorsof the nodek in the tree that represents the feeder (or conversely, thatk is apredecessorof all
nodesk+1, j).

The power flow and voltage magnitude equations in (3) and (4) are the simplified DistFlow
branch equations presented in (Baran and Wu 1989c), but generalized to consider multi-ended feed-
ers. There are no restrictions in adopting the more detailedDistFlow branch equations proposed in
(Baran and Wu 1989c), but the simplified equations allow a leaner presentation which helps to focus
on the main points of the paper.

Durán (1968) proposed a dynamic programming approach to address a simplified version of the
problemPCA, for which the distribution feeders are single-ended (in other words, do not have lat-
eral branches) and voltages are supposed close to their specified values—in other words,vk = 1 p.u.
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(Gonen 2008). The essence of this approach is briefly described in the next section, with the nec-
essary adaptations to address the formulation for the problemPCA presented above, which is more
in accordance with the present-day perception of the problem. These ideas are then generalized to
consider multi-ended feeders (feeders with lateral branches) and instances for which voltage values
can not be adequately approximated byvk = 1 p.u..

3 Durán’s Dynamic Programming Approach

Using the language of dynamic programming (DP), Durán (1968) associated the nodes of a
single-ended distribution network to thestages, the capacitive reactive power injected at a node
k to thecontrol variableat the node (uk = QCk) and the total capacitive power flowing in the arc
immediately upstream (toward the source) from a nodek to thestateat this node (xk). Since feeders
are assumed to be single-ended,statesandcontrol variablessatisfy the followingdynamic equation:

xk = xk+1+uk (5)

Theelementary cost(the cost over the next stage) for the control actionuk applied at a statexk

is defined asek(xk,uk) (remember thatvk is assumed to be 1p.u.),

ek(xk,uk) = f (uk)+αet

∑

t∈T

τtrk[(P
t
k)

2+ (Qt
k−uk)

2] (6)

Therefore, the iterative functional equation for the solution of the problemPCA by DP can be
stated as follows:

F(xk) = Minuk[ek(xk,uk)+F(xk+1)]
xk+1 = xk−uk

(7)

whereF(xk) is theoptimal cost functionfrom the statexk at the stagek, which represents the best
allocation of a total capacitive powerxk, from k until the end of the feeder. The minimization
procedure also gives the optimal control variable for the statexk, u∗k(xk); in other words, it provides
the best amount of capacitive power to be placed at the nodek, if a total amountxk of reactive power
is installed from nodek down to the end of the feeder. Of course, the recursive optimization process
must meet Eq. (3).

The iterative functional equation is initialized at the endnode of the feeder (say, at its leaf),

F(xn) = en(xn,un), un = xn (8)

When the recursive backward computation process with evaluation of Eq. (7) reaches the sub-
station (stage 1, the root of the feeder), a solution to the problemPCA, F(x∗1), can be easily obtained
by searching over all values ofF(x1),

F(x∗1) = Minx1[F(x1)] (9)

The optimal placement and size of capacitors in the feeder (the “optimal trajectory”) is recovered
with a recursive forward computation procedure, from the root to the leaf of the feeder,

x∗2 = x∗1−u∗1(x∗1), x∗k+1 = x∗k−u∗k(x
∗
k) (10)

Figure 2 illustrates this classical DP approach tailored tothe solution of the problem,PCA.
If there is only one arc downstream from each node, this DP approach requires only one-

dimensionalstates. If there is more than one arc emanating from some of the nodes, additional
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Figure 2: DP approach to single-ended feeder

statedimensions appear to be needed, one for each lateral branch.With such a representation, us-
ing DP to compute a solution for real feeders with many lateral branches would meet “the curse of
dimensionality”, a term coined to express the fact that the computational effort grows exponentially
with the dimension of the state vector—a property that turnsthe problem intractable (Garey and
Johnson 1979). This might be the reason for which DP has been forgotten as a technique to solve
the capacitor allocation problem.

4 The Extended Dynamic Programming Approach

In essence, instead of increasing the dimension ofstatevariables for each additional down-
stream branch, the Extended Dynamic Programming (EDP) approach proposes simple auxiliary
optimization problems that projects the problem,PCA, into a one-dimensional DP representation.

4.1 Key Concepts

To simplify presentation, it will still be assumed that voltage magnitudes can be adequately
approximated byvk = 1 p.u.. This assumption will be dropped later, in Section 4.2, which discusses
instances for which voltage monitoring is necessary.

The main concepts proposed by Durán (1968) to embed the problemPCA into a dynamic pro-
gramming solution framework are still valuable when distribution feeders are not single-ended.
Namely, nodes in distribution feeders are associated withstagesand the capacitive reactive power
(QCk) injected at a nodek is associated with thecontrol variableat the node (uk =QCk). In addition,
theelementary costis the same—the influence of lateral branches will be considered in Eq. (11).

For a while, suppose that thestate (xk) is still the total capacitive power flowing in the arc
immediately upstream from the nodek. Note that Eq. (5) is no more true if more than an arc
emanates from nodek, as illustrated in Fig. 3. The inclusion of an additional dimension in the state
is an alternative to deal with this problem; the state at eachstagek+ 1 would be a vector with as
many dimensions as the number of branches emanating from thenode. If, for instance, two branches
emanate from a nodek, the dynamic equation for the node would bexk = xk+1,1+ xk+1,2+uk, instead
of Eq. (5). However, in the forward process to recover the optimal trajectory, it would only be
possible to recover the sumxk+1,1+ xk+1,2, leaving an indetermination regarding the value of each
xk+1, j .

A first thought to overcome the indetermination about the value of eachxk+1, j under the frame-
work of conventional dynamic programming would be to keep the additional state dimension in the
backward process, up to the root. As such, a state dimension would be necessary to store infor-
mation about each lateral branch of the feeder. However, it is not advantageous to delve further in
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Figure 3: Does the Problem Need a Multidimensional DP Algorithm?

this direction. The multidimensional state would be necessary only to uncover the optimal share of
capacitive power for each branch emanating from a nodek. The “optimal share” is the clue.

The key concept to allow the consideration of lateral branches at a node in a DP solution frame-
work is to redefine thestateat a nodek as “the total capacitive power flowing in the arc immediately
upstream, optimally divided among all branches emanating from k”. The essence is indeed as sim-
ple as this, but it is necessary to fathom the consequences ofthis new concept.

1. How to find the optimal share of capacitive power for each branch emanating from a node?
2. How are the DP backward and forward processes affected by the new concept?

Auxiliary optimization problems that project the multidimensional informations into one-dimension
and the definition of a vector-valuedoptimal share function, for each node with lateral branches,
will open the path to cope with both the questions above. Before probing further, note that the new
definition ofstatereduces to the former if only one state emanates from each node (when the feeder
is single-ended).

Formally, the following auxiliary optimization problems must be solved during the dynamic
programming backward optimization process, for each nodek with lateral branches:

F(xk+1) = Min∀xk+1, j∈J[
∑

j∈J F(xk+1, j)]
xk+1 =

∑

j∈J xk+1, j
(11)

whereJ is the set of indexes of lateral branches at the nodek andxk+1, j is the state at node "k+1",
branch j ( j ∈ J). These problems are easily solved with the usual enumeration process of dynamic
programming.

The solution process also gives the vector-valuedoptimal share functionOk+1,

Ok+1 :ℜ−→ℜ 

where  is the number of branches emanating from nodek (the cardinality of setJ).

Ok+1(xk+1) =
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The pointsxo
k+1,1, x

o
k+1,2, . . . , x

o
k+1, j of Ok+1(xk+1) are the values for which Eq. (11) achieves the min-

imum value, on each hyperplanexk+1 =
∑

j∈J xk+1, j (Bertsekas 1995).
In solving Problems (11), the multidimensional informations stored in the set ofstates, associ-

ated with the branches emanating from the nodek are projected into an equivalent one-dimensional
optimal representation. This procedure is equivalent to creating a dummyk+1 node and correspon-
dentxk+1 statethat embody the multidimensional informations. The optimal partition of capacitive
power among the arcs that emanate from a node and the associated optimal cost function F(xk+1)
are found and stored at the points of the feeder where they arenecessary for the DP backward op-
timization process and forward recovering of the optimal trajectory. No additional dimension for
the stateis necessary to achieve this synthesis and nothing is lost, compared with a conventional
multidimensional dynamic programming approach. Figure 4 illustrates the projection procedure for
an example with two lateral branches emanating from a nodek.
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1

uk

k

xk

uk

xk+1

2

x k+1

1

k+1

xk+1
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Figure 4: Dealing with lateral branches

The recursive dynamic programming process starts at the leaves of the feeder. For every node
k with lateral branches, a projection problem is solved and anoptimal share function(Ok+1) is
determined. Analogous to single-ended feeders, the Iterative Functional Equation (7) is solved at
each nodek.

When recovering the optimal trajectory in the forward procedure, for nodes without lateral
branches,xk+1 is obtained in the same way as single-ended feeders, applying Eq. (10). When more
than an arc emanates from a nodej, each optimal share,xo

k+1, j , is obtained by applying theoptimal
share functionat xk+1, Ok+1(xk+1). The recovery process continues, starting from eachxo

k+1, j , until
it reaches all leaves of the feeder.

4.2 Considering Different Voltage Magnitudes (vk , 1 p.u.)

The main points to be addressed in order to take into account differences in voltage magnitudes
in multi-branched feeders are how to compute efficiently the voltages values in a multi-branched
feeder and, most importantly, if the solution of ProblemPCA changes when different voltage values
are taken into account. The graph representation of the primary distribution feeder provides help,
once again; both points are easily handled.

Consider that the optimal capacitor allocation problem,PCA, has been solved with the EDP
approach. Consequently, all power flows for the feeder are known. Now, in order to compute
efficiently the voltages values in a multi-branched feeder, it sufices to visit all nodes of the feeder
with a preorder traversalof the graph (Ahuja et al. 1993), evaluating the voltage values at each
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node by Eq. (4); in other words, it suffices to compute voltage magnitudes following thethread( j)
index (discussed in the previous section).

Voltage regulators, if installed on the network, have to be taken into consideration when com-
puting voltage magnitudes along the feeder. When a voltage regulator is installed in a nodek of the
feeder, the regulated value of the voltage (Vt

k) should be obtained after the computation ofvt
k,

Vt
k = gk(v

t
k)

where the functiongk represents the operation rule of the voltage regulator. After the computation
of Vt

k, the computation of voltages goes on for the nodes downstream from nodek, using Eq. (4)
and consideringVt

k as the voltage at nodek.
Having knowledge of the voltage magnitudes after the allocation of capacitors, the problemPCA

is solved again, but now substituting theelementary cost ek(xk,uk,vk) given by Eq. (13), which
considers the influence of different voltage magnitudes, for theelementary costgiven by Eq. (6).

ek(xk,uk,vk) = f (uk)+

+αet
∑

t∈T τtrk
[(Pt

k)2+(Qt
k−uk)2]

(vt
k)2

(13)

If the placement and size of capacitors remain the same, the solution found is optimal. Otherwise,
if the placement or the size of at least one capacitor changes, voltage magnitudes should be recalcu-
lated and the problem solved again. The process is repeated until the solution remains unchanged.

Thus, the method to consider different voltage magnitudes along the feeder goes as follows.

Step 1. Solve problemPCA with EDP using Eq. (6) to compute theelementary cost(considering
vk = 1 p.u.);

Step 2. Compute the voltage value for each node of the feeder, by Eq. (4);
Step 3. Solve problemPCA with EDP using Eq. (13) to compute theelementary cost(considering

vk , 1 p.u.);
Step 4. Compare the current capacitor allocation solution with theprevious one. If the solution is

different, return toStep 2. Otherwise, stop; the current solution is optimal.

Note that from a rigorous mathematical stand point this iterative procedure can only assure local
optimality for the actual state of voltage values. The physics of the problem provides the additional
argument for global optimality; as voltage magnitudes change smoothly along the feeders, there are
no extemporaneous voltage magnitude profiles that would allow solutions to be too far away from
each other.

5 The Complexity of Extended Dynamic Programming

Call Qmax the number of possiblecontrols for a given node, which correspond to the number
of possible capacitors that could be installed at the node. Also, callN the number of nodes of the
feeder andJmax the maximum number of lateral branches at a node—in real instances, usuallyJmax

does not exceed 3 (Willis 2004).
The main steps for solving any problemPCA with EDP are the following:

1. solve Eq. (8) for eachleaf node: the number of computations to solve Eq. (8) for allleaf
nodes is bounded byc1NLQmax, wherec1 is a constant andNL is the number ofleaf nodes.
SinceNL < N, thenc1NQmax remains a valid upper bound;

2. solve the DP Iterative Functional Equation (7) for each non leaf node: the total number
of computations to solve the Iterative Functional Equation(7) for all nodes is bounded by
c2NQmax

2, wherec2 is a constant;
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3. solve the Projection Equation (11) for each node with lateral branches: the total number of
evaluations to compute the Projection Equation (11) is bounded byc3NBQmax

Jmax, wherec3

is a constant andNB is the maximum number of lateral branches. SinceNB < N, the total
number of evaluations is, for better reasons, bounded byc3NQmax

Jmax;
4. recover the “optimal trajectory”, using Eq. (10) and theoptimal share functionsgiven by

Eq. (12): the forward process to recover the “optimal trajectory” computes onestateand one
control for each node, therefore is bounded byc0N computations, wherec0 is a constant.

Thus, the number of computations to solve the capacitor allocation problemPCA with EDP is
bounded by

N · [c0+c1Qmax+c2Qmax
2+c3Qmax

Jmax] ∈O(NQmax
Jmax).

Real instances have numbers of controls (Qmax) and maximum number of lateral branches (Jmax)
limited by small integers. Therefore, it is possible to consider the quantity inside the brackets
as a constantc. Under this assumption, the EDP algorithm has linear complexity, described by
cN ∈O(N).

6 Considering Switched Capacitors

It is simple to study the optimal allocation of switched capacitors instead of fixed capacitors with
the EDP approach discussed so far. Indeed, the only necessary change is to consider the possibility
of the best tap adjustment foruk, when computing theelementary costin Eq. (6) and (13).

A more interesting study is to consider the optimal allocation of both fixed and switched capac-
itors. Here is a case where two dimensions for thestateat a nodek is necessary: one to represent
the total fixed capacitive power flowing in the arc immediately upstream, optimally divided among
all branches emanating fromk; the other to represent the total switchable capacitive power flowing
in the arc immediately upstream, optimally divided among all branches emanating fromk.

All concepts presented here can be easily extended to address the generalized problem of plac-
ing both fixed and switched capacitors on the network. Also, it is simple to verify that the EDP
algorithm for the problems still have linear complexity described bycN ∈O(N), with a larger value
for the constantc. Programming, however, is harder (much harder).

7 Case Studies

Four networks from different distribution systems were used to evaluate the EDP approach. The
first one (A) is the 70-bus test system adopted by Baran and Wu (Baran and Wu 1989a). The other
networks are real large scale instances of distribution systems in the state of São Paulo (Brazil): a
2645-bus system (B), a 6246-bus system (C) and a 7500-bus system (D). The feeders in system B,
C and D have significant voltage drops and power losses.

Table 1: Main Data for the Distribution Networks
Number Number Nodes w/l Total TotalNetwork
of Nodes of Feeders Branches MW MVAR

A 70 1 7 3.80 2.69
B 2 645 11 511 42.76 20.72
C 6 246 30 1 143 131.97 66.90
D 7 500 10 1 304 61.60 29.57

The capacities and costs of the capacitor banks are summarized in Table 2. Other parameters
used were an energy value of 60 US$/MWh and a 5 year payback period for investments in capac-
itors, with interest of 15%. Two different load scenarios are considered: the scenario adopted for
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allocation of only fixed capacitor banks consider a single time interval (in other words,T = 1 in the
problemPCA); the scenario adopted for studies of allocation of both fixed and switched capacitor
banks uses load profiles with five different levels (0.3 1.0 0.8 0.8 0.6), with duration of (6 6 6 3 3)
hours, respectively.

Table 2: Capacitor Banks
Capacity (kVAr) Fixed Bank Switched Bank

Cost (US $ ) Cost (US $ )
150 3 494 4 494
300 3 553 4 553
450 3 628 4 628
600 4 026 5 026
900 4 992 5 992

1 200 5 958 6 958

Two different versions of the EDP algorithm were considered:EDP-1 which considersvk =

1 p.u. andEDP-2which considersvk , 1 p.u. (using the method described in Section 4.2);
All algorithms were coded in C++ using theGCC 4.3compiler without optimization flags.

Computational tests were run on a PC with a Core 2 Quad 3.0 GHz processor and 4 GB of RAM,
running under GNU/Linux.

Table 3 presents the energy savings obtained, with the EDP-1and EDP-2 versions of the EDP
approach. The computation of initial and final losses in bothtables considers voltage drops along
the feeders. The “Time” columns give the execution times, inseconds.

Table 3: Results for the two approaches
Initial EDP-1 EDP-1 EDP-1 EDP-2 EDP-2 EDP-2Network

Losses (kW) Losses kW Savings % Time Sec Losses kW Savings % Time Sec
A 39.42 28.65 27.4 0.008 28.65 27.4 0.008
B 1 261.84 991.62 21.5 0.256 979.92 21.5 0.364
C 3 428.99 2 738.06 20.1 0.992 2 706.19 21.1 1.396
D 3 168.98 2 345.86 26.0 1.280 2 281.79 28.0 1.720

Table 4 presents the economic benefits of the solutions usingthe EDP-1 and EDP-2 algorithm,
respectively, considering the value of energy savings and the cost of capacitors. Both tables also
give the total capacitive power installed on the networks.

Table 4: Economic Benefits of the EDP-1 and EDP-2 approaches
Initial EDP-1 EDP-1 EDP-1 Total EDP-2 EDP-2 EDP-2 TotalNetwork

Cost (US$ ) Cost (US$ ) Savings (%) (kVAr) Cost (US$ ) Savings (%) (kVAr)
A 20 721 16 548 21.2 900 16 548 21.2 900
B 663 224 546 563 17.6 15 300 542 306 18.3 16 650
C 1 802 280 1 512 260 16.1 44 250 1 502 670 16.7 49 050
D 1 665 610 1 271 030 23.7 22 050 1 245 870 25.3 28 500

The results presented in Table 3 and Table 4, allow the following observations:

1. EDP is a feasible approach to find the best places and optimal sizes of shunt capacitor banks
on radial real scale distribution feeders;

2. When voltage drops are significant, their representationcan improve the decisions about ca-
pacitor allocation;

3. Processing times for both EDP algorithms are very short, even for large feeders;
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4. Processing times are approximately proportional to the number of nodes in the feeders, con-
firming the linear complexity;

5. The processing times for applying the EDP-1 and EDP-2 approaches to network A are roughly
the same, because for this small instance the set up time of the program is significant, com-
pared to the total time required to solve the problem;

6. The processing times for applying the EDP-2 approach to the networks B,C, and D are a little
shorter than twice the processing times for applying the EDP-1 approach; this occurs because
EDP-2 converged with two iterations (and because the total processing time includes the set
up time).

8 Conclusions

Four decades ago Durán proposed the use of dynamic programming to address the capacitor
allocation problem (Durán 1968). However, his approach could only address the problem for single-
ended feeders, a limitation that hid the value of his ideas.

The Extended Dynamic Programming (EDP) approach developedin this paper allows to lift
the simplifying assumption of single-ended feeders and to consider other important aspects of the
capacitor allocation problem on radial distribution networks:

1. Finding a global optimal solution for the problem;
2. Take into account differences in voltage magnitudes and voltage regulation;
3. Contemplate all possible load level combinations (for each time period and each node of the

network);
4. Considering switched capacitors.

Case studies with real size distribution networks certifiedEDP with field tests. Bellman’s Principle
of Optimality (Bellman 1957) provides the formal background to assure that the approach unveils
global optimal solutions.

A key concept for the design of EDP was the new definition ofstateat a node, as the total
capacitive power optimally divided among all branches emanating from the node. Auxiliary op-
timization problems that projected multidimensional informations into one-dimension equivalents
and a vector-valuedoptimal share functionfor each node with lateral branches were the comple-
mentary conceptual tools employed.

The EDP algorithm has a linear time complexity described bycN (see Section 5), wherec
is a constant andN is the number of nodes in the network. The framework of computational
complexity (Papadimitriou and Steiglitz 1982) allows two additional conclusions to be drawn from
this property.

• An internal conclusion, to do with the algorithm: under the assumptions of ProblemPCA,
EDP is an “efficient algorithm” (in a formal sense) to address the capacitor allocation prob-
lem.

• An external conclusion, to do with the knowledge EDP brings about the nature of the prob-
lem: since there is an “efficient algorithm” to solve the capacitor allocation problemon radial
feeders, it can not be considered a “difficult problem” (for which heuristic methods would be
required).

To sum up, the Extended Dynamic Programming approach has a set of qualities that allows it a
prominent role in addressing the shunt capacitor allocation problem on radial distribution networks.
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