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ABSTRACT

In this work we analyze an algorithm based on descent directions for solving the
problem of minimizing quasiconvex functions over a Riemannian manifold. The step size
is obtained by Armijo’s rule with backtracking procedure. A numerical experiment is
reported.
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1 Introduction

Let M be a complete Riemannian manifold with finite dimension. We consider a method
for solving the problem

min
x∈M

f(x). (1)

We assume that f : M → R is a continuously differentiable quasiconvex function.
As argued in Qi et al (2010), optimization on manifolds finds applications in two broad
classes of situations: Classical equality-constrained optimization problems where the con-
straints specify a submanifold of Rn; and problems where the objective function has con-
tinuous invariance properties that we want to eliminate for various reasons, e.g., efficiency,
consistency, applicability of certain convergence results, avoid failure of certain algorithms
due to degeneracy.

Fields of application include computer vision, signal processing, motion and structure
estimation, see, for instance, Absil et al (2008), Adler et al (2002), Lee (2005) and refer-
ences therein. Among the oldest papers that study optimization problems over Rieman-
nian manifolds highlight the variants of Luenberger’s basic algorithm, given in Luenberger
(1972), presented by Cruz Neto et al in Cruz Neto et al(1998) and Cruz Neto et al(1999).
In Luenberger(1972), the author presented an algorithm on geodesics to obtain conver-
gence results for the gradient projection method. In Cruz Neto et al(1998) and Cruz Neto
et al(1999), they extended the steepest descent method with Armijo’s rule. An interesting
remark is these geodesic algorithms exploit better the intrinsic properties of the constraint
set and the objective function, as discussed by Yang in Yang(2007).
In this work we propose a descent method based in sufficient directions for solving problem
(1). For this purpose we generalize the definition of sufficient descent directions given in
Dussault(2000) for Euclidean spaces.
The structure of the work is simple. In Section 2, we present some basic facts in setting of
Riemannian manifolds. In Section 3, we define the algorithm and analyze its convergence.
Finally, we report a numerical experiment in Section 4.

2 Preliminaries

In this section, we recall some necessary properties and definitions in settings of
Riemannian manifolds. These basics fact can be found for example in do Carmo(1992).
We assume throughout this work that all manifolds are smooth and connected and all
functions and vector fields are smooth.
Given a manifold M , we denote by TxM the tangent space of M at x. Let M be a Rie-
mannian manifold with Riemannian metric given by 〈, 〉 and let ‖ · ‖ its associated norm.
We recall that the length of piecewise smooth curves γ : [a, b] → M joining points x and

y in M , it is defined by l(γ) =
∫ b
a |γ

′(t)|dt. We denote by d(x, y) the distance obtained by
minimizing the length functional over the set of all such curves.
The parallel transport along γ from γ(t0) to γ(t1), denoted by Pγ,t0,t1 is an application
Pγ,t0,t1 : Tγt0M → Tγt1M given by Pγ,t0,t1 = V (t1) where V is the unique vector field along

γ such that DV
dt = 0 and V (t0) = v, where DV

dt denotes the covariant derivative for the
vector field V along γ. If γ′ itself is parallel we say that γ is a geodesic. The restriction of
a geodesic to a closed bounded interval is called a geodesic segment. A geodesic segment
joining x and y in M is said to be minimal if its length equals d(x, y). Henceforth, for
x, y ∈ M , γxy denotes the geodesic γxy : [0, 1] → M joining the points x and y, that is,
γxy(0) = x and γxy(1) = y. We denote by Γ the set of all geodesic arcs γxy from x to y.
In this paper, we assume that M is a complete manifold, that is, all geodesics are defined
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for any values of t, which implies that any pair of points in M can be joined by a (not
necessarily unique) minimal geodesic segment.
The exponential map, expx : TxM → M , is defined by expx(v) = γv(1, x), where
γ(·) = γv(·, x) is the geodesic by it position x and velocity v at one point as far as it
is defined, which implies that expx(tv) = γv(t, x) for any values of t.
Throughout this paper we consider M with nonnegative sectional curvature.
A fundamental geometric property of this class of manifolds is the called law of cosines,
whose proof can be encountered in Cruz Neto et al(1998). For described it, we recall
a geodesic hinge in M is a pair of normalized geodesic segments γxy and γxz (that is,
γxy(0) = γxz(0)) such that at least one of them, say γxy, is minimal.

Theorem 1 (Law of cosines) In a complete Riemannian manifold with nonnegative cur-
vature it holds

l 2 ≤ l 2
xy + l 2

xz − 2lxylxz cosω,

where lxy = l(γxy), lxz = l(γxz), l = d(γxy(lxy), γxz(lxz)) and ω =<)(γ′xy(0), γ′xz(0)).

We will need the concept of normal cone of a subset of a manifold at a point. We recall a
vector ξ ∈ TxM is said to be a subgradient of f at x when f(γxy(t)) ≥ f(x) + t〈ξ, γ′xy(0)〉,
for any t ≥ 0. Let C be a closed subset of M at x ∈ C. Let δC(x) be the indicator
function. We called the normal cone of C at x to the set

N(x,C) = ∂δC(x).

To conclude this section we recall some properties about quasiconvex function and quasi-
Fejér convergence in the setting of the Riemannian geometry.
A function f : M → IR is called quasiconvex when for all x, y ∈ M ,
f(γxy(t)) ≤ max{f(x), f(y)}, for all γxy ∈ Γ, t ∈ (0, 1). In a geomet-
rical point of view, the quasiconvex functions are characterized by total con-
vexity of their sublevel sets {x ∈ M |f(x) ≤ c}. One main differ-
ence between convex and quasiconvex functions is that the quasiconvex func-
tions are not continuous within their domain and directional derivatives are not
necessarily defined. For differentiable quasiconvex functions, the following theorem gives
a first-order characterization.

Theorem 2 Let f : M → IR be a differentiable quasiconvex function on a complete
Riemannian manifold M and let x, y ∈M . Then

f(x) ≤ f(y) =⇒ 〈gradf(y), γ
′
xy(0)〉 ≤ 0,

where γxy ∈ Γ.

Given a (X, d) a complete metric space. A sequence {yk} of X is called quasi-Fejér
convergent to a set U ⊂ X if for all u ∈ U there exists a real numbers sequence {εk}
such that εk ≥ 0,

∑∞
k=0 εk < +∞ and d2(yk+1, u) ≤ d2(yk, u) + εk. We will use also the

following property, whose proof is similar to that encountered in [?, Theorem 1] by using
the distance d instead of the Euclidean norm.

Theorem 3 In a complete metric space (X, d), if {yk} is quasi-Fejér convergent to a
nonempty set U ⊂ X then {yk} is bounded. If furthermore a cluster point ȳ of {yk}
belongs to U , then {yk} converges and lim

k→+∞
yk = ȳ.
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3 The sufficient descent method

For Euclidean spaces, as defined by Dussault in (Dussault, 2000), dx is said to be a
sufficient descent direction if there exist two positive constants γ0 and γ1, independents of
x, such that

dTx∇f(x) ≤ −γ0‖∇f(x)‖22
‖dx‖2 ≤ γ1‖∇f(x)‖2,

where ‖ · ‖2 denotes the Euclidean norm. We extend the definition of sufficient descent
direction for optimization on Riemannian manifolds as follows.
We consider positive real numbers α and β such that dk ∈ TxkM satisfies

〈gradf(xk), dk〉 ≤ −α‖gradf(xk)‖2 (2)

‖dk‖ ≤ β‖gradf(xk)‖, (3)

where the inner product and the norm are given by a Riemannian metric. In this case, we
called dk by sufficient descent directions.
In order to describe our method we denote Lλ = {x ∈M : f(x) ≤ λ}. In addition, given
a point xk, we define

Dk = {d ∈ TxkM : − d ∈ N(xk, Lf(xk)), d satisfies (2)− (3)}. (4)

Algorithm 1 (Sufficient Descent Algorithm)
Initialization: Let x0 ∈M and set real numbers θ ∈ (0, 1) and τ ∈ (0, 1/2)
Main Step: Given xk ∈M and dk ∈ Dk,
If gradf(xk) = 0 stop.
Else, find

xk+1 = expxk(θkd
k), (5)

where

θk = argmax{θj : f(expxk(θjdk))− f(xk) ≤ τθj〈gradf(xk), dk〉, j ∈ IN}. (6)

Remark 1 We note that Dk is a nonempty set since f is a quasiconvex function, which
(by Theorem 2) implies that dk = −gradf(xk) ∈ Dk. Therefore, the sequence generated by
(5) always exists due to the existence of θk (the proof of this existence is very simple and
it can be encountered for example in (Cruz Neto et al, 1998)).

From now on we consider that the Algorithm 1 generates an infinite sequence, {xk},
of iterates. Let U = {x ∈M : f(x) < f(xk), ∀k ∈ IN}.

Lemma 1 For Algorithm 1, it holds

d2(xk+1, x) ≤ d2(xk, x) + θ2
k‖dk‖2 − 2θk〈γ′xk x(0), dk〉,

for all x ∈ U .

Proof:
Let x ∈ U be an arbitrary point. Suppose that γxkx and γx xk+1 are minimal geodesic
segments, γxk xk+1 ∈ Γ is such that γ′

xk xk+1(0) = θkd
k and moreover ω is the angle between

−γ′
xk x

(0) and γ′
xk xk+1(0). From Theorem 1, we have

d2(xk+1, x) ≤ d2(xk, x) + θ2
k‖dk‖2 + 2d(xk, x)θk‖dk‖ cos(ω)

d2(xk+1, x) ≤ d2(xk, x) + θ2
k‖dk‖2 − 2d(xk, x)θk‖dk‖ cos(π − ω)

= d2(xk, x) + θ2
k‖dk‖2 − 2θk〈γ′xk x(0), dk〉.
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Lemma 2 For Algorithm 1, we have

(a)

∞∑
k=0

θ2
k‖dk‖2 < +∞;

(b) the sequence {f(xk)} is nonincreasing.

Proof:
Part (a). Since θk satisfies the Armijo’s criterion and dk is a sufficient descent direction,
we get

f(xk+1)− f(xk) ≤ τθk〈gradf(xk), dk〉
≤ −τθkα‖gradf(xk)‖2
≤ − τθkα

β2 ‖dk‖2.
(7)

Hence,

θk‖dk‖2 ≤
β2

ατ
[f(xk)− f(xk+1)].

By definition of θk, last inequality becomes

θ2
k‖dk‖2 ≤

β2

ατ
[f(xk)− f(xk+1)]

and thus
l∑

k=0

θ2
k‖dk‖2 ≤ β2

ατ [f(x0)− f(xl+1)] ≤ β2

ατ [f(x0)− f∗],

where f∗ is the optimum value of the problem (1). Then,

∞∑
k=0

θ2
k‖dk‖2 <∞.

Part (b). It follows immediately from the inequality (7).

Remark 2 We recall that the set Dk is defined by (4) for λ = f(xk). Note that if
dk ∈ Dk then −dk ∈ N(xk, Lf(xk)). It is a known result that ξ ∈ ∂δC(x) if, and only if,

〈ξ, γ′xy(0)〉 ≤ 0. Thus, 〈dk, γ′
xky

(0)〉 ≥ 0 for any γxky ∈ Γ.

Next we establish quasi-Fejér convergence of the sequence of the iterates.

Proposition 1 The sequence {xk} is quasi-Fejér convergent to U .

Proof:
Let x̄ ∈ U . Since dk ∈ Dk, we have 〈γ′

xk x̄
(0), dk〉 ≥ 0 for all γxk x̄ ∈ Γ. So, from Lemma

1, we obtain

d2(xk+1, x̄) ≤ d2(xk, x̄) + θ2
k‖dk‖2 − 2θk〈γ′xk x̄(0), dk〉

≤ d2(xk, x̄) + θ2
k‖dk‖2.

Last inequality and Lemma 2 imply the result.

Proposition 2 The sequence {xk} is convergent.

Proof:
From Proposition 1 we obtain that {xk} is quasi-Fejér convergent to U . Therefore, by
Theorem 3, {xk} is bounded. Let {xl} a subsequence of {xk} which converges to x̄. By
Theorem 3 it is enough to show that x̄ ∈ U . From continuity of f , liml→+∞ f(xl) = f(x̄)
and due to the Part (b) from Lemma 2 we have that the whole sequence {f(xk)} converges
to f(x̄). So, f(x̄) < f(xk) for all k ∈ IN and thus x̄ ∈ U .
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Proposition 3 The sequence {gradf(xk)} converges to zero.

Proof:
By first inequality in (7) we have

−τθk〈gradf(xk), dk〉 ≤ f(xk)− f(xk+1).

By summing both members in the last inequality we obtain the convergence of the series
of the left hand side and consequently

lim
k→+∞

θk〈gradf(xk), dk〉 = 0. (8)

We proceed to prove that limk→+∞ inf〈gradf(xk), dk〉 = 0 by contradiction. Suppose that
there exists η̄ < 0 such that

lim inf
k→+∞

〈gradf(xk), dk〉 = η̄. (9)

By Proposition 2 we have that limk→+∞ x
k = x̄ ∈ U . The definition of θk in (6) implies

that θk converges to zero and moreover that there exists δ > 0 such that ∀tk ∈ (θk, δθk] it
holds

f(xk) + τtk〈gradf(xk), dk〉 ≤ f(expxk(tkd
k)). (10)

Consider the function φ : [0, tk] → IR given by φ(t) = f(expxk(tdk)). By applying Mean
Value Theorem on φ, for such k, there exists t̄k ∈ [0, tk] such that

f(expxk(tkd
k))− f(xk) = tk〈gradf(expxk(t̄kd

k)), Pγ̄k,0,t̄k(dk)〉, (11)

where Pγ̄k,0,t̄k(dk) is the parallel transport of dk along geodesic γ̄k such that γ̄k(0) = xk

and γ̄k
′(0) = dk. Combining (10) and (11), we obtain

τ〈gradf(xk), dk〉 ≤ 〈gradf(expxk(t̄kd
k)), Pγ̄k,0,t̄k(dk)〉.

Passing to the lim inf as k → +∞ in inequality above and taking in account the continuity
of gradf , exponential map and parallel transport we get τ η̄ ≤ η̄, which implies that τ ≥ 1
and we have a contradiction. Therefore, limk→+∞〈gradf(xk), dk〉 = 0. Then, by (2),
limk→+∞ gradf(xk) = 0. The proof is complete.

The following theorem is a consequence of the last result.

Theorem 4 The sequence {xk} converges to a stationary point.

Proof:
By Proposition 3, if x̄ is a limit point of {xk} then gradf(x̄) = 0 and the proof is complete.

4 Numerical experiments

In this section we present a numerical experiment to illustrates the performance of
the Sufficient Descent Algorithm (SDA) for solving the minimization of a quasiconvex
function on a Hypercube. In this example we compare the implementation of the steepest
descent method given in Papa Quiroz et al(2008) with a SDA implementation where the
sufficient directions are rotations of the gradient direction.
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The algorithm was coded in SCILAB 5.1.1 on a 2GB RAM Dual Core Pentium note-
book.

We denote Iter(k) the number of iterations and by Call.Armijo the number of steps in
Armijo’s search.

We consider the problem

min {f(x) : 0 ≤ x ≤ e} ,

where x = (x1, . . . , xn), e = (1, . . . , 1) ∈ Rn. As suggested in Papa Quiroz et al(2008),
take the connected and complete Riemannian manifold M = ((0, 1)n, X−2(I−X)−2), then
the iteration of SDA becomes

xk+1
i =

1

2

{
1 + tanh

(
1

2
xki (1− xki )dki θk +

1

2
log

xki
1− xki

)}
, i = 1, 2, . . . , n

where θk = 2−jk , jk is the least positive integer such that

f(xk+1) ≤ f(xk)− τθk‖vk‖2,

vk = −X2
k(I −Xk)

2dk and τ ∈ (0, 1).
Next we present one experiment with stop test d(xk−1, xk) ≤ 10−6 where d(x, y) is the

geodesic distance between points x and y, as defined by

d(x, y) =

{
n∑
i=1

[
log

(
yi

1− yi

)
− log

(
xi

1− xi

)]2
} 1

2

.

The function f(x) =
√
−log (x1(1− x1)x2(1− x2)) is quasiconvex in M and has an unique

minimal point at x∗ = (0.5, 0.5) with f(x∗) = 2
√

log 2 ≈ 1.665109222. First, we use τ = 0.1
and ϑk varying between 550 and 600 with dk given by a rotation of −gradf(xk), that is,
dk = −R(ϑk)gradf(xk). We show the SDA behavior in Table 1. Next, we use τ = 0.1,
αk = 1, βk = 2, ϑ = 600 and dk = −R(ϑ)gradf(xk) to compare SDA with SDM, by
considering the same starting guesses given in Papa Quiroz et al(2008), and those results
are shown in Table 2.

Table 1: Behaviour with variable rotate matrix

Iter(k) Call.Armijo xk f(xk) d(xk−1, xk) ϑk
0 − (0.100000, 0.900000) 2.19451 − −
1 1 (0.866669, 0.222506) 1.97800 5.3336894 55.31
2 1 (0.466446, 0.541680) 1.66855 2.4569044 57.21
3 1 (0.504297, 0.525710) 1.66592 0.1646317 58.02
4 1 (0.516183, 0.517268) 1.66578 0.0583701 58.46
...

...
...

...
...

...
20 1 (0.500584, 0.500243) 1.66510 0.0007996 59.64
...

...
...

...
...

...
44 1 (0.500000, 0.500000) 1.66510 0.79866e− 007 59.84
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Table 2: Comparison with SDM

x0 Scheme Iter(k) Call.Armijo xk d(xk−1, xk)

(0.45, 0.51) SDM 65 65 (0.499999, 0.500000) 9.27003e− 007
SDA 33 34 (0.500000, 0.500000) 9.21483e− 007

(0.40, 0.60) SDM 71 71 (0.499999, 0.500001) 9.93398e− 007
SDA 45 45 (0.500000, 0.500000) 8.11867e− 007

(0.10, 0.90) SDM 85 85 (0.499999, 0.500001) 8.92053e− 007
SDA 52 52 (0.500000, 0.500000) 8.09453e− 007

(0.20, 0.30) SDM 79 79 (0.499999, 0.499999) 8.79813e− 007
SDA 45 45 (0.499999, 0.499999) 7.87057e− 007

(0.70, 0.60) SDM 75 75 (0.500001, 0.500001) 8.82938e− 007
SDA 47 47 (0.500000, 0.500000) 8.00870e− 007

5 Final remarks

In this paper we have presented a sufficient descent algorithm, with the stepsize chosen
by an Armijo’s criterion, for quasiconvex problems on Riemannian manifolds. Under mild
assumptions, we have established full convergence of the sequence of the iterates to a sta-
tionary point. A preliminary numerical experiment on the quasiconvex problem indicates
that significant gains in the number of iterations can be achieved when we compare our
method with an implementation of the Steepest Descent Method found in the literature.
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