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Abstract

Four decades ago Duran proposed the use of dynamic progreneniind the ideal num-
ber, best locations and optimal sizes for shunt capacitok$an radial power distribution
feeders. Based on Bellman’s Principle of Optimality, Dus&@pproach was attractive as it pro-
vided global optimal solutions for this problem. Conveys#ie approach could only address
the capacitor allocation problem for feeders without laltéranches, a restriction that shaded
the value of his contribution. Herein, the dynamic prograngrapproach is extended with
concepts that allow consideration of the main requiremehtle capacitor allocation prob-
lem, including representation of feeders with lateral orees and dierent voltage magnitudes
along the feeders. As a by-product of the dynamic programgroptimization procedure the
approach also solves the capacitor control problem, dbtithe best tap adjustment for the
switchable capacitive power sources. The key new conceptha generalization of the defi-
nition of stateproposed by Duran and the projection of the multidimendioriarmation into
an equivalent one-dimensional representation. Caseestudih real size distribution networks
put into perspective the benefits of the Extended Dynamigfaroming approach. This ap-
proach has the appeal of providing global optimal solutiwith a linear time computational
complexity, which is similar to the computational comptgxdf the dynamic programming
approach for feeders without lateral branches. Such at&#provide the methodology with a
prominent place among the methods to address the shuntitcadiocation problem on radial
distribution networks.

KEYWORDS:power distribution networks, distribution feed ers, technical loss reduc-
tion, shunt capacitor allocation, optimal capacitor placenent and sizing, dynamic pro-
gramming, extended dynamic programming.
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1 Introduction

Distribution networks in a power system connect the distiiim substation to customers. They
are designed as a set of radiaédersrooted at the substations, which are subdivided in primary
networks, at the upper level, and secondary networks, &wer level. Shunt capacitors are placed
on the primary networks of distribution feeders to reduchiécal losses caused by reactive energy;
other potential benefits of capacitors include voltage ledgn, released capacity of equipments
and deferred expenditure on system expansions. The optapactitor allocation problem searches
for the best compromise between cost of capacitors andlibaifits to a network.

Techniques to unveil the best alternatives for capacitocation on distribution feeders have
been developed for more than 50 years (Schmidt 1956; Neadl8@amson 1956) (most of these are
concerned with capacitor placement for loss reduction afihge regulation). The early studies
proposed approximated models that enabled the applicatianalytical methods (Schmidt 1956;
Neagle and Samson 1956; Cook 1959; Schmill 1965). Duraed@h dynamic programming to
address the problem under a more general formulation (D18&8), though restricted to feeders
without lateral branches (single-ended feeders).

As radial distribution feeders are designed with many #&teranches, with layouts such as the
“big trunk”, “feathered”, “multi-branch” and “mixed” (Wiis 2004), the merits of Duran’s ideas
were hidden by the restriction to single-ended feedersthEtmore, when the lateral branches are
considered, his formulation seemed to require additiotadt glimensions, in such a way that would
preclude the application of his concepts to real scaleibligton feeders.

Presently, heuristic methods dominated the scene for aptiapacitor allocation on radial dis-
tribution feeders. Baran and Wu, for example, proposed asteumethod guided by the solution
of a mixed integer programming problem (Baran and Wu 198%aaB and Wu 1989b); Gallego
et al. adopted the tabu search heuristic (Gallego et al. 2001)Merleset al. proposed a hybrid
genetic algorithm (Mendes et al. 2005).

This paper champions the revival of dynamic programming:dis restriction to single-ended
feeders is overcome and dynamic programming extended tofitichal solutions for the capacitor
allocation problem on real-scale multi-branched distidhufeeders.

2 Mathematical Formulation

The mathematical formulation is in accordance with thegmeslay perception of the problem.
All the technical and economic benefits of proper capaciémkis allocation can be included in the
formulation. However, to avoid unnecessary intricacy itations, only the compromise between
cost of capacitors and loss reduction is considered here.

A graph model is adopted to represent the main entities oinagpy distribution network and
their interrelationships (Ahuja et al. 1993; Cavelluccildyra 1997). When a graplg = [N, A,
represents a primary distribution network for the capaaiatimization problemnodesin setN
represent either bus bars or substations. Substationbear@ot nodesfor the distribution feeders
that emanates from thermrcsin setA represent the distribution lines.The paper is concernél wi
primary distribution networks that operate radially. Fig illustrates the graph model for a typical
distribution feeder.
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Figure 1: Graph model for a feeder of a primary distributietwork

The problem of optimal shunt capacitor allocation on a fadistribution feeder throughout a
given planning periodPca, can be stated as follows:
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where¥ is the set of fixed capacitors for possible installation anribtwork, N is the set of nodes
in the distribution networkf (Cy) is the time value of the cost of a fixed capaci@uthat gives the
reactive poweQc,, aet is the value of energy during intervilr is the duration of interval, T is
the set of time intervald;(P, Q, V) is the power loss in the network during intertal is the set
of arcs with origin at nod& (emanating from nodg), ry, 1 ; is the resistance of the line represented
by arck+1, |, Pk L is the total active power flow in atc+ 1, j during the time intervat, Qk+1J i

the total reactive power flow in aic+ 1, j during the time intervat, Pt andQt are, respectively,
active and reactive power loads at the n&d#iring the time. The vanableszt (or Y ) represent
the voltage values in node(or k+ 1, j) during the time intervat, vk andvy are, respebtively, lower
and upper bounds fof. o

Since distinct active and reactive power loads are coresitiEr each nod& and each time pe-
riod t, all possible load levels combinations can be considerdultvis formulation of the problem.

The double indexels+ 1, j are adopted here to stress the point that the nbelds j aresucces-
sorsof the nodek in thetreethat represents the feeder (or conversely, kiiatapredecessoof all
nodesk+1, j).

The power flow and voltage magnitude equations in (3) and r@)tee simplified DistFlow
branch equations presented in (Baran and Wu 1989c), butajezeel to consider multi-ended feed-
ers. There are no restrictions in adopting the more det&ilstFFlow branch equations proposed in
(Baran and Wu 1989c), but the simplified equations allow adearesentation which helps to focus
on the main points of the paper.

Duréan (1968) proposed a dynamic programming approach t@ssld simplified version of the
problem®ca, for which the distribution feeders are single-ended (lmeotwords, do not have lat-
eral branches) and voltages are supposed close to theilfispealues—in other wordsy = 1 p.u.
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(Gonen 2008). The essence of this approach is briefly destiibthe next section, with the nec-
essary adaptations to address the formulation for the @noff- o presented above, which is more
in accordance with the present-day perception of the pnoblEhese ideas are then generalized to
consider multi-ended feeders (feeders with lateral brasicand instances for which voltage values
can not be adequately approximatedwy: 1 p.u.

3 Duran’s Dynamic Programming Approach

Using the language of dynamic programming (DP), Duran (1@88ociated the nodes of a
single-ended distribution network to tlstages the capacitive reactive power injected at a node
k to the control variableat the node | = Qc,) and the total capacitive power flowing in the arc
immediately upstream (toward the source) from a nottethestateat this node Xx). Since feeders
are assumed to be single-endstétesandcontrol variablessatisfy the followingdynamic equation

Xic = X1 + Uk 5)

Theelementary cosfthe cost over the next stage) for the control actipmpplied at a statsy
is defined a®x(x,Ux) (remember thay is assumed to bed.u),

&% U) = () + et ) e (PL)? + (Qh — )] (6)
teT

Therefore, the iterative functional equation for the dolutof the problemPca by DP can be
stated as follows:

F (%) = Miny, [ex(X, Uk) + F (X+1)]
Xk+1 = Xk — Uk

(7)

whereF () is theoptimal cost functiorirom the statex, at the stagé, which represents the best
allocation of a total capacitive powex, from k until the end of the feeder. The minimization
procedure also gives the optimal control variable for tlagest, Uy (x«); in other words, it provides
the best amount of capacitive power to be placed at the katla total amountx of reactive power
is installed from nodé& down to the end of the feeder. Of course, the recursive opditioin process
must meet Eq. (3).

The iterative functional equation is initialized at the ematle of the feeder (say, at its leaf),

F(%n) = en(Xn,Un), Un=Xq (8)

When the recursive backward computation process with atialu of Eq. (7) reaches the sub-
station (stage 1, the root of the feeder), a solution to thelpm®ca, F(X]), can be easily obtained
by searching over all values 6f(x;),

F(x7) = Miny [F(x1)] )

The optimal placement and size of capacitors in the feeter“@iptimal trajectory”) is recovered
with a recursive forward computation procedure, from tha to the leaf of the feeder,

X =X —Ur(Xg). g = X~ LX) (10)

Figure 2 illustrates this classical DP approach tailoretthéosolution of the problen®ca.
If there is only one arc downstream from each node, this DRoagh requires only one-
dimensionalstates If there is more than one arc emanating from some of the nadgtional
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Figure 2: DP approach to single-ended feeder

statedimensions appear to be needed, one for each lateral bré¥itthsuch a representation, us-
ing DP to compute a solution for real feeders with many lateranches would meet “the curse of
dimensionality”, a term coined to express the fact that tmaputational &ort grows exponentially
with the dimension of the state vector—a property that tuhesproblem intractable (Garey and
Johnson 1979). This might be the reason for which DP has lmegatfen as a technique to solve
the capacitor allocation problem.

4 The Extended Dynamic Programming Approach

In essence, instead of increasing the dimensiostatie variables for each additional down-
stream branch, the Extended Dynamic Programming (EDP)oapprproposes simple auxiliary
optimization problems that projects the problefg,a, into a one-dimensional DP representation.

4.1 Key Concepts

To simplify presentation, it will still be assumed that \age magnitudes can be adequately
approximated byy = 1 p.u. This assumption will be dropped later, in Section 4.2, Whitscusses
instances for which voltage monitoring is necessary.

The main concepts proposed by Duran (1968) to embed thegmd®¢ 5 into a dynamic pro-
gramming solution framework are still valuable when disition feeders are not single-ended.
Namely, nodes in distribution feeders are associated stitesand the capacitive reactive power
(Qc,) injected at a nodk is associated with theontrol variableat the nodeux = Qc,). In addition,
the elementary cods the same—the influence of lateral branches will be consitim Eq. (11).

For a while, suppose that trstate (x«) is still the total capacitive power flowing in the arc
immediately upstream from the no#e Note that Eq. (5) is no more true if more than an arc
emanates from node as illustrated in Fig. 3. The inclusion of an additional dimsion in the state
is an alternative to deal with this problem; the state at esaabek + 1 would be a vector with as
many dimensions as the number of branches emanating fronottee If, for instance, two branches
emanate from a node the dynamic equation for the node wouldXpe= X111 + Xk+1.2 + Uk, instead
of Eq. (5). However, in the forward process to recover thenuogit trajectory, it would only be
possible to recover the sury, 11+ Xk+12, leaving an indetermination regarding the value of each
Xk+1,j-

A first thought to overcome the indetermination about theeaf eachx.. 1 j under the frame-
work of conventional dynamic programming would be to keapdtditional state dimension in the
backward process, up to the root. As such, a state dimensoitdvibe necessary to store infor-
mation about each lateral branch of the feeder. Howeves,ribt advantageous to delve further in
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Figure 3: Does the Problem Need a Multidimensional DP Athoni?

this direction. The multidimensional state would be neagsenly to uncover the optimal share of
capacitive power for each branch emanating from a nodée “optimal share” is the clue.

The key concept to allow the consideration of lateral brasdit a node in a DP solution frame-
work is to redefine thetateat a nodek as “the total capacitive power flowing in the arc immediately
upstream, optimally divided among all branches emanatimim k”. The essence is indeed as sim-
ple as this, but it is necessary to fathom the consequendessafew concept.

1. How to find the optimal share of capacitive power for ea@nbh emanating from a node?
2. How are the DP backward and forward process$kested by the new concept?

Auxiliary optimization problems that project the multidémsional informations into one-dimension
and the definition of a vector-valuegptimal share functionfor each node with lateral branches,
will open the path to cope with both the questions above. Bgioobing further, note that the new
definition ofstatereduces to the former if only one state emanates from each (wdten the feeder
is single-ended).

Formally, the following auxiliary optimization problemsust be solved during the dynamic
programming backward optimization process, for each rkodih lateral branches:

F(X+1) = Minyy, ;13 Y jes F (ki)

11
Xicrl = 2jed X1, (11)

whereJ is the set of indexes of lateral branches at the roded x, 1 j is the state at nodek* 1",
branchj (j € J). These problems are easily solved with the usual enumaratiocess of dynamic
programming.

The solution process also gives the vector-valoptimal share functiomy, 1,

Ok+1 %—>%1

where; is the number of branches emanating from nkdehe cardinality of sed).

XE+ 1,1
X12+ 12

X(Iz+1,j

Ok+l(Xk+1) = (12)
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The pointsxﬁﬂ’l, xﬁﬂ’z, e xﬁﬂ’j of Ox;1(X+1) are the values for which Eqg. (11) achieves the min-
imum value, on each hyperplamg 1 = ¥ jcj X+1,j (Bertsekas 1995).

In solving Problems (11), the multidimensional informatcstored in the set aftates associ-
ated with the branches emanating from the nlodee projected into an equivalent one-dimensional
optimal representation. This procedure is equivalent¢ating a dumm¥+ 1 node and correspon-
dentxy, 1 statethat embody the multidimensional informations. The optipeatition of capacitive
power among the arcs that emanate from a node and the assamidimal cost function Bx,1)
are found and stored at the points of the feeder where theyesressary for the DP backward op-
timization process and forward recovering of the optimajeictory. No additional dimension for
the stateis necessary to achieve this synthesis and nothing is lostpared with a conventional
multidimensional dynamic programming approach. Figuiléudtrates the projection procedure for
an example with two lateral branches emanating from a kode

—

XA\/V

Xy

Figure 4: Dealing with lateral branches

The recursive dynamic programming process starts at thedeaf the feeder. For every node
k with lateral branches, a projection problem is solved anaptimal share functior(Ok,1) is
determined. Analogous to single-ended feeders, the ilterkunctional Equation (7) is solved at
each nodé.

When recovering the optimal trajectory in the forward pahge, for nodes without lateral
branchesxy,; is obtained in the same way as single-ended feeders, aghgn(10). When more
than an arc emanates from a nqdeach optimal shareg, ; i is obtained by applying theptimal
share functiorat X« 1, Ox;1(Xk:1). The recovery process continues, starting from e@g{]j, until
it reaches all leaves of the feeder.

4.2 Considering Dfferent Voltage Magnitudes {x # 1 p.u.)

The main points to be addressed in order to take into accaffetehces in voltage magnitudes
in multi-branched feeders are how to compufiecently the voltages values in a multi-branched
feeder and, most importantly, if the solution of Probl®a changes when fferent voltage values
are taken into account. The graph representation of theapyimlistribution feeder provides help,
once again; both points are easily handled.

Consider that the optimal capacitor allocation probléPaa, has been solved with the EDP
approach. Consequently, all power flows for the feeder amvkn Now, in order to compute
efficiently the voltages values in a multi-branched feedemfices to visit all nodes of the feeder
with a preorder traversalof the graph (Ahuja et al. 1993), evaluating the voltage eslat each
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node by Eq. (4); in other words, it fices to compute voltage magnitudes following theead(j)
index (discussed in the previous section).

\Voltage regulators, if installed on the network, have toddeh into consideration when com-
puting voltage magnitudes along the feeder. When a volteg@ator is installed in a nodeof the
feeder, the regulated value of the voltagé(l should be obtained after the computation/pf

Vi =0(V)

where the functiorgk represents the operation rule of the voltage regulatorerAfte computation
of (V}(, the computation of voltages goes on for the nodes dowmstfeam nodek, using Eq. (4)
and consideringvf( as the voltage at node

Having knowledge of the voltage magnitudes after the alionaf capacitors, the problefca
is solved again, but now substituting teeementary cost€xx, Uk, Vk) given by Eq. (13), which
considers the influence offeierent voltage magnitudes, for teeementary cosgiven by Eq. (6).

&(Xi, Uk, Vic) = T (u)+
[(PY*+(Q-u)?] (13)

+et LteT Ttlk V)2
If the placement and size of capacitors remain the samepth8an found is optimal. Otherwise,
if the placement or the size of at least one capacitor changiage magnitudes should be recalcu-
lated and the problem solved again. The process is repeatitthe solution remains unchanged.
Thus, the method to considelfidirent voltage magnitudes along the feeder goes as follows.

Step 1. Solve problemPca with EDP using Eq. (6) to compute tledementary cosfconsidering
Vg = 1p.u);

Step 2. Compute the voltage value for each node of the feeder, by4xg. (

Step 3. Solve problemPca with EDP using Eq. (13) to compute tledementary cosfconsidering
Vk #1p.u);

Step 4. Compare the current capacitor allocation solution withpghevious one. If the solution is
different, return té&tep 2 Otherwise, stop; the current solution is optimal.

Note that from a rigorous mathematical stand point thisittee procedure can only assure local
optimality for the actual state of voltage values. The ptysif the problem provides the additional
argument for global optimality; as voltage magnitudes gessmoothly along the feeders, there are
no extemporaneous voltage magnitude profiles that woubsivagblutions to be too far away from
each other.

5 The Complexity of Extended Dynamic Programming

Call Qmax the number of possibleontrolsfor a given node, which correspond to the number
of possible capacitors that could be installed at the nodso,&allN the number of nodes of the
feeder andlnax the maximum number of lateral branches at a node—in rearnost, usually¥max
does not exceed 3 (Willis 2004).

The main steps for solving any problefg A with EDP are the following:

1. solve Eq. (8) for eackeaf node: the number of computations to solve Eq. (8) forledf
nodes is bounded by N_Qmax Wherec; is a constant andil_ is the number ofeaf nodes.
SinceNp < N, thenc; N Qnaxremains a valid upper bound;

2. solve the DP lterative Functional Equation (7) for each leaf node: the total number
of computations to solve the Iterative Functional Equationfor all nodes is bounded by
c2NQmay’, Wherec, is a constant;
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3. solve the Projection Equation (11) for each node withrédteranches: the total number of
evaluations to compute the Projection Equation (11) is HedrbyczNgQmax™, wherecs
is a constant antllg is the maximum number of lateral branches. Sihge< N, the total
number of evaluations is, for better reasons, boundecs Ny a,™2;

4. recover the “optimal trajectory”, using Eq. (10) and th@imal share functiongiven by
Eq. (12): the forward process to recover the “optimal ttajg¢ computes onstateand one
control for each node, therefore is boundeddgil computations, where, is a constant.

Thus, the number of computations to solve the capacitocaiion problentPca with EDP is
bounded by

N -[Co + C1Qmax+ CZQmax2 + C3Qmameax] € O(N Qmameax)-

Real instances have numbers of contr@%4,) and maximum number of lateral branchdg,{y)
limited by small integers. Therefore, it is possible to ddas the quantity inside the brackets
as a constant. Under this assumption, the EDP algorithm has linear coxitgledescribed by
cN e O(N).

6 Considering Switched Capacitors

Itis simple to study the optimal allocation of switched ceipas instead of fixed capacitors with
the EDP approach discussed so far. Indeed, the only negessarge is to consider the possibility
of the best tap adjustment fag, when computing thelementary cosn Eqg. (6) and (13).

A more interesting study is to consider the optimal allamatf both fixed and switched capac-
itors. Here is a case where two dimensions fordtedeat a nodek is necessary: one to represent
the total fixed capacitive power flowing in the arc immediatgbstream, optimally divided among
all branches emanating froky the other to represent the total switchable capacitivegpdlowing
in the arc immediately upstream, optimally divided amondpednches emanating froka

All concepts presented here can be easily extended to adithegeneralized problem of plac-
ing both fixed and switched capacitors on the network. Als@s simple to verify that the EDP
algorithm for the problems still have linear complexity ciéised bycN € O(N), with a larger value
for the constant. Programming, however, is harder (much harder).

7 Case Studies

Four networks from dferent distribution systems were used to evaluate the ED@agip. The
first one (A) is the 70-bus test system adopted by Baran andBaka( and Wu 1989a). The other
networks are real large scale instances of distributiotesys in the state of S&o Paulo (Brazil): a
2645-bus system (B), a 6246-bus system (C) and a 7500-btesrsy®). The feeders in system B,
C and D have significant voltage drops and power losses.

Table 1: Main Data for the Distribution Networks

Network Number Number Nodes wl | Total Total
of Nodes | of Feeders| Branches| MW MVAR

A 70 1 7 3.80 2.69

B 2645 11 511 42,76 | 20.72

C 6 246 30 1143 131.97| 66.90

D 7500 10 1304 61.60 | 29.57

The capacities and costs of the capacitor banks are surmaddniZlable 2. Other parameters

used were an energy value of 60 UB$Vh and a 5 year payback period for investments in capac-
itors, with interest of 15%. Two éierent load scenarios are considered: the scenario adapted f
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allocation of only fixed capacitor banks consider a singteetinterval (in other worddl = 1 in the
problem®ca); the scenario adopted for studies of allocation of bothdfiaad switched capacitor
banks uses load profiles with fivefidirent levels (0.3 1.0 0.8 0.8 0.6), with duration of (6 6 6 3 3)
hours, respectively.

Table 2: Capacitor Banks

Capacity (kVAr) | Fixed Bank | Switched Bank
Cost(US$)| Cost(US$)
150 3494 4494
300 3553 4553
450 3628 4628
600 4026 5026
900 4992 5992
1200 5958 6958

Two different versions of the EDP algorithm were considere@®P-1 which considersy =
1 p.u.andEDP-2which considersy # 1 p.u. (using the method described in Section 4.2);

All algorithms were coded in €+ using theGCC 4.3compiler without optimization flags.
Computational tests were run on a PC with a Core 2 Quad 3.0 Gbtegsor and 4 GB of RAM,
running under GNULinux.

Table 3 presents the energy savings obtained, with the EBR3EDP-2 versions of the EDP
approach. The computation of initial and final losses in liabiles considers voltage drops along
the feeders. The “Time” columns give the execution timesgiconds.

Table 3: Results for the two approaches

Network Initial EDP-1 EDP-1 EDP-1 EDP-2 EDP-2 EDP-2
Losses (kW) | Losses kW | Savings % | Time Sec| Losses kW| Savings % | Time Sec

A 39.42 28.65 27.4 0.008 28.65 27.4 0.008

B 1261.84 991.62 215 0.256 979.92 21.5 0.364

C 3428.99 2738.06 20.1 0.992 2706.19 21.1 1.396

D 3168.98 2345.86 26.0 1.280 2281.79 28.0 1.720

Table 4 presents the economic benefits of the solutions tsen§DP-1 and EDP-2 algorithm,
respectively, considering the value of energy savings badcost of capacitors. Both tables also
give the total capacitive power installed on the networks.

Table 4: Economic Benefits of the EDP-1 and EDP-2 approaches

Network Initial EDP-1 EDP-1 |EDP-1Total| EDP-2 EDP-2 |EDP-2 Total
Cost (US$ ) Cost (US$ ) Savings (%),  (kVAr) Cost (US$ ) Savings (%)  (kVAr)
A 20721 16548 21.2 900 16548 21.2 900
B 663224 546563 17.6 15300 542 306 18.3 16 650
C 1802280 | 1512260 16.1 44250 1502670 16.7 49050
D 1665610 1271030 23.7 22050 1245870 25.3 28500

The results presented in Table 3 and Table 4, allow the fatigwbservations:

1. EDP is a feasible approach to find the best places and dsires of shunt capacitor banks
on radial real scale distribution feeders;

2. When voltage drops are significant, their representatgmimprove the decisions about ca-
pacitor allocation;

3. Processing times for both EDP algorithms are very sheeh ér large feeders;
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4. Processing times are approximately proportional to tirelver of nodes in the feeders, con-
firming the linear complexity;

5. The processing times for applying the EDP-1 and EDP-2cgmres to network A are roughly
the same, because for this small instance the set up time girtigram is significant, com-
pared to the total time required to solve the problem;

6. The processing times for applying the EDP-2 approachagodiworks B,C, and D are a little
shorter than twice the processing times for applying the HRPproach; this occurs because
EDP-2 converged with two iterations (and because the totalgssing time includes the set
up time).

8 Conclusions

Four decades ago Duran proposed the use of dynamic prograrimaddress the capacitor
allocation problem (Duran 1968). However, his approachdconly address the problem for single-
ended feeders, a limitation that hid the value of his ideas.

The Extended Dynamic Programming (EDP) approach developéus paper allows to lift
the simplifying assumption of single-ended feeders antwsicler other important aspects of the
capacitor allocation problem on radial distribution netkgo

1. Finding a global optimal solution for the problem;

2. Take into account ffierences in voltage magnitudes and voltage regulation;

3. Contemplate all possible load level combinations (fahetame period and each node of the
network);

4. Considering switched capacitors.

Case studies with real size distribution networks certit@P with field tests. Bellman’s Principle
of Optimality (Bellman 1957) provides the formal backgrduie assure that the approach unveils
global optimal solutions.

A key concept for the design of EDP was the new definitiorstateat a node, as the total
capacitive power optimally divided among all branches emtiag from the node. Auxiliary op-
timization problems that projected multidimensional mfiations into one-dimension equivalents
and a vector-valuedptimal share functiorfor each node with lateral branches were the comple-
mentary conceptual tools employed.

The EDP algorithm has a linear time complexity describedchy(see Section 5), where
is a constant andN is the number of nodes in the network. The framework of comupurtal
complexity (Papadimitriou and Steiglitz 1982) allows twdi#ional conclusions to be drawn from
this property.

e An internal conclusion, to do with the algorithm: under tiesw@mptions of Problerfca,
EDP is an “dficient algorithm” (in a formal sense) to address the capaeitocation prob-
lem.

e An external conclusion, to do with the knowledge EDP brinlgswd the nature of the prob-
lem: since there is an fecient algorithm” to solve the capacitor allocation problemradial
feeders, it can not be considered affidult problem” (for which heuristic methods would be
required).

To sum up, the Extended Dynamic Programming approach hasoéaealities that allows it a
prominent role in addressing the shunt capacitor allongifeblem on radial distribution networks.
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