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RESUMO 
Neste trabalho é apresentado um estudo computacional da busca tabu paramétrica para resolver 
problemas de programação inteira mista (PIM) com variáveis binárias. Trata-se de uma heurística 
genérica para problemas PIM gerais que resolve uma série de problemas de programação linear 
ao incorporar desigualdades de ramificação de variáveis inteiras como termos ponderados na 
função objetivo. Novas estratégias são propostas para encontrar soluções de alta qualidade e 
extensivos testes computacionais são realizados em instâncias da literatura. 

 

PALAVRAS CHAVE. Programação inteira mista 0-1. Ramificação penalizada. Busca tabu. 
Metaheuristicas  

 

 

ABSTRACT 
We present a computational study of parametric tabu search for solving 0-1 mixed integer 
programming (MIP) problems, a generic heuristic for general MIP problems. This approach 
solves a series of linear programming problems by incorporating branching inequalities as 
weighted terms in the objective function. New strategies are proposed for uncovering feasible and 
high-quality solutions and extensive computational tests are performed on instances from the 
literature. 

 

KEYWORDS. Mixed integer programming, Penalized branching, Tabu search, Metaheuristics 
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1. Introduction 

 
The new versions of MIP commercial solvers allow the user to have a greater control on 

parameter settings that yield better performance for solving a specific model. However, in some 
complex cases, a general-purpose solver may not be an adequate choice, and one tends to develop 
a heuristic, thus loosing the advantage of working in a generic and well-explored framework. 
Recently, generic heuristics for solving MIP problems have been proposed in the literature that 
interact with a commercial MIP-solver in order to quickly find a high quality solution or the first 
feasible solution (see, for example, Achterberg and Berthold (2007), Danna et al. (2005), 
Fischetti and Lodi (2003), Fischetti et al. (2005)). This approach allows a promising integrated 
way for obtaining multiple high quality solutions in a reasonable time. 

In this paper, we present an implementation of the core version of parametric tabu search, 
a generic heuristic for solving MIP problems proposed by Glover (2006) that solves a series of 
linear programming problems incorporating branching inequalities as weighted terms in the 
objective function. The approach extends and modifies a parametric branch-and-bound proposed 
by Glover (1978), by replacing its tree search memory by the adaptive memory framework of 
tabu search that provides greater flexibility and facilitates the use of strategies outside the scope 
of tree search. Computational experiments are conducted on instances from the literature and 
results are compared with those obtained by the objective feasibility pump suggested by 
Achterberg and Berthold (2007). 

The 0-1 mixed integer program is represented as  
dycxxMinimizeMIP +=)( 0  

Wyxtosubject ∈),(  
Xx∈  

 
where  
 0},,:),{(= ≥≥≥+ xebDyAxyxW  

 
 },0{= integerxandxeX ≥≥  

A  and D  are matrices of dimensions )( nm×  and )( pm× , respectively, e  denotes a vector 
with all components equal to 1, x  is the vector of binary variables and y  represents the vector of 
continuous variables. Assume that the inequalities bDyAx ≥+  include an objective function 
constraint ε−≤+ *

0xdycx , such that *
0x  is the currently best known solution value to (MIP) and 

ε  is a small positive number. 
The linear programming (LP) relaxation of (MIP), which contains only the restriction 
Wyx ∈),( , will be denoted by (LP). A vector ),( yx  is said to be LP feasible if it is feasible for 

(LP), and a vector x  is integer feasible if the components of x  are integers, and hence a (MIP) 
feasible solution is one that is LP feasible and integer feasible. 
 
2. Principles of Parametric Tabu Search 
 

Closely following Glover (2006), we now describe the principles of the search. Let +N  
and −N  denote selected subsets of },{1,2,= nN Λ , the index set for x . Consider the set 

' =N N N+ −∪ , and let x X′∈  be a trial solution such that its components are ',jx j N′ ∈ , and 

the remaining components 'NNj −∈  are disregarded. 
As in parametric branch-and-bound, the parametric tabu search attempts to impose the 

following conditions:  
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 , ( = 1) ( ),j j jx x j N if x UP+′ ′≥ ∈  
 

 , ( = 0) ( ).j j jx x j N if x DN−′ ′≤ ∈  

The conditions (UP) and (DN) represent goal conditions and jx′  is called the goal value. 
Such conditions are not enforced directly as in branch-and-bound but rather indirectly by 
including them in the objective function of the problem (LP). The resulting linear penalized linear 
programming, in which jM  denotes a positive weight is given by  

 )(1=)( 0
'

jj
Nj

jj
Nj

xMxMdycxuMinimizeLP −+++ ∑∑
+∈−∈

 

 .),( Wyxtosubject ∈  
The problem (LP ' ) is said to target the conditions (UP) and (DN). A two-phase approach 

is used to solve (LP ' ), by first creating a primary objective that disregards the component 
dycx + . In the optimal solution of this phase, the non-basic variables are fixed at their current 

assigned binary values. In the second phase, the component dycx +  is minimized over the 
residual constraints. 

In the first phase we used an approach to the weight jM  which places more emphasis on 
recent goals and then it decays exponentially according to the number of iterations, which is 
expressed as  

,10;)(],)[(1= )( otherwiseGIterIterNIterifrM j
GIterIterNIter

j
j ≥−−+ −−  

where jGIter  denotes the iteration where a goal for the variable was established, Iter the current 
iteration, NIter a parameter that indicates the number of iterations that this memory lasts, r  a 
parameter that defines the magnitude of the weight jM  during NIter, and the operator ][⋅  rounds 
a real number to its nearest integer number. 
 The parametric tabu search method starts with an instance of (LP ' ) associated with the 
original linear programming relaxation, when 'N  is empty. An optimal solution of an instance of 
(LP ' ) is represented by ( , )x y′′ ′′  and as we are interested in the optimal values of the binary 
vector x′′ , we refer to x′′  as the solution of (LP ' ), with the understanding that y′′  is implicit. 
The parametric TS method proceeds by using information from the solution to (LP ' ) and an 
associated new instance (LP ' ), which corresponds to the next iteration. 
 
2.1. (LP ' ) Transitions 
 

The transition from one instance of (LP ' ) to another is based on rules that define a new 
goal value jx′  as one of the values jx′′⎣ ⎦  and jx′′⎡ ⎤ . There are three types of transitions (T-UP), 
(T-DN), and (T-FREE), expressed as follows: 

 (i) Set := 1j jx x′ ′′⎣ ⎦ +  and add j  to +N  (to target) j jx x′≥   (T-UP). 

 (ii) Set := 1j jx x′ ′′⎡ ⎤ −  and add j  to −N  (to target) j jx x′≤   (T-DN). 

 (iii) Remove j  from 'N  (to release jx  from (UP) and (DN))  (T-FREE). 
The execution of these transitions for a suitable set of values depends on two types of 

conditions, called goal infeasibility and integer infeasibility, describe next. 
 

2.2. Goal infeasibility 
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An optimal solution =x x′′  to (LP ' ) is said to be goal infeasible if it violates a current 

goal condition (UP) or (DN), i.e., 
 (i) for some , <j jj N x x+ ′′ ′∈   (V-UP) 

 (ii) for some , >j jj N x x− ′′ ′∈   (V-DN). 
A variable associated with a violation (V-UP) or (V-DN) is called a goal infeasible 

variable, and let }:{= ' infeasiblegoalisxNjG j∈ . The primary goal response to such an 
infeasibility consists of defining new goals in the opposite direction for a selected subset 

GGp ⊆  such that })()(:={ ' executedisUPRorDNRresponseprimaryNjGp −−∈ , 
i.e., 

(i) If < ,j jx x j N +′′ ′ ∈ , transfer j  from +N  to −N  and set = 1j jx x′ ′′⎡ ⎤ −   (R-DN). 

(ii) If > ,j jx x j N −′′ ′ ∈ , transfer j  from −N  to +N  and set = 1j jx x′ ′′⎣ ⎦ +   (R-UP). 
In addition to the primary responses, we define a secondary goal response that consists of freeing 
a goal infeasible variable that belongs to set G . Correspondingly, a selected subset GGs ⊆  is 

such that },.,)(:{= 'NfromjremoveeiexecutedisFREERresponseGjGs −∈ . A 
measure called goal resistance jGR (UP) or jGR (DN) of each variable Gjx j ∈,  represents 
the amount of violation (V-UP) or (V-DN) resists the imposition of the associated goal condition 
(UP) or (DN). Since a higher resistance value cause a higher impact value on the objective 
function of (LP ' ), we then choose the pg  variables in G  with largest goal resistance and the sg  

variables in sG  are those with largest goal resistance over pGG − . In the presence of goal 

infeasibility we always choose 1≥pg , but we may have 0=sg . Goal resistance measures are 
discussed in section 4. 
 
2.3. Potentially goal infeasibility 
 

A variable jx  is called potentially goal infeasible if it is goal feasible, but a limited 

change in jM  causes jx  to become goal infeasible. In order to deal with such variables, a 

measure of goal resistance related to the decrease in jM  is given by 0
jGR  = jRC− , where 

jRC  is the LP reduced cost for the variable jx  associated with an optimal solution to (LP ' ). 
Goal infeasible variables are considered more important than potentially goal infeasible variables, 
and the goal resistance values jGR  of the first variables are larger than the goal resistance 0

jGR  
of the latter. Potentially goal infeasible are identified by sorting all goal feasible variables in 
decreasing value of 0

jGR  and then selecting the first 0T  variables to be admitted as potentially 
goal infeasible. The primary and secondary goal responses for potentially goal infeasible 
variables are similar to those applied to variables that are goal infeasible, i.e., if a variable 
belongs to pG , its goal is inverted, and if it belongs to pG , it is freed from being goal infeasible. 

 
2.4. Integer infeasibility 
 
 Let = { : = }j jF j N x x is fractional′′∈ . A variable jx  is called unrestricted fractional 
variable if is fractional but does not have a goal. Such variables are defined by the set 

GFD −= . There is no specific primary transition for the case of integer infeasibility, and we 
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may select a preferred transition (T-UP) or (T-DN). The relative preference for an unrestricted 
variable jx  is based on a choice preference measure jCP  that depends on the up penalty 

jIP (UP) and the down penalty jIP (DN), also discussed in section 4. For DD ⊆0 , the 

|=| 00 Dd  variables with largest values of jCP  are selected to have goals associated with the 

following responses: if jIP (DN) ≤  jIP (UP), 0Dj∈ , execute (T-DN), otherwise execute (T-
UP). 
 
3. Tabu Search 
 

A tabu restriction is associated to an (R-DN) or (R-UP) response for a given variable, by 
forbidding the response from being executed, if the opposing response was executed within the 
most recent tabu tenure iterations. Let jTabuTenure (UP) and jTabuTenure (DN) denote the 

tabu tenure of a variable jx  if the restriction was activated by an (R-DN) or (R-UP), 

respectively. Let α  denote the condition UP or DN and β  denote the opposite condition. When 
the reaction (R-α ) is triggered, the reaction (R-β ) becomes tabu for a number of iterations that 
is selected from the interval [ αjTabuTenure , MaxTenure] with uniform distribution. In our 

implementation, the duration of αjTabuTenure  ( βjTabuTenure ) starts from a minimum 
value and is increased by a factor that is proportional to the number of binary variables and has 
an upper limit. After a given number of iterations, and each time the best solution is updated, the 
tabu tenure of all variables are set to a minimum value. 

The aspiration criterion in tabu search allows a tabu response to be released from a tabu 
restriction if the response has special merit. In the present context, we consider the aspiration by 
resistance, based on the greatest resistance a specific response has generated in the past. Let 

jAspire (DN) and jAspire (UP) denote the largest goal resistance jGR (DN) and jGR (UP) 

that occurred for jx  on any iteration in which this variable was chosen to execute an (R-UP) or 

(R-DN). The tabu restriction for an (R-UP) response is disregarded if jGR  (DN) >  

jAspire (UP) Analogously, the tabu restriction for an (R-DN) response is disregarded if jGR  

(UP) >  jAspire (DN). 
 A response is called admissible if it is either not tabu or else satisfies the aspiration, and 
is called inadmissible, otherwise. If the response for a goal infeasible variable is inadmissible, 
then the variable is not permitted to enter the sets pG  and sG . The only exception to this rule is 

when pG  is empty. In this case the aspiration by default that allows pG  to contain a variable 
with a smallest remaining tabu tenure is used. 
 
4. Measures and Cardinality 
 

In this section we present two measures for goal infeasibility jGR  and choice 

preference jCP  associated with a variable jx , as well as the definition of the cardinality of sets 

sp GG ,  and 0D . 
 

4.1. Measures for goal infeasibility and choice preference 
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i) At the simplest version =| |j j jGR x x′′ ′−  that identifies how distant is the (LP ' ) 

solution jx′′  from its current goal value jx′ . For the integer penalty, we first compute the fractions 

=j j jf x x+ ′′ ′′⎡ ⎤ −  and =j j jf x x− ′′ ′′− ⎣ ⎦ , and then we set −+
jjjj fDNIPfUPIP =)(,=)( . The 

choice preference is expressed as  
 )|)()())(|()((= wDNIPUPIPDNIPUPIPCP jjjjj +−+  

 where w  is a small positive weight to give additional influence to the sum of the penalties, as in 
the case when their absolute difference is zero. 

 ii) When a new (LP ' ) is defined, every new added goal that is satisfied causes an 
increase in the objective function of (LP ' ). However, when the goal infeasibility condition is 
reached, the inversion of a set of goals may result in a decrease in the objective function of (LP ' ). 
Thus, at a more sophisticated level, the goal resistance jGR  can be defined as an estimate of the 

variation in the objective of (LP ' ). We use the estimate given by reliability branching proposed 
by Achterberg et al. (2005). At the beginning of the search the upward +

jψ  and downward −
jψ  

pseudocosts of a variable are not reliable due to the lack of information, and in this case strong 
branching is applied to all variables that take on a fractional value and for each variable this 
mechanism is repeated until its pseudocost become reliable. At this point the pseudocost for each 
variable is fixed, thus avoiding the use of post-optimization dual simplex in (LP ' ). Reliability 
branching was applied with success to select branching variables in the cut-and-branch method 
for solving instances from the literature. For this reason this technique was used to compute 
measures of goal resistance and integer penalty. The integer penalties are given by jIP (UP) = 

++
jjf ψ  and jIP (DN)= ++

jjf ψ . The choice preference is given by  

 )}(),({max)}(),({min)(1= DNIPUPIPDNIPUPIPCP jjjjj μμ +−  

 where μ  is a parameter such that 10 ≤≤ μ . 
 
4.2. Cardinality of sets 
 

A simple scheme for determining the cardinality of the sets sp GG ,  and 0D  is to define 

suitable positive fractional parameters dsp fff ,, , and then set |,||==| 00 DfDd d×  

|||==||,||==| GfGgGfGg sssppp ×× . This scheme is restrictive in that the fractional 
parameters do not change as the search evolves. The following adaptive strategy here proposed is 
more elaborate and defines the cardinality of the sets according to the conditions of the region 
that is being visited. The idea of the algorithm shown below is to seek to solve the goal 
infeasibility condition by inverting a small number of goals and if this infeasibility persists the 
emphasis is shifted to free a large number of variables with unsatisfied goals. Consider the 
parameters 2 1> 1, 0 < < 1, 0 < 1, 0 < 1sk fδ δ ≤ ≤ , the maximum value 1<0 max ≤df  for the 
fractional parameter df  and the extreme set cardinality values minminmax ,, sp ggg . Let Iter  
denote the current iteration and IterTrans  the iteration where the search transits from the integer 
infeasibility condition to the goal infeasibility condition or when the search remains for mk ×  
consecutive iterations in one of these conditions. The dynamic cardinality of sets sp GG ,  and 0D  
is defined by the following algorithm. 

Step 0. Initialization. 00,,, minmin ←←←← IterIterTransgggg sspp , initial 
condition: integer infeasibility 
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Step 1. Search is in the integer infeasibility condition. If mkIterTransIter ×− >)(  
then ),(min 2max δ×← ddd fff , and IterIterTrans ← . Go to step 3. 

Step 2. Search is in the goal infeasibility condition. If mkIterTransIter ×− >)( , and if 
)>( maxgg p  or )>( maxggs  then 1←pg  and |)|,(max max Gfgg ss ×← . Else, increase 

alternatively the parameters pg  and sg  by one unit. 

Step 3. Construction of a new (LP ' ). 1+← IterIter . Create new goals, update the tabu 
list if the current (LP ' ) is goal infeasible, and solve the new (LP ' ). If the current (LP ' ) is integer 
infeasible and the new (LP ' ) is goal infeasible, set min1, ppdd ggff ←×← δ  and minss gg ← . 

If the new (LP ' ) is goal infeasible go to step 2, else go to step 1. 
In step 1, the fraction of unrestricted fractional variables is defined as 

),(min 2max δ×← ddd fff  and as long as maxdd ff ≤ , this parameter is slightly increased, for 
example, 1.05=2δ  at every mk ×  consecutive iterations in the integer infeasibility condition. 
Since 1<<0 1δ , the fraction df  is decreased in step 3 according to )( 1δ×← dd ff , and this 
reduction always takes place when the search changes from the integer infeasibility condition to 
the goal infeasibility condition. The reasoning of this policy is to establish several goals at each 
iteration, while the search remains in the integer infeasibility condition. When the search transits 
from the integer infeasibility condition to the goal infeasibility condition, the fraction df  is 
substantially reduced by setting, for example, 0.5=1δ . 

Step 2 deals with the goal infeasible condition and the search tries to resolve conflicts, by 
altering the minimum number of established goals. Tipically, 1=minpg  and 0=minsg , which 
implies that one goal is changed and no goals are removed. At every mk ×  consecutive iterations 

pg  and sg , in that order, are alternately increased by one unit. If pg  or sg  reach maxg  and the 
goal infeasibility condition still persists after the following mk ×  iterations, the objective is to 
move a large number of variables from their goal condition to the free condition and hence 

|)|,(max Gfgg smaxs ×←  and 1←pg . Every time the search leaves the goal infeasibility 

condition, pg  and sg  are reset, respectively, to the initial values minpg  and minsg  in step 3, 

where a new (LP ' ) is constructed. Better results were achieved by using the adaptive strategy.  
 

5. Core parametric tabu search 
 

In its initial execution, the core method begins by specifying (LP ' ) to be the original 
relaxation (LP) of (MIP), where no goal conditions exist and 'N  is empty. It then proceeds as 
follows. 

Step 1. Solve (LP ' ) to obtain an optimal solution ),( yx ′′′′ . If this solution is (MIP) 
feasible, update *

0x  and repeat this step to re-optimize (LP ' ). If (LP ' ) has no feasible solution, the 
method stops and the best solution is optimal. Terminate the solution process if this step has been 
executed a chosen number of times. Otherwise, continue to Step 2. 

Step 2. (a) If the solution to (LP ' ) is goal infeasible, create the sets pG  and sG  to consist 

of the pg  and sg  highest ranking goal infeasible (and potentially goal infeasible) admissible 
variables from G , defining admissibility in relation to the current tabu restrictions and aspiration 
criteria. (b) If the solution to (LP ' ) is not goal infeasible, but is integer infeasible, create the set 

0D  to consist of the highest ranking unrestricted fractional variables from D . 
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 Step 3. According to the outcome of Step 2, generate the new goal conditions and 
identify the new problem (LP ' ). If the stipulations of Step 2(a) apply, update the associated tabu 
tenures and aspiration values. Then return to Step 1. 
 
5. Computational tests 
 

The algorithms of the core parametric tabu search were coded in C++ by using the 
version 4.0.2 of the GCC compiler and computational tests were carried on a PC Intel Pentium IV 
3.2 GHz, 3Gbyte RAM with the operating system Linux Fedora 4. We tested our implementation 
on 78 instances from the MIPLIB  (Achterberg et al., 2003) and the Mittelmann (2003) test set, 
and present the best solution values for the parametric tabu search versions PTS-GD and PTS-
RB, which denote the goal distance and reliability branching associated with the measures i) and 
ii) for goal infeasibility, respectively. Such results are compared with the first feasible solution 
values obtained by the objective feasibility pump (Achterberg and Berthold, 2007) and the the 
best solution values of CPLEX 10 after the root node was solved and the heuristics were applied. 
As in (Achterberg and Berthold, 2007) we applied the MIP preprocessing of CPLEX prior to 
running parametric tabu search and we also set a time limit of one hour in all runs of each 
instance. The instances of (LP ' ) were solved by CPLEX. The values of the parameters used in 
our implementation are as follows. The weight jM  depends on the parameter NIter that 
expresses the number of iterations that the memory of an UP or DN condition lasts for a variable 

jx  was set to 64. The positive parameter r that establishes the influence o the weight jM  has 
value 0.2. For almost all instances, the parameter ε  in the objective function constraint 

ε−≤+ *
0xdycx  was set to the value 1. The exceptions are the instances modglob and glass4, 

which have very large objective functions values, and for this reason the parameter ε  takes on 
the values 1000 and 450,000, respectively. The parameters w and μ  related to choice preferences 
assume the values 0.01 and 5/6, respectively. The parameter values for the adaptive strategy that 
defines the cardinality of the sets sp GG ,  and 0D  are: 0.05df = , max 0.3df = , 0.05sf = , 

min 1pg = , min 0sg = , 0.25k = , max 3g = , 2 1.05δ = and 1 0.5δ = .  
Table 1 shows the solution value of each instance for each method as well as the 

percentage relative deviation from the best known solution value. The first column indicates the 
names of the instances, and the remaining columns show the results for each method, namely the 
PTS-GD and PTS-RB versions, the objective feasibility pump (Obj. Feas. Pump) and the 
heuristics from CPLEX (HCplex). Solution values in bold indicate optimal solutions values. The 
symbol ' +0 ' is used for solution values with deviation of less than 0.5%  in relation to the best 
known solution. A bar '− ' means that no solution was found within the time limit of one hour, 
and deviation equals zero means that the best known solution has been reached. The bottom of 
this table displays the mean deviation (Mean) over all instances, the mean deviation over those 
instances for which all methods found a solution, and the number of failures (Failures) which is 
the number of instances for which a method could not find a feasible solution. Therefore, 
Mean(56) indicates that all methods found a solution for 56 instances. The parametric tabu search 
versions obtain a very low deviation as compared with the other methods. However, improved 
feasibility pump presents a much smaller number of failures compared to the other methods. 

Table 2 shows the 78 instances grouped by the range of the percentage deviation relative 
to the best known solutions. For each method the column 'number' indicates the number of 
instances that are in a particular range, and column '%' represents the percentage of this number 
of instances relative to the total of 78 tested instances. The parametric tabu search versions, PTS-
GD and PTS-RB are able to find solutions for 53 instances (68%) and 52 instances (66.77%) 
which have a relative deviation less or equal to 10%, respectively, whereas the improved 
feasibility pump and the CPLEX heuristics find solutions for 30 instances (38.5%) and 34 
instances (43.6%) within the same deviation range. Moreover, PTS-GD and PTS-RB find a larger 
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number of optimal solutions and a fewer number of solutions with deviation greater than 50%, 
when compared to the other methods. 

Since the MIPLIB instances stem from diverse problems we tested the performance of 
the parametric tabu search versions on 57 instances of the generalized assignment problem, 
which can be found in the OR-Library. Table 3 shows the average results of the percentage 
relative deviation from the best known solutions. Each group A, B, C, D, and E corresponds to a 
set of instances, and the complexity of each group increases from A to E. For the easy groups A 
and B the PTS-GD and PTS-RB find good solutions with an average deviation close to 1%, and 
the deviation increases for the groups C, D and E, as expected. The table also shows the mean 
deviation (Mean) over all instances, the mean deviation over those instances for which the two 
versions found a solution, Mean (50) and the number of failures. The results obtained with 
parametric tabu search are promising and we are working on improvements and tests on other 
problems. 
 
Table  1: Parametric tabu search compared with objective feasibility pump and CPLEX heuristics 

   PTS-GD PTS-RB Obj. Feas. Pump HCplex 
Name   Solution 

value  
 Dev. %   Solution 

value  
 Dev. %   Solution 

value  
 Dev. %   Solution 

value  
 Dev. %  

10teams   924   0   924   0   952   3   -   -  
a1c1s1   16685.8   45   16026.5   39   16076.6   40   21029.4   83  

aflow30a   1216   5   1234   7   4105   254   1239   7  
aflow40b   2184   87   2220   90   2049   75   1439   23  

air04   56385  
 0
+

  
 56137   0   57298   2   -   -  

air05   26402  
 0
+

  
 26374   0   26942   2   27291   3  

cap6000   -2.45E+06  
 0
+

  
 -2.45E+06  

 0
+

  
 -2.43E+06   1   -2.45E+06  

 0
+

  
dano3mip   740.876   4   798.588   12   769.3   8   714.125   0  

danoint   656.667   0   70.5   7   87   32   -   -  
disctom   -   -   -   -   -5000   0   -   -  

ds   -   -   -   -   -   -   412,5025   0  
fast0507   175   1   177   2   179   3   177   2  

fiber   498313   23   460130   13   1.21E+06   197   468924   16  
fixnet6   3983   0   3985  

 0
+

  
 4807   21   4435   11  

glass4   2.60E+09   117   4.00E+09   233   3.10E+09   158   -   -  
harp2   -7.02E+07   5   -7.09E+07   4   -5.59E+07   24   -7.26E+07   2  

liu   1614   8   1892   26   4100   174   4674   212  
markshare1   13   1200   6   500   194   19300   230   22900  
markshare2   26   2500   28   2700   365   36400   898   89700  

mas74   12884.9   9   12180.1   3   19033.1   61   14372.9   22  
mas76   40453.4   1   40607.7   2   50124   25   40005.1   0  

misc07   2810   0   2810   0   3425   22   2810   0  
mkc   -402.06   29   -409.56   27   -289.95   49   -528.53   6  

mod011   -5.22E+07   4   -5.25E+07   4   -4.56E+07   16   -4.74E+07   13  
modglob   2.08E+07  

 0
+

  
 2.08E+07  

 0
+

  
 2.11E+07   2   2.08E+07  

 0
+

  
momentum1   -   -   -   -   346535   218   527461   383  

net12   -   -   -   -   337   57   -   -  
nsrand-ipx   56160   10   54400   6   89120   74   55680   9  

nw04   16862   0   16876  
 0
+

  
 17856   6   16956   1  

opt1217   -16   0   -16   0   -16   0   -16   0  
p2756   3358   7   3144   1   89266   2757   3425   10  

pk1   11   0   15   36   83   655   18   64  
pp08a   7990   9   7820   6   10940   49   8120   10  

Pp08aCUTS   7700   5   7670   4   8530   16   8100   10  
protfold   -22   29   -   -   -12   61   -20   35  

qiu   -320.578   76   -132.873   0   625.709   571   173.979   231  
rd-rplusc-21   -   -   -   -   171182   3   -   -  

set1ch   60499.5   11   62524.5   15   84167.5   54   66772.5   22  
seymour   427   1   428   1   445   5   434   3  

sp97ar   7.20E+08   7   6.75E+08  
 0
+

  
 9.41E+08   39   6.83E+08   1  

stp3d   -   -   -   -   -   -   -   -  
swath   554.298   19   544.367   16   1280.95   174   1521.66   226  
t1717   332765   70   237217   21   195779  

 0
+

  
 340588   74  

tr12-30   167135   28   159582   22   163794   25   -   -  
vpm2   14.25   4   14.5   5   15.25   11   15.25   11  

l152lav   4722   0   4722   0   4757   1   4760   1  
stein45   30   0   30   0   35   17   30   0  

ran8x32   5422   3   5462   4   5817   11   5837   11  
ran10x26   4410   3   4448   4   4833   13   4745   11  
ran12x21   3997   9   3987   9   4231   15   4080   11  
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ran13x13   3377   4   3393   4   3820   17   3508   8  
binkar10_1   6910.12   2   6888.48   2   7156.21   6   6917.17   3  

irp   12160.7  
 0
+

  
 12159.5  

 0
+

  
 12162.4  

 0
+

  
 12162.4  

 0
+

  
mas284   91405.7   0   91405.7   0   99522.7   9   93708.1   3  

prod1   -49   13   -55   2   -53   5   -49   13  
bc1   339.687   2   339.804   2   54.391   63   344.084   3  

bienst1   47.25   1   47.25   1   55.5   19   66.5   42  
bienst2   568.333   4   55   1   736.667   35   621.667   14  

dano3_3   576.345   0   576.345   0   576.345   0   576.396  
 0
+

  
dano3_4   576.435   0   577.370  

 0
+

  
 576.435   0   576.499  

 0
+

  
dano3_5   577.304  

 0
+

  
 578.907  

 0
+

  
 576.994  

 0
+

  
 578.648  

 0
+

  
mkc1   -603.92   1   -595.36   2   -563.1   7   -604.86  

 0
+

  
neos1   19   0   20   5   68   258   21   11  
neos2   1290.55   184   -   -   958.977   111   -   -  
neos3   1390.65   277   -   -   1630.21   342   -   -  
neos4   -4.61E+10   5   -4.61E+10   5   -4.81E+10   1   -4.83E+10   1  
neos5   15   0   15   0   *   *   15.5   3  
neos6   89   7   84   1   93   12   91   10  

seymour1   412.646   0   411.681   0   427.063   4   412.448   0  
swath1   379.071   0   379.071   0   439.106   16   879.034   132  
swath2   385.200   0   388.603   1   641.544   67   1028.07   167  

acc-0   0   -   0   -   0   -   0   -  
acc-1   0   -   0   -   0   -   0   -  
acc-2   0   -   0   -   0   -   -   -  
acc-3   0   -   0   -   0   -   -   -  
acc-4   -   -   -   -   -   -   -   -  
acc-5   -   -   -   -   0   -   -   -  
acc-6   -   -   -   -   -   -   -   -  

 Mean     74     62     922     1909  
Mean(56)     75     64     1101     2038  

Failures     9     12     4     16  

 
Table  2: Comparison of methods according to the relative deviation range 

 
    PTS-GD   PTS-RB   Obj. Feas. Pump   HCplex  

Range of 
deviation  

 Number   %   Number   %   Number   %   Number   %  

Less than 
1%  

 30   38.5   28   35.9   16   20.5   19   24.4  

1% to 5%   13   16.7   16   20.5   7   9.0   9   11.5  
5% to 10%   10   12.8   8   10.3   7   9.0   6   7.7  
10% to 25%   4   5.1   6   7.7   14   17.9   15   19.2  
25% to 50%   4   5.1   4   5.1   8   10.3   2   2.6  

50% to 
100%  

 3   3.8   1   1.3   8   10.3   3   3.8  

Greater than 
100%  

 5   6.4   3   3.8   14   17.9   8   10.3  

Failures   9   11.5   12   15.4   4   5.1   16   20.5  
 

 
Table  3: Parametric tabu search for generalized assignment instances 

 
    PTS-GD   PTS-RB  

Group   Dev. %   Dev. %  
A   0.00   0.00  
B   1.06   1.04  
C   2.05   2.32  
D   4.23   3.10  
E   9.62   7.94  

 Mean   4.02   3.42  
Mean(50)   4.05   3.42  
Failures   6   7  

 
6. Conclusions 
 
 We have conducted a computational study of the core version of parametric tabu search 
for solving 0-1 MIP problems.  In the parametric approach, branching inequalities associated with 
binary variables, called goal conditions, are imposed indirectly by including them with associated 
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weights in the objective function of the linear programming relaxation of a MIP, denoted LP ' . 
Parametric tabu search involves measures to classify optimal values of binary variables to LP '  in 
suitable sets and assign a response to the variables of each set. 
 Optimal values of binary variables in LP '  that violate goal conditions define the set G of 
goal infeasible variables. A measure called goal resistance is used to select the set of 
variables ,j px j G G∈ ⊆ , which take on new goals in the opposite direction, and the set of 
variables ,j sx j G G∈ ⊆  that are freed from their goal conditions. The set of potentially goal 
infeasible variables involve variables with satisfied goals and a much smaller goal resistance 
compared to the goal infeasible variables. The same responses for goal infeasible variables apply 
to variables that are potentially goal infeasible. The set 0D  contains binary variables with no goal 

whose optimal solutions in LP ' are fractional and have the largest values of a choice preference 
measure that depends on up and down penalties. Goals are assigned to such variables according 
to the penalties. Finally, a tabu restriction is associated with a response for a given variable, by 
forbidding the response from being executed, if the opposing response was executed within the 
most recent tabu tenure iterations. 
 We have examined three strategies to measure goal resistance, namely, goal distance 
(GD), reliability branching (RB) and active-constraint variable ordering (ACVO). The Wilcoxon 
test shows that ACVO is superior to GD and RB. We have also shown that it is better to have a 
memory for the weight associated with a goal established in a given iteration that decays 
exponentially with the number of iteration. In addition, the adaptive strategy that determines the 
cardinality of the sets sp GG ,  and 0D  according to the conditions of the region that is being 
visited is more effective than a static strategy. 
 The Wilcoxon test could not determine any dominance between objective feasibility 
pump (OFP), CPLEX heuristics (HCPLEX) and parametric tabu search method PTS-first. 
However, the Wilcoxon test determined that parametric tabu search PTS-3600 outperforms OFP 
and HCPLEX, which shows the potential of parametric tabu search for obtaining a large number 
of feasible and high-quality solutions when more running time is allowed. Future research 
involves the integration of intensification and diversification methods suggested by Glover 
(2006), such as approaches based on exploiting strongly determined and consistent variables, 
approaches derived from scatter search and methods based on frequency analysis. 
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