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ABSTRACT
We analyze an inexact projection method for solving the variational inequal-
ity problem. The convergence of the generated sequence is proved under mild
assumptions. A numerical experiment is reported.
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1 Introduction

Let C be a nonempty closed convex subset of Rn and let T : Rn → P(Rn)
be a point-to-set operator. We consider the Variational Inequality Problem
defined by:

V IP (T,C)
{

Find x∗ ∈ C such that there exists u∗ ∈ T (x∗) with
〈u∗, x− x∗〉 ≥ 0 ∀ x ∈ C. (1)

The variational inequality problem was introduced by Hartman and Stam-
pacchia (1966). This formulation has been used to study several problems
in transportation planning, regional science, socio-economic analysis, energy
modeling, and game theory, see, for instance, Facchinei and Pang (2003) and
references therein.

In this paper, we study a relaxed version of the algorithm given in Anh
et al (2008). We consider inexact projections onto the constraint set C and
the step size is defined by a divergent series. We prove the convergence
of the sequence generated by the algorithm under mild assumptions. We
include a numerical experiment to illustrate the behavior of our method.

This work is organized as follows. In Section 2, we give some basic
facts. In Section 3, we define the algorithm and we analyze its convergence.
Finally, we report a preliminary numerical experience.

2 Preliminaries

In this work we assume that the operator T is bounded on bounded subsets
of C and it has a sequentially closed graph, that is, if {(xk, uk) : uk ∈ T (xk)}
converges to (x, u), then, u ∈ T (x).

We denote by S(T,C) the solution set of VIP(T,C).
In the following, we recall some necessary definitions and we give some

basic results.

Definition 1 A point-to-set operator T : Rn → P(Rn) is called:

• pseudomonotone on C if for every x, y ∈ C and every u ∈ T (x), v ∈
T (y), the following implications holds:

〈u, y − x〉 ≥ 0 ⇒ 〈v, y − x〉 ≥ 0. (2)

• pseudomonotone∗ on C, if it is pseudomonotone and for every x, y ∈ C
and u ∈ T (x), v ∈ T (y),

〈u, y − x〉 = 〈v, y − x〉 = 0 ⇒ v ∈ T (x), u ∈ T (y). (3)

Remark 1 The class of pseudomonotone∗ operators is significantly larger
than the class of paramonotone maps. As an example, the Clarke subdiffer-
ential of a locally Lipschitz pseudoconvex function is pseudomonotone∗, see
Hadjisavvas and Schaible (2009) and references therein.

Example 1 Let n = 1, T (x) = x2. T is pseudomonotone∗ on C = R
and bounded on bounded subsets of C. Furthermore, T is a nonmonotone
operator and it has a sequentially closed graph.
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Proposition 1 Assume that T is a pseudomonotone∗ operator on C. Then,
for every x∗ ∈ S(T,C), x ∈ C and u ∈ T (x) it holds

〈u, x∗ − x〉 = 0 ⇒ x ∈ S(T,C). (4)

Proof:
Let x∗ ∈ S(T,C), x ∈ C and u ∈ T (x) such that

〈u, x∗ − x〉 = 0. (5)

Since x∗ ∈ S(T,C) there exists u∗ ∈ T (x∗) such that

〈u∗, x− x∗〉 ≥ 0. (6)

On the other hand by (5) and (2) we have

〈u∗, x− x∗〉 ≤ 0. (7)

Therefore, from (6) and (7) it results

〈u∗, x− x∗〉 = 0. (8)

Hence, by (3) we have that u∗ ∈ T (x).
Consequently, for every y ∈ C it follows

〈u∗, y − x〉 = 〈u∗, y − x∗〉+ 〈u∗, x∗ − x〉
= 〈u∗, y − x∗〉
≥ 0.

that is, x ∈ S(T,C). The proof is complete. �

The following well-known property will be a useful tool.

Lemma 1 Let {ak} and {bk} be nonnegative sequences of real numbers sat-
isfying ak+1 ≤ ak + bk and such that

∑+∞
k=1 bk < +∞. Then the sequence

{ak} converges.

3 A projection method for variational inequalities

Let ρ > 0 and let {ρk} ⊂ (ρ,+∞), {βk} ⊂ (0,+∞), {ξk}, {εk} be sequences
of nonnegative parameters such that∑ βk

ρk
= +∞,

∑
β2
k < +∞,

∑
ξk < +∞,

∑ βkεk
ρk

< +∞. (9)

3.1 Algorithm PMVI

step 0: Choose x0 ∈ C. Set k = 0.
step 1: Let xk ∈ C. Obtain uk ∈ T (xk).
step 2: Find wk ∈ Rn such that:

〈wk + uk, y − xk〉 ≥ −εk ∀ y ∈ C, (10)
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and define
αk =

βk
γk

where γk = max{ρk, ‖wk‖}. (11)

step 3: Compute xk+1 ∈ C such that:

〈xk+1 − xk − αkwk, x− xk+1〉 ≥ −ξk ∀ x ∈ C. (12)

Let us note that if ξk = εk = 0 and γk = 1 for all k ∈ N the algorithm
(PMVI) becomes the algorithm 2.1 given in Anh et al (2007). Clearly, (10)
is verified, if we consider wk = −uk.

3.2 Convergence analysis

Throughout this work we assume the following assumptions:

A1. The solution set S(T,C) of Problem V IP (T,C) is nonempty;

A2. T is pseudomonotone∗.

We observe that condition A2 is weaker than the condition of strongly
monotonicity of the operator F used in (Anh et al, 2007).

Now, we are in position to establish our convergence results for VIP(T,C).

Lemma 2 We have

‖xk+1 − xk‖ ≤
βk +

√
β2
k + 4ξk

2
∀k ∈ N. (13)

Proof:
By taking x = xk in (12) we get

〈xk+1 − xk, xk+1 − xk〉 ≤ 〈αkwk, xk+1 − xk〉+ ξk. (14)

Combining (14) and the Cauchy-Schwarz inequality, we have

‖xk+1 − xk‖2 = 〈xk+1 − xk, xk+1 − xk〉
≤ 〈αkwk, xk+1 − xk〉+ ξk
≤ βk‖xk+1 − xk‖+ ξk

(15)

Hence, we complete the proof by considering the quadratic function s(θ) =
θ2 − βθ − ξ, with θ = ‖xk+1 − xk‖. �

Proposition 2 Assume that A1 is verified. Let x∗ ∈ S(T,C). Then, for
all k ∈ N, the following assertion holds

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2αk〈uk, x∗ − xk〉+ δk, (16)

where δk = βk

√
β2
k + 4ξk + β2

k + 2 (αkεk + ξk).
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Proof:
We have

‖xk+1 − x∗‖2 = ‖xk+1 − xk + xk − x∗‖2
= ‖xk+1 − xk‖2 + ‖xk − x∗‖2 + 2〈xk+1 − xk, xk − x∗〉
= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2〈xk − xk+1, x∗ − xk+1〉
≤ ‖xk − x∗‖2 + 2〈xk − xk+1, x∗ − xk+1〉
≤ ‖xk − x∗‖2 + 2

(
αk〈wk, xk+1 − x∗〉+ ξk

)
= ‖xk − x∗‖2 + 2αk

(
〈wk, xk − x∗〉+ 〈wk, xk+1 − xk〉

)
+ 2ξk

≤ ‖xk − x∗‖2 + 2αk〈uk, x∗ − xk〉
+ 2

(
βk‖xk+1 − xk‖+ αkεk + ξk

)
≤ ‖xk − x∗‖2 + 2αk〈uk, x∗ − xk〉
+ βk

√
β2
k + 4ξk + β2

k + 2 (αkεk + ξk) ,
(17)

where second inequality comes from (12), the third one is obtained from (10),
(11) and the Cauchy Schwartz inequality, and we get the last inequality from
Lemma 2. �

Theorem 1 Assume that A1 and A2 are verified. Then,
(i.) {‖xk − x∗‖2} is convergent, for all x∗ ∈ S(T,C);
(ii.) {xk} is bounded.

Proof:
(i.) Let k ∈ N, from A2 we get that 〈uk, x∗ − xk〉 ≤ 0. Therefore, by
Proposition 2 we have that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + δk, (18)

where δk = βk

√
β2
k + 4ξk + β2

k + 2 (αkεk + ξk).

Since, ab ≤ 1
2(a2 + b2), for all a, b ∈ R we get

βk

√
β2
k + 4ξk ≤

1
2

(2β2
k + 4ξk).

Therefore, by (9) we obtain that

∞∑
k=0

δk < +∞.

Hence, the convergence of the sequence {‖xk − x∗‖2} follows from Lemma
1.
(ii.) It is a direct consequence of (i). �

Theorem 2 Suppose that A1 and A2 are verified. In addition, assume that
the sequence {wk} is bounded. Then, the whole sequence {xk} converges to
a solution of VIP(T,C).

Proof:
Let {xk} and {uk} be sequences generated by algorithm (PMVI) and let
x∗ ∈ S(T,C).
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Firstly, we prove that lim supk→+∞〈uk, x∗ − xk〉 = 0.
By applying A2 to x = xk and by Theorem 1 we have

0 ≤ 2αk〈uk, xk − x∗〉 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + δk, (19)

where
∑+∞

k=k0
δk < +∞.

Hence,
0 ≤ 2

∑m
k=k0

αk〈uk, xk − x∗〉

≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 +
∑m

k=k0
δk,

(20)

by taking limits with m→ +∞ we obtain that

0 ≤
+∞∑
k=k0

αk〈uk, xk − x∗〉 ≤ ‖xk0 − x∗‖2 +
+∞∑
k=0

δk < +∞, (21)

in particular,
∑+∞

k=0 αk〈uk, xk − x∗〉 < +∞.
Since ρ−1

k < ρ−1 for all k ∈ N and the sequence {wk} is bounded, there
exists L > 0 such that

γk
ρk

= max{1, ρ−1
k ‖w

k‖} ≤ L ∀k ∈ N

and with (11) we get
βk
Lρk

≤ αk

it results
+∞∑
k=0

βk
Lρk
〈uk, xk − x∗〉 < +∞.

We use the divergence of
∑+∞

k=0
βk
ρk

to conclude that

lim sup
k→+∞

〈uk, x∗ − xk〉 = 0.

Hence, there exists a subsequence {(xkj , ukj ) : ukj ∈ T (xkj )} such that

lim
j→+∞

〈ukj , x∗ − xkj 〉 = lim sup
k→+∞

〈uk, x∗ − xk〉 = 0. (22)

From the boundedness of {xk} and {uk}, without loss of generality, there
are x, u ∈ Rn with

lim
j→+∞

ukj = u and lim
j→+∞

xkj = x. (23)

Since {xk} ⊂ C and the graph of the operator T is sequentially closed it
results

x ∈ C, u ∈ T (x).

Therefore, 〈u, x∗ − x〉 = 0. From A2 and Proposition 1, we conclude that
x ∈ S(T,C). By Theorem 1, {‖xk − x‖2} is convergent, hence

0 = lim
j→+∞

‖xkj − x‖ = lim
k→+∞

‖xk − x‖.

The proof is complete. �

Remark 2 When the algorithm (PMVI) becomes the usual projection method,
that is, wk = −uk for all k ∈ N, the boundedness of the sequence {wk}, in
Theorem 2, is a consequence of the boundedness of the sequence {xk}.
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4 Numerical tests

In this section we illustrate the behavior of the algorithm PMVI by consid-
ering a numerical test coded in SCILAB 5.2.2 on a 2GB RAM Intel Atom
N450.

We consider the variational inequality problem that reformulates the
Cournot oligopoly problem with shared constraints and nonlinear cost func-
tions as described in Heusinger and Kanzow (2009). Following Harker
(1984), the problem becomes∑5

i=1 Fi(qi − q∗i ) ≥ 0 ∀ q ∈ C,
Fi(q) = f ′i(q)− p(

∑5
j=1 qj)− (qi)p′(

∑5
j=1 qj),

fi(qi) = ciqi + βi
βi+1K

(− 1
βi

)

i q
(
βi+1

βi
)

i ,

p(Q) = 5000
1
ηQ
− 1
η ,

with η = 1.1, c = (10, 8, · · · , 2), K = (5, 5, · · · , 5), β = (1.2, 1.1, · · · , 0.8),
C = Rn

+ and q∗ = (36.912, 41.842, 43.705, 42.665, 39.182).
For this problem, we use wk = −uk, βk = 30

k , ρk = 1 for all k ∈ N.
In Table 1, we show the first three components of each iterate for sake of

comparison of PMVI with the relaxation algorithm (RA) given in Heusinger
and Kanzow (2009).

Table 1: Iterations of RA and PMVI
RA PMVI

Iter.(k) qk1 qk2 qk3 qk1 qk2 qk3
0 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
1 55.0181 56.1830 55.7512 22.2998 23.8567 23.4060
2 27.2067 33.0054 36.1694 27.9168 29.1315 30.2456
3 42.6043 46.7481 47.9981 31.5732 33.4380 35.0173
4 33.5762 38.8631 41.1775 34.3174 36.8889 38.8577
5 38.8777 43.5262 45.1860 36.5254 40.0134 42.2881
10 36.7970 41.6992 43.6040 36.8336 41.7204 43.6016
18 36.9306 41.8164 43.7051 36.9325 41.8181 43.7065
26 36.9324 41.8181 43.7065 − − −

5 Final remarks

In this paper, we have presented an inexact projection method where the
step size is defined by a divergent series. We have showed the convergence of
the generated sequence by considering that the operator T is pseudomonotone∗
and it has a sequentially closed graph.
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