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Abstract 

The Car Renter Salesman Problem (CaRS) is a new variant of the classic Traveling Salesman 
Problem where the salesman’s tour can be decomposed into contiguous paths that are travelled by 
different rented cars. The goal is to determine the minimum cost Hamiltonian cycle, considering 
the cost of the route added to the cost of penalties paid for exchanging vehicles during the route. 
The penalty is due to fees paid to return the rented cars to their bases. This paper describes the 
general problem and some related variants. A GRASP hybridized with a Variable Neighborhood 
Descent procedure and a Memetic Algorithm are proposed for the new problem. The results of a 
computational experiment on a set with 40 Euclidean and non-Euclidean instances are reported. 

 

Keywords: Car Renter Salesman Problem, Hamiltonian Cycle, Evolutionary Computation, 
Metaheuristic Algorithms. 

  

1769



1. Introduction 
 
The Traveling Salesman Problem (TSP) is a classic Combinatorial Optimization problem. 

Given a graph G=(N,M), where N={1,...,n} is the set of nodes and M={1,...,m} is the set of edges, 
and costs, cij, associated with each edge linking vertices i and j, the problem consists in finding 
the minimum length Hamiltonian cycle. The TSP is NP-hard (Garey&Johnson, 1979) and one of 
the combinatorial optimization problems more intensively investigated. The size of the larger non 
trivial TSP instance solved by an exact method evolved from 318 cities in the 80’s (Crowder & 
Padberg, 1980), to 7397 cities in the 90’s (Applegate et al., 1994) and 24978 cities in 2004. The 
best mark was reached in 2006 with the solution of an instance with 85900 cities (Applegate et 
al., 2006). 

The TSP has several important practical applications and a number of variants (Gutin & 
Punnen, 2004). Some of these variants are classic such as the peripatetic salesman (Krarup, 1975) 
and  the M-tour TSP (Russel, 1977) and others are more recent such as the Colorful TSP (Xiong 
et al., 2007) and the Robust TSP (Montemanni et al., 2007), among others. 

The Car Renter Salesman Problem (CaRS) is a new TSP variant that both models important 
applications in the areas of tourism and transportation in manufacturing plants, as it represents a 
complex variant that challenges the state of the art. The CaRS Problem is introduced in Section 2, 
where several conditions under which this variant can be presented are examined. The Section 3 
presents two metaheuristic methods for the investigated problem. These heuristics that establish 
the first limits for a set of instances named CaRSLib are compared and their results presented in 
Section 4. Final conclusions are presented in Section 5.   

 

2. The Car Renter Salesman Problem 
 

2.1 The rental car industry 
Today over 90 significant economic size car rental companies exist in the world market (Car, 

2008). The importance of the car rental business can be measured both by the enterprise turnover 
as by the size of the companies that provide the service. For example, Hertz is a company in the 
car rental segment with wide accessibility of providing the services at approximately 8,000 
locations in approximately 145 countries (Hertz, 2009). The Enterprise has more than 878,000 
vehicles in its rental and leasing fleet and operates across 6,900 local markets (Enterprise, 2009). 
Avis operates in more than 3,800 locations all over Europe, Africa, the Middle East and Asia. In 
December 2007, the company operated an average fleet of 118,000 vehicles (Avis, 2009). Avis 
Budget Group Inc. earned $ 5.1 billion dollars in 2009 (Avis, 2010). In 2009, the Enterprise 
Holdings Inc. which owns today the National Car Rental, Alamo Rent A Car and WeCar earned 
about 12.1 billion dollars (Conrad & Perlut (2006); Wikipedia, 2010). These numbers represent 
only part of the market that also has other major car rental networks such as Dollar and 
Hertz. The world market in 2012 is estimated at 52.6 billion dollars (Car Rental, 2008). 

Besides being itself a major business, spending on car rentals may represent a significant 
portion of the activities involving tourism and business. Currently the rental options are 
becoming increasingly diversified with the expansion of the companies, justifying the search for 
rent schemes that minimize the total cost of this form of transport. 

 

2.2 Models of Combinatorial Optimization in the rental car industry 
Among the various logistical problems of this branch of activity, the literature describes 

specific studies of combinatorial optimization in the Fleet Assignment Problem (Lia &Taob, 
2010), the Strategic Fleet Planning and Tactical Fleet Planning (Pachon et al., 2003), the Demand 
Forecast (Edelstein & Melnyk, 1977) and the car fleet management problem with maintenance 
constraints (Hertz et al. 2009). Logistic problems that occur in the car rental industry are 
reviewed by Yang et al. (2008). These studies focus on the viewpoint of the car rental industry, 
however, the customer’s point of view has not yet been the subject of published research. 
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2.3 The Car Renter Salesman Problem 
In general, under the viewpoint of a user of rented cars, the goal is to minimize the costs to 

move from a starting point to a destination.  On the other hand, when someone rents a car, it is 
assumed that it meets the requirements of comfort and safety. During the travel, in addition to the 
costs of renting the car, at least the costs of fuel and the payment of fees to travel on the road 
should be considered. Let G=(N, M, W) be a graph where N={1,...,n} represents the set of 
vertices, M ={1,...,m} is the set of edges and W={1,...,w} is the set of distances between the 
vertices or the length of the edges of the set M. The problem described in this paper has the 
following features: 

1. Several types of cars are available for rent, each of them has own characteristics, that is, 
specific operational costs. These costs include fuel consumption, fees that have to be paid 
to travel on roads and the value of the rent. The fees that have to be paid to travel on the 
roads may depend on the type of the car and on the specific roads chosen for the route. 
The value of the rent can also be associated with a cost per kilometer. Thus, without loss 
of generality, these costs can be considered as a function of each car on a value 
associated to the edges (i,j) of graph G. The operational cost of a given car k to traverse 

an edge (i,j) is denoted by 
k

ijc . 

2. A car rented in a given company can only be returned in a city where there is an agency 
of the same company. It is therefore not allowed to rent a car of a given company to 
travel on a certain segment of the route, if that car cannot be returned on the last city of 
the segment – there is not an agency of this company in the last city of the segment. 

3. Whenever it is possible to rent a car in a city i and return it in city j, i≠j, there is an extra 

for returning the car to its home city. The variable 
k

ijd  represents the expense to return car 

k to city j when it was rented in city i, i≠j. 
4. The tour begins and ends in the city where the first car is rented, the city that is the basis 

for the CaRS. 
5.  The return cost is null in case the tour is completed with a single car which is delivered 

in the same town it was rented. This case corresponds to the classic TSP considering the 
cost of other conditions associated only with the selected car. 

6. Cars with the same characteristics rented in a single rental car company can be hired 
under different costs, depending on the city they where rented or on the contract 
negotiation. Therefore, without loss of generality, the designation of rent can be 
efficiently controlled by decisions related to cars, not considering the companies. The set 

K={1,...,k}, |K|=k is the set of different cars that can be in the solution. 
7.  The costs of returning the rented car may be strictly associated with the path between the 

city where the car is delivered and the city where the car was rented or these costs can be 
a result of independent calculation. 

The objective of the proposed problem it to find the hamiltonian cycle that, starting on an 
initial vertex previously known, minimize the sum of total operating costs of cars in the tour. The 
total operating costs are composed of a parcel that unifies the rent and other expenses in a value 
associated to the edges, and a parcel associated to return the car to a city that is not its basis, 
calculated for each car and for each pair of cities origin/return in the cycle. The CaRS cycle may 
also be understood as obtained by the union of up to t Hamiltonian paths developed on up to t 
disjoint subsets of vertices of G. Each of the paths is accomplished with a different car or a car 
different from those used for the neighboring paths in the cycle. Therefore the cities that compose 
the cycle can be grouped into up to t different subsets of vertices of G that are covered by cars at 
least distinct from each other in the neighboring paths in the cycle. 

Figure 1 illustrates, in a complete graph with six vertices, a typical instance of CaRS. In the 
example there are three different rental cars. Figures 1(a), (b) and (c) show the accounting of the 
costs involved in the displacement of each type of car. Note that, unlike the classical traveling 
salesman cycle, the solution of CaRS depends on the city chosen to be the starting point of the 
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tour, the basis of the salesman. This fact is due to the rate of return is linked both to the starting 
city and the direction of devolution.  In the example this city is represented by vertex F. 
 

   

(a) Costs of car A (b) Costs of car B (c) Costs of car C 

Figure 1: Costs associated to each rental car. 
 

   

(a) Costs to return car 1 when 
rented on city F 

(b) Costs to return car 2 when 
rented on city B 

(b) Costs to return car 3 when 
rented on city C 

Figure 2: Return costs 
 

  

(a) Cars distributed in the route (b) Route costs 

   

(a) Costs of the route of car 1 (b) Costs of the route of car 2 (b) Costs of the route of car 3 

Figure 3: Costs of the route of the exemplified problem. 

Figure 2 shows, for the example in Figure 1, some of the costs of returning the cars to their 
bases. Delivery costs appear as underlined numbers next to vertices. Figure 2(a) shows the graph 
of return of car 1 when rented on vertex F. Figure 2(b) shows the graph of return of car 2 when 
rented on vertex B and Figure 2(c) the return of car 3 when rented on vertex C. In the general 
case return costs are known of all cars when rented in any of the cities. 
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A solution of the problem exemplified in Figures 1 and 2 is exhibited in Figure 3. This 
solution considers a case where all available cars are rented and no car is rented more than once. 
The cost of the cycle, according to the solution shown in Figure 3, corresponds to the cost of path 
F-A-B for car 1, added to the cost of path B-E-C for car 2, added to the cost of path C-D-F of car 
3, in a total of 6 unities. To this value it is necessary to add the cost of returning the car to their 
bases. For car 1, the cost of the return from B to F is one unity. For car 2, the cost of the return 
from C to B is two unities and, for car 3, the cost to return to C when the car is delivered in F is 
two unities. Thus, the cost of the final solution is 11 unities. 

The CaRS Problem has several variants in accordance with the real conditions of the 
problem. The problem can be classified according to the availability of cars, the alternatives of 
return, the existence of symmetry of the cost matrix and the existent links between the cities, etc. 

 

2.4 The Difficulty of Solving CaRS 
The problem basically consists in determining a Hamiltonian cycle in a graph G by 

composition of paths developed on the vertices of G. Let T={1,...,t} denote the set of indices of 

up to t subgraphs Hr of G, r∈T. Calling V(Hr) the vertices of Hr, the subgraphs Hr of CaRS have 
the following properties. 

 

������ � �	
�
�

 

 

(1) 

�
�����������
 � � ������������������������������� �����������������������(2) 
 
Constraint (1) determines that the union of all paths visits all vertices of G. Constraints (2) 

implies that two different subgraphs never have more than one vertex in common, a condition to 
prevent formation of subcycles. Note that the constraints (1) and (2) are not sufficient to 
guarantee the cycle of the CaRS. It is also necessary that the t subgraphs considered three to 
three, four to four, and so on, until t-1 to t-1, do not have more than one vertex in common. 

Once this problem deals with Hamiltonian paths, each path done by a car in one subgraph Hr 
visits all vertices of Hr. The path of subgraph Hr has to be assigned to a car different from the 
cars assigned to neighbor paths during the construction of an Hamiltonian cycle in G. The costs 
of the edges of each subgraph correspond to the operation costs of the car traversing Hr. 

Furthermore, when t≥2 the total cost considers the return cost of each car rented in city i and 

returned in city j, i≠j. Hamiltonian cycle and Hamiltonian path problems are well known NP-
complete problems (Garey & Johnson, 2003). Due to what was previously exposed, the difficulty 
of solving CaRS is at least the same as the TSP. Nevertheless, although some solutions of the 
TSP are also solutions of CaRS, the latter has a number of feasible solutions greater than the 
former and incorporates all the requirements of the TSP, like other several classes of vehicle 
routing problems which are known to be more difficult than the TSP (Ralphs et al., 2003). 

 

3. Metaheuristic Algorithms 
 
This section presents two heuristics for the investigated problem. The first one is a Greedy 

Randomized Adaptive Search Procedure (GRASP) (Feo & Resende, 1995) combined with 
Variable Neighborhood Descent (VND) (Mladenović & Hansen, 1997) in the local search phase. 
The second heuristics is a Memetic Algorithm (Moscato, 1989).  

 
3. 1. GRASP/VND 

This algorithm has a pre-processing phase where nCar optimal TSP solutions are obtained 
with the Concorde TSP Solver (Applegate et al., 2001), one for each available car, where nCar is 
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the number of cars available for the instance being considered. The constructive phase of 
GRASP/VND starts with a random selected car at the home city. Each iteration a path is built 
between two cities: a known origin and a destination city randomly chosen among the cities yet 
not considered by the algorithm. A Restricted Candidate List (RCL), with size α, is built with the 
cities that have the cheapest return rates for the car being considered in the current iteration. The 
destination city is selected at random with uniform probability from the RCL and a path between 
the origin and the destination city is built. Except for the last iteration, the path is built based on 
the tours built in the pre-processing phase. In the first iteration the path between the origin and 
destination cities is obtained in the optimal solution correspondent to the first selected car. The 
path of the i-th car, 1 < i < nCar, is also obtained from the optimal solution that corresponds to 
the i-th car, but in this case a procedure to remove cities already considered in paths constructed 
in previous iterations may be necessary. Suppose that city b, between cities a and c in the path 
built in the i-th iteration, is already in a path built in iteration j, j < i. Then the procedure removes 
city b from the i-th path and includes a link between cities a and c. The initial starting city is the 
origin of the first iteration. The origin city of iteration i, i > 1, is the destination city of iteration i-
1. The destination city of the last iteration is the initial starting city. In the last iteration, the 
nearest neighbor heuristic is used to build the path of the last considered car.   

In the local search phase a VND metaheuristic was used to explore the search space of three 
neighborhood structures named InvertSol, Insert&Saving and 2-Swap. InvertSol is a simple low 
time consuming heuristics that reverses the sequences of cities of an input solution. With the 
reversal, though the same cars traverse the same sets of cities, the cost of rent and fees for 
returning the car to where they were rented change. The Insert&Saving procedure searches for a 
car insertion in a given solution that yields a decreasing of its cost. Let s be a solution in which 
there is at least one car that is not assigned to a path in s. Insert&Saving method randomly 
chooses a not assigned car and searches the best position to insert it in s. The procedure verifies 
the cost of the insertion of the new car in every point of s. If any of these insertions produces a 
solution with a cost lower than the cost of s, the new solution is set as the current solution in the 
local search. The procedure continues until all non-assigned cars have been considered for 
insertion. The third procedure, 2-Swap, a neighboring solution s’ of a solution s is generated by 
exchanging two cities within the path of one car of s. Procedures Insert&Saving and 2-Swap use 
the first pivoting rule.    

3. 2. Memetic Algorithm 
Algorithm 1 shows the pseudo-code of the Memetic Algorithm (MA) developed for CaRS. 

The input parameters are: number of generations, population size, recombination rate (the 
number of individuals that reproduce in each generation), mutation rate and renewal rate of the 
population each generation.  

Bi-dimensional arrays with n elements are used to represent the chromosomes. Figure 4 
illustrates a chromosome for a CaRS instance with n = 11 and 5 available cars. The starting city 
(city 0) is not represented in the chromosome. The first row contains the cars assigned to each 
path. The last city a car visits is not assigned to the car, since it is returned on that city. Four of 
the five available cars are used in the solution illustrated in Figure 4. The tour begins at city 0 
with car 2 which passes through cities 6, 4, 3, 10 and is delivered in city 7 where car 1 is rented. 
Car 1 proceeds to city 9 passing through city 1. Car 5 is rented in city 9, passes through cities 2 
and 5 and is delivered in city 8 where the last car, 4, is rented. Car 4 is delivered in the starting 
city. The fitness of each chromosome is given by the inverse of the objective function, which 
means that the lower the value of the objective function the fittest chromosome is. 

 
2 2 2 2 1 1 5 5 5 4 

6 4 3 10 7 1 9 2 5 8 

Figure 4: Chromosome 
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The initial population is generated with a version of the nearest neighbor heuristics adapted 
for CaRS in procedure generateInitPop( ) that receives the size of the population as input 
parameter. Let nCar be the number of available cars of a given instance. The algorithm randomly 
selects a car c and a destination city j for c, j ≠ 0. Then a path between cities 0 and j is built with 
the nearest neighbor heuristic. City j is set as the new origin and a new car and a new destination 
city are randomly selected. The procedure continues until all cities are added to the tour or until 
there is only one car available. In the latter case, the last available car is assigned to a path built 
with the same heuristics between the previous destination city and the starting city, closing the 
tour. In step 4, each individual of the initial population is subjected to the same VND procedure 
used on GRASP/VND. 

  

Algorithm 1 – Main Procedure of Memetic for CaRS 
1 main(nameInstance,sizePop,nOffspring,txCros,txMuta,txRenw) 

2   instanceRead(nameInstance) 

3   Pop[] �� generateInitPop(sizePop) 
4   VNDlocalSearchPhase(Pop) 

5   for i of 1 to nOffspring do 

6     for j of 1 to sizePop*txCros do 

7       dad,mom ���parentsSelection() 
8       citiesCrossover(dad,mom) 

9       son1, son2 ����carsMutations(son1,son2,txMuta) 
10       VNDlocalSearchPhase(son1,son2) 

11       if son1,son2 < Pop[dad],Pop[Mom] 

12          Pop[dad] ���son1, Pop[mom] ���son2 
13     generateNewIndividuals(sizePop*txRenw) 

14 return(Pop[0]) 

 
Parents for recombination are selected with the roulette wheel method. A multi-point 

recombination operation adapted for CaRS is used to generate two children. The recombination 
operator is illustrated in Figure 5, considering an instance with n = 11 and 3 cars. Two parent 
chromosomes, A and B, generate offspring C and D. In Figure 5 a 2-point operator is used. The 
first and third parts of chromosomes A and B are inherited by chromosomes C and D, 
respectively. A restoration procedure may be necessary to restore feasibility regarding the routes 
and car assignments. For example, after recombination the route of chromosome C is [3 1 8 10 1 
9 4 5 10 6] which is not feasible since cities 1 and 10 appear twice each and cities 2 and 7 are 
missing. Thus the route of chromosome C is replaced by [3 1 8 10 * 9 4 5 * 6] with asterisks 
replacing the second time cities 1 and 10 appears. Each asterisk is then replaced at random by 
cities 2 and 7. The row corresponding to the car assignment for chromosome C after 
recombination is [1 1 1 2 3 3 2 2 2 2 3] what for the problem considered in this paper is not 
feasible, since each car can be assigned only to one path. Thus, the car assignment of 
chromosome C is replaced by [1 1 1 2 3 3 * * * * 3] and each asterisk is replaced by car 3. A 
similar analysis is done for chromosome D. 

 

 

Figure 5: Recombination operator 
 

1 1 1 1 1 2 2 2 2 3

3 1 8 2 7 9 4 5 10 6

2 2 2 2 3 3 3 1 1 1

8 4 5 10 1 9 3 6 2 7

1 1 1 2 3 3 3 3 3 3

3 1 8 10 2 9 4 5 7 6

2 2 2 1 1 1 3 3 3 3

8 4 5 2 7 9 3 6 1 10

Parents Offspring

1 2

A

B

C

D
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The solutions resulting from the recombination are subjected to mutation. The mutation 
operator changes the vehicles used in pre-established parts of the route of each solution. The size 
of the segments is determined as the mutation rate parameter. 

After crossover and mutation, the offspring is subjected to the VND method. The resulting 
solutions are compared with their parents and the best two individuals survive. Finally, part of the 
current population is replaced by new solutions generated with the constructive method used to 
create the initial population. The number of new individuals created with that procedure is given 
by the renewal rate and the individuals chosen to be replaced are those with the worst values of 
fitness. This renewal process promotes diversification and prevents premature convergence. 

 

4. Computational Experiments 
 
This section presents the instances used in the experiments, the parameter settings and the 

computational results. 
Since this is a new problem, a library of instances, named CaRSLib, was created to test the 

proposed algorithms. The instances of the computational experiment reported in this paper refer 
to the specific CaRS problem that has the following properties: total (all cars can be rented in all 
cities), unrestricted (all cars can be delivered in any city), without repetition (same type of car 
can only be rented once on the tour), free (the costs of returning the cars do not have correlation 
with the topology of the problem), symmetric (symmetric distances between the cities) and 
complete (the graph of the problem is complete). The set consists of Euclidean and non-
Euclidean instances. For each set, three groups of instances were created, the first based on real 
maps, the second was formed with randomly generated data and the third one based on the 
TSPLIB instances. The dataset, the description of each group of instances and file formats are 
available at http://www.dimap.ufrn.br/lae/en/projects/CaRS.php. 

A preliminary computational experiment was done to tune two parameters of GRASP/VND:  
α and maximum number of GRASP/VND iterations. The experiments were done on an Intel Core 
Duo 1.67GHz, 2GB of RAM running Linux with C++. The experiments were performed on a 
subset of CaRSLib with 20 instances, with number of cities ranging from 14 to 300 and 2 to 5 
vehicles. The parameter α was set to 0.25. The maximum number of re-starts was set to 300. An 
additional stopping criterion fixed 90 re-starts without improvement of the best current solution. 

The same set of instances and computational platform was used to tune the parameters of the 
Memetic Algorithm. Twenty independent executions were performed for each instance. Two 
groups of tests were done: first the algorithm was executed without the VND method, and then 
the VND was included. The parameter settings are: maximum of 20 generations, population with 
30 chromosomes, recombination rate of 60%, mutation rate of 40% and renewal rate of 15%. The 
stopping criterion was 30% of the maximum number of generations without improvement of the 
best current solution. A number between 1 and 4 was randomly selected to be the number of 
points each time the multi-point recombination operator was applied. 

GRASP/VND and MA were executed on a PC Intel Core Duo 1.67GHz,2GB of RAM 
running Linux. The experiments reported in this paper were performed with 40 CaRS instances, 
20 of them from the Euclidean group and divided into 10 instances from group 1 (manual), 5 
from group 2 (random) and 5 from group 3 (TSPLIB). The remaining instances are non-
Euclidean and are divided in 3 groups as well. During the tests, 30 independent executions of 
each algorithm were performed for each instance. Two groups of experiments were performed 
with fixed processing times. In the first group the average processing time spent by 
GRASP/VND to find its best solution for each instance was given to both algorithms.  In the 
second group the average processing time of the MA for each instance was fixed for both 
algorithms. The results are, respectively, reported in Tables 1 and 2. These tables show the name 
of the instance (Name), the number of cities (City), the number of available cars (Car), the best 
solution found (#Best), the processing time in seconds (T), the worse (Worse), the average (Avg) 
and the best solution (Best), de standard deviation (Dev) and the number of times (Freq) the best 
reported solution was found by each algorithm. 
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Table 1 - Comparison of results with time determined by GRASP 

INSTANCES GRASP/VND MEMETIC 

Name City Car #Best T(s) Worse Avg Dev Best Freq Worse Avg Dev Best Freq 

BrasilRJ14e 14 2 294 1 297 297 0 297 30 297 294 0 294 29 

BrasilRN16e 16 2 375 1 375 375 0 375 30 387 375 2 375 29 

BrasilPR25e 25 3 510 2 512 510 0 510 29 522 515 5 510 16 

BrasilAM26e 26 3 467 3 498 495 1 495 27 495 485 9 469 1 

BrasilMG30e 30 4 563 5 604 603 2 595 1 604 599 7 575 1 

BrasilSP32e 32 4 611 8 637 633 5 626 9 630 621 4 611 2 

BrasilRS32e 32 4 510 8 560 537 9 529 11 539 522 6 510 1 

BrasilCO40e 40 5 779 18 812 807 2 805 1 829 822 10 779 1 

BrasilNO45e 45 5 886 23 1008 1008 0 1008 30 1008 978 34 886 1 

BrasilNE50e 50 5 822 43 973 963 5 940 1 964 954 27 822 1 

Betim100e 100 3 1401 78 1741 1723 8 1708 4 1739 1692 89 1410 1 

Vitoria100e 100 5 1598 155 2006 1802 75 1642 1 1935 1891 87 1598 1 

PortoVelho200e 200 3 2827 466 3251 3142 29 3041 1 3254 3149 129 2827 1 

Cuiaba200e 200 3 3052 686 3670 3379 88 3212 1 3461 3414 80 3217 1 

Belem300e 300 4 4031 1804 5091 4635 121 4563 6 4443 4425 76 4031 1 

berlin52eA 52 3 8948 20 9108 9020 35 8991 7 9132 9081 72 8948 4 

eil76eB 76 4 1940 87 2311 2228 42 2158 1 2157 2077 43 1940 1 

rat99eB 99 5 3339 194 3511 3439 42 3351 1 3696 3513 75 3365 1 

rd100eB 100 4 9951 103 10278 10107 81 9951 1 10555 10364 172 10054 1 

st70eB 70 4 2037 77 2308 2201 44 2085 1 2236 2151 46 2042 1 

BrasilRJ14n 14 2 167 1 171 171 0 171 30 168 167 0 167 4 

BrasilRN16n 16 2 190 1 203 203 0 203 30 200 194 2 192 3 

BrasilPR25n 25 3 235 5 334 311 9 305 20 270 255 7 239 1 

BrasilAM26n 26 3 204 5 266 242 6 239 21 221 213 4 206 2 

BrasilMG30n 30 4 279 11 403 375 11 352 1 357 330 14 298 1 

BrasilSP32n 32 4 285 12 366 336 16 298 1 306 295 5 285 1 

BrasilRS32n 32 4 297 15 406 372 15 344 1 360 337 14 297 1 

BrasilCO40n 40 5 655 39 944 826 42 755 1 780 718 37 655 1 

BrasilNO45n 45 5 664 55 977 889 42 770 1 818 753 39 664 1 

BrasilNE50n 50 5 707 81 1149 1044 60 874 1 906 844 43 761 1 

Londrina100n 100 3 1450 192 1928 1783 80 1629 3 1672 1564 51 1450 1 

Osasco100n 100 4 1150 191 2118 2000 60 1910 1 1681 1443 109 1265 1 

Aracaju200n 200 3 2467 903 4027 3686 212 3223 1 3096 2802 136 2588 1 

Teresina200n 200 5 2192 1407 4026 3793 144 3261 1 2788 2480 143 2192 1 

Curitiba300n 300 5 3676 3388 6545 6125 202 5680 1 4681 4081 202 3749 1 

berlin52nA 52 3 1480 41 1926 1777 82 1661 6 1732 1640 51 1543 1 

ch130n 130 5 2487 478 5139 4706 307 3855 1 3672 2940 245 2487 1 

d198n 198 4 4807 1330 7874 7138 333 6529 1 5886 5332 269 4807 1 

kroB150n 150 3 3824 464 6525 5368 434 4414 3 4643 4312 194 3824 1 

rd100nB 100 4 1890 205 3243 2953 169 2623 1 2479 2274 118 2083 1 
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Table 2 - Comparison of results with time determined by Memetic 

INSTANCES MEMETIC GRASP/VND 

Name City Car #Best T(s) Worse Avg Dev Best Freq Worse Avg Dev Best Freq 

BrasilRJ14e 14 2 294 1 297 294 1 294 25 297 297 0 297 30 

BrasilRN16e 16 2 375 1 394 376 4 375 27 375 375 0 375 30 

BrasilPR25e 25 3 510 2 522 515 5 510 17 510 510 0 510 30 

BrasilAM26e 26 3 467 4 495 481 10 467 3 495 495 0 495 30 

BrasilMG30e 30 4 563 6 604 596 10 563 1 604 602 2 595 1 

BrasilSP32e 32 4 611 8 637 624 5 615 1 637 632 4 626 6 

BrasilRS32e 32 4 510 8 541 523 7 512 2 557 536 9 529 14 

BrasilCO40e 40 5 779 17 832 824 7 801 1 814 806 2 806 22 

BrasilNO45e 45 5 886 25 1008 993 27 897 1 1008 1008 0 1008 30 

BrasilNE50e 50 5 822 31 964 963 2 953 1 981 962 11 908 1 

Betim100e 100 3 1401 128 1739 1642 110 1401 1 1741 1720 7 1708 6 

Vitoria100e 100 5 1598 98 1935 1922 29 1814 1 2033 1859 77 1676 1 

PortoVelho200e 200 3 2827 766 3254 3134 117 2871 1 3138 3128 22 3041 1 

Cuiaba200e 200 4 3052 701 3461 3415 96 3052 1 3594 3365 56 3334 2 

Belem300e 300 4 4031 2016 4443 4434 30 4282 1 5099 4621 125 4563 11 

berlin52eA 52 3 8948 27 9132 9094 65 8948 4 9108 9013 24 8991 9 

eil76eB 76 4 1940 61 2158 2069 43 1986 1 2329 2226 56 2129 1 

rat99eB 99 5 3339 128 3715 3525 71 3339 1 3574 3468 54 3348 1 

rd100eB 100 4 9951 161 10555 10385 209 9994 1 10168 10055 54 9951 1 

st70eB 70 4 2037 54 2299 2158 67 2037 1 2260 2212 31 2137 1 

BrasilRJ14n 14 2 167 1 168 167 0 167 2 171 171 0 171 30 

BrasilRN16n 16 2 190 1 202 195 3 190 1 203 203 0 203 30 

BrasilPR25n 25 3 235 4 282 256 10 235 1 339 316 12 305 15 

BrasilAM26n 26 3 204 5 228 212 4 204 1 255 242 5 239 17 

BrasilMG30n 30 4 279 8 354 328 15 279 1 403 378 14 352 3 

BrasilSP32n 32 4 285 13 313 296 7 287 2 362 331 14 300 3 

BrasilRS32n 32 4 297 9 379 340 16 304 1 411 378 18 344 1 

BrasilCO40n 40 5 655 20 809 743 33 668 1 918 839 41 710 1 

BrasilNO45n 45 5 664 32 834 764 39 667 1 1001 919 43 814 1 

BrasilNE50n 50 5 707 46 1012 861 61 707 1 1143 1068 57 924 1 

Londrina100n 100 3 1450 146 1666 1592 50 1471 1 1964 1767 85 1629 1 

Osasco100n 100 4 1150 125 1755 1442 139 1150 1 2151 2046 80 1817 1 

Aracaju200n 200 3 2467 922 2975 2744 135 2467 1 3974 3594 236 3106 1 

Teresina200n 200 5 2192 836 2954 2551 182 2233 1 4106 3866 126 3611 1 

Curitiba300n 300 5 3676 2384 4507 4076 216 3676 1 6291 6050 160 5647 1 

berlin52nA 52 3 1480 38 1866 1642 78 1480 1 1889 1748 63 1661 4 

ch130n 130 5 2487 237 3575 3020 228 2493 1 5408 4863 345 3813 1 

d198n 198 4 4807 823 6193 5449 318 4887 1 7904 7407 378 6250 1 

kroB150n 150 3 3824 418 4618 4259 208 3845 1 5859 5313 272 4871 2 

rd100nB 100 4 1890 140 2569 2271 143 1890 1 3360 2962 180 2685 2 
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The results shown in both tables are very similar regardless the processing time fixed in each 
group of experiments. The MA presents an overall better performance than the GRASP/VND. 
The former presents 32 and 31 best average results against 9 best results of the latter in the two 
groups of experiments. A similar behavior can be noticed for the best solutions found by each 
algorithm. 

 

5. Conclusions 

This paper introduced the Car Renter Salesman Problem (CaRS), a new variant of the classic 
Traveling Salesman Problem. Two metaheuristic methods were compared to establish the initial 
limits for a set of 40 CaRS instances: a GRASP hybridized with VND and a Memetic Algorithm. 
The computational experiments show that the Memetic Algorithm outperforms the GRASP/VND 
algorithm both concerning quality of solution and processing time. 

The introduced problem has a number of variants opening a wide area of investigation on 
exact and heuristic methods to solve it. 
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