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ABSTRACT 

Providing quality public transportation is extremely expensive when demand is low, 

variable and unpredictable. Demand Responsive Transportation systems address this problem 

with routes and frequencies that may vary according to the observed demand. In this context, we 

aim at planning a set of services for transportation requests, between origins and destinations 

specified by users, using a fleet of homogeneous vehicles. Users may also specify a time window 

for departure and the desired arrival time. The goal is not only to minimize operating costs but 

also to maximize the quality of the service, expressed by indicators such as the average passenger 

waiting time and on-board time. To obtain an approximation of the Pareto solution set for this 

problem, we have designed a heuristic approach involving the construction of a feasible route 

through a greedy randomized procedure, followed by a local search phase. Preliminary results on 

randomly generated instances look very promising. 

KEYWORDS. Combinatorial Optimization. Multiple-Objectives. Heuristics. Logistics and 

Transportation. 
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1. Introduction 

Providing quality public transportation is extremely expensive in scenarios where 

demand is low, variable and unpredictable, such as disperse rural areas or some periods of the 

day in urban areas (e.g. at night). Buses circulating with very low occupancy rates mean higher 

costs for the service providers, often leading to low frequencies and, as a consequence, low 

perceived quality and degradation of the image of public transportation. Demand Responsive 

Transportation (DRT) services try to address this problem by providing a kind of hybrid approach 

between a taxi and a bus, with routes and frequencies that may vary according to the actual 

observed demand. Metaphorically speaking, one could see a DRT as a “horizontal lifter”. The 

advantages of such a service in terms of social cohesion, mobility, traffic, or environment, are 

fairly obvious. However, in terms of financial sustainability and quality level, the design of this 

type of services may be rather difficult. 

The problems of designing and operating DRT services are closely related to the 

Vehicle Routing Problem (VRP), and in particular to the Dial-A-Ride models. Given the 

complexity of these problems, optimal solutions can take an enormous amount of time to be 

found, ruling out their usefulness in the context at hand. Besides, in a multiple criteria decision 

context the “optimal” solution is in general meaningless because it is impossible to satisfy all 

(usually contradictory) objectives simultaneously (Branke et al. 2008). So we are interested in 

finding a set of efficient solutions hopefully close to the Pareto front. 

The Vehicle Routing Problem is a NP-Hard combinatorial optimization problem, dating 

back to the 50’s (Dantzig and Ramser 1959) , that lies at the intersection of two well known and 

studied problems (Machado et al. 2002): the Travelling Salesman Problem (TSP) and the Bin 

Packing Problem (BPP). In the TSP, one is interested in finding a minimum Hamiltonian circuit. 

In the BPP, the problem is to pack a set of items of different size and/or weight in a container not 

exceeding its maximum capacity. In VRPs, given a limited fleet of vehicles, a depot as starting 

and ending point and the known demands of geographically dispersed clients, the objective is to 

find the set of routes with minimum cost satisfying all the demand (Fisher et al. 1995). 

Dynamic Vehicle Routing for Demand Responsive Transportation extend the 

“classical” VRP in a number of ways, being, at least, as much complex as the later (Cordeau et al. 

2007a). It is clear that in the DRT context, vehicles have a limited capacity (leading to a variant 

of the so-called Capacitated VRP), demands should be served in a certain time window (VRP 

with Time Windows), each stop along the route can be both a pickup and delivery point (Pickup-

and-Delivery VRP) and there is still the uncertainty and variability associated with the number of 

stops along the route – thus making the problem dynamic. But, DRTs drift away from “classical” 

VRP in the sense that, instead of the vehicles leaving the depot loaded to serve the demand along 

the route, in DRTs they leave the depot empty and have several points of pickup and delivery 

along the route, before returning to the depot. 

There is a more suitable class of problems for modelling the DRT, known as the Dial-

A-Ride Problem (DARP) (Cordeau and Laporte 2007). In the DARP model, one tries to define 

vehicle routes and schedules for a set of transportation requests, between origins and destinations 

specified by the users. This transportation requests are performed by an homogeneous fleet of 

vehicles starting from a depot, providing a shared service in the sense that several users may be in 

a vehicle at the same time (Cordeau 2006). The biggest difference between the DARP and the 

VRP (and namely the Pickup-and-Delivery VRP variant) is, what we might call, the human 

dimension of the problem: in the DARP one is interested not only in minimizing the operating 

costs or the distance travelled by the vehicles but also (and this is sometimes more important) in 

maximizing the quality of the service, based on indicators such as the average passenger waiting 

time or the on-board (ride) passenger time (Paquette et al. 2010). In the DARP there are usually 

outbound and inbound trips (Cordeau et al. 2007b), in what we could call pendulum movements, 

but in our DRT problem there are just outbound trips – i.e. users specify pickup and delivery 
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locations, but no return trip. Also, in most literature DARP instances, the set of pickup points is 

disjoint from the set of delivery points (in some cases there is only one delivery point) which, 

clearly, is not the case in the addressed problem as we shall see. 

In this document we present a Dynamic Vehicle Routing approach for Demand 

Responsive Transportation - DVRDRT. Besides being a multi-objective DARP problem, the 

DRT application is also dynamic, requiring the (re-)design of solutions in real-time, and this is 

strongly dependent on the dynamic degree of the problem at hand. According to the concept of 

effective degree of dynamism, for problems with time time-windows as defined in (Larsen 2000), 

the studied DRT services are strongly dynamic. 

2. Problem description 

In the Dynamic Vehicle Routing model for DRT we assume that passengers specify 

origins and destinations from a set of pre-defined possible route points, a pickup time window 

and a desired arrival time for their transportation needs, and that they are to be served by a fleet 

of vehicles of equal capacity (number of seats). Each possible route point, with the exception of 

the depot, can be a pickup-only point, a delivery-only point, or both. At a given route pickup 

location, different passengers entering the vehicle can have different destinations and different 

time windows. Several users can be simultaneously transported in one vehicle, like a mini-bus. 

The vehicles start and end their trips at a single depot and transportation requests can be received 

at any time, from any origin. Since different users have different transportation needs, each point 

(stop) along the route can have multiple (possibly disjoint) time-windows (both pickup and 

delivery), which in association with the real-time arrival of new requests may require several 

visits to a given stop at different periods. This is a major difference from all know variants of the 

VRP and DARP problems – and quite a fundamental one, thus requiring innovative approaches. 

Summing up, the main DVRDRT characteristics are: 

- multiple vehicles with equal capacity; 

- single depot where vehicle routes start and finish; 

- simultaneous pickup and delivery; 

- users specify transportation requests from anywhere to any where (many-to-many), 

at any time (dynamic); 

- users specify pickup and delivery time-windows; 

- multiple (possibly overlapping) time-windows at each stop; 

- pickup time-windows must be respected (hard constraint); 

- delivery time-windows can be violated at a penalty cost (soft constraint). 

For combinatorial optimization problems as this, one is often “just” interested in 

feasible solutions that can be obtained in useful time. Given the complexity of the problem, 

optimal solutions can take an enormous amount of time to be found, ruling out their usefulness in 

the context at hand. Besides, in a multiple criteria decision analysis the concept of an “optimal” 

solution is in general complex to define because it is impossible to satisfy all (usually 

contradictory) objectives at the same time (Branke et al. 2008). So we are interested in finding a 

set of efficient solutions hopefully close to the Pareto front.  The goal is not only to minimize the 

operating costs incurred to satisfy the maximum possible number of requests but also to 

maximize the quality of the service, expressed by indicators such as the average passenger 

waiting time and the on-board (riding) time. To obtain an approximation of the Pareto solution 

set, we have designed a heuristic approach by constructing a feasible route through a greedy 

random approach, followed by a local search phase. 

The figure below shows a hypothetical initial state for a static DVRDRT problem (i.e., 

with all information know beforehand). In a dynamic environment, during the time period in 

which vehicles perform the pre-computed routes, new transportation requests would 

stochastically arrive in real time from any point. 
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Aliados

Marquês

Bolhão

Ribeira

8km
8min10km

10min

5km
5min

S.João

12km
12min

Miragaia

6km
6min

P.da Galiza

7km
7min

7km
7min

Paranhos

6km
6min

3km
3min

Boavista

3km
3min

AEP

Francos

8km
8min

5km
5min

2km
2min

Aliados-Marques; 00h02-00h25;
Aliados-Marques; 00h07-00h25;
Aliados-Boavista; 00h25-00h45;

S_Joao-P.da Galiza; 00h20-00h50;
S_Joao-P.da Galiza; 00h20-00h50;

Boavista-Aliados; 00h38;00h58;

Depot

4km
4min

 
Figure 1 Hypothetical initial state for a static DVRDRT problem 

 

Suppose that in the hypothetical situation depicted above, the service operator has set 

the start of the service at midnight (00h00) and the time-windows have 3 minutes. There are a set 

of stops represented as ellipses, the road network represented as arcs with distance and travel 

time connecting the stops, one depot (square) and the transportation requests represented as tags 

at their origins. Each transportation request is formed by origin, destination, pickup time and 

delivery time. Around each value of pickup and delivery time there is a (customizable) time 

window. In the above picture, there are, for instance, two transportation requests with origin in 

“S. João” and destination “P. da Galiza”, with the same pickup and delivery time-windows, 

[00h20m-00h23m] and [00h50m-00h53m], respectively. At “Aliados”, for instance, there are 

three transportation requests, two of them with the same destination and similar pickup times and 

one with a completely different destination and pickup time (i.e., multiple destinations and 

multiple time windows). Notice also that “Boavista” is simultaneously a pickup and delivery stop 

for different transportation requests also with different time windows. 

3. Problem modelling 

In (Cordeau 2006) the static DARP is formally modelled using a 3-index formulation. 

We will use a similar formulation for the DVRDRT problem also, noting that in this case there is 

no distinction between pickup and delivery nodes – i.e., every node can be both pickup and 

delivery - and there is a single depot. The presented formulation is intended to be flexible, easily 

allowing new constraints and variants of the problem. 

3.1 Parameters and indices 

Let },..,2,1{ pP  be the set of transportation requests. As each passenger corresponds 

to one and only one request, we can use interchangeably the terms passenger and request. So, for 

each passenger Pp  there is a transportation request from origin
p  to destination

p . 

So  Pp
pP



   is the set of all origins and, analogously,  Pp
pP



  is the set of all 

destinations. The dynamic vehicle routing problem for demand responsive transportation can 
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therefore be defined on a loop less asymmetric multigraph ),( AVG  . },..,1,0{ nV  is the node 

set representing the stops, being 0 (zero) the vehicles’ depot, so 
  PPV }0{ . 

},,:),{( VjijijiA  is the set of arcs connecting the vertices. Associated to each arc 

  Aji , there is a traversal cost ijc and a trip time ijd . The set of all possible trips corresponds 

to the non-reflexive closure of }0{\V . To each vertex one can assign a load index im equal to 

the difference between the number of requests having this vertex as origin and the number of 

requests having this vertex as destination, i.e., 

ii outini PPm  with   



  PPViippP
ii inPpin ,}0{\,:  and, in a similar way, 

for the delivery,   



  PPViippP
ii outPpout ,}0{\,: . There are no passengers 

entering or leaving at the depot 
00 outin PP . 

As referred, each passenger (request) p has a pickup time-window  
pp ii le , at the 

origin i and a delivery time-window  
pp ji le , at the destination j , Vjiji  ,, .  

Let },..,2,1{ kK  be the set of vehicles, all with the same capacity (number of seats) 

Q . 
k

iQ is the load of the vehicle k after leaving node i . },..,2,1{ uU   is the set of the requests 

that have not been satisfied. 

3.2 Decision variables 

}1,0{k

ijx is 1 if vehicle Kk  travels from node i to node and j 0 otherwise 

}1,0{k

py is 1 is passenger Pp  enters vehicle Kk  and 0 otherwise 

3.3 Auxiliary variables 

For each vehicle Kk  , the continuous variable 
k

ip
t is the time instant of the beginning 

of the service for passenger p at node i . The service duration is considered to be null. If 

passenger p  is not served by vehicle k  then this value has no meaning. 

3.4 Objective functions 

Minimize cost     
  Kk Vi Vj

k

ijij xcmin   

Minimize waiting time     
 


Kk

k

p

Pp

i

k

i yet
pp

min   

Minimize on-board ride time    
 


Kk

k

p

Pp

k

i

k

j ytt
pp

min   

Maximize number of serviced requests  
 Kk Pp

k

pymax   

(1) 

(2) 

(3) 

(4) 
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3.5 Constraints 

Several constraints have to be considered. In particular, we have to impose that every 

vehicle that enters a node leaves that node, routes start and end at the depot, and every 

transportation request can only be served by a single vehicle. Moreover, neither the fleet size nor 

the vehicle capacity can be exceeded. Every passenger must be picked up within his pickup time 

window (hard constraint) and, preferably, also delivered within the limits of the specified 

delivery time window - delivery time-windows can be violated at a penalty cost (soft constraint). 

In every transportation request the delivery service must, of course, be later than the pickup 

service (precedence constraints).  

3.6 Solutions 

A feasible solution for the DVRDRT is a set  mRRS ,..,1  of tuples R formed from 

the vertex set V that respect the problem’s constraints. S  is not a partition of V , as in (most) 

VRP problems, because there is no guarantee that 
mRR ,..,1

are both collectively exhaustive and 

mutually exclusive with respect to the set V  being partitioned. 
iR is a tuple since it can contain 

an object (vertex) more than once (i.e., it is not a set), the objects appear in a certain order (i.e., it 

is not a multiset) and, obviously, they have finite size. Also, although the visiting order is a key 

feature of the problem, each 
iR  is not a permutation of the vertices of the problem’s graph as in 

the VRP because each vertex may have to be visited more than once. It is not a permutation with 

repetitions in the strict sense because the repetitions of a node cannot be consecutives – i.e., the 

vehicle must move from a node to another. So, a feasible 
iR must contain at least two nodes, 

besides the depot, corresponding to the origin and destination of at least one transportation 

request   0,,,0min ppR . As the starting and finishing point of a route is the depot, the 

minimum size of a feasible route must be at least 4, and the theoretical maximum size of a 

feasible route is given by ||||   PP  (in this case, 1|| S ). 

Each route  0,,..,,0 1 mi vvR has a cost function )()(
1

1,


 
m

i

iii WcRC , with W  

being the fixed cost of the vehicle assigned to the route. Similarly, each request not satisfied has a 

cost )( iUC . So, finally, the total cost of a solution S is ))()(()(
1 1

 
 


m

i

u

j

ji UCRCSF .  

4. Heuristic approach 

A generic solution strategy has been developed for efficiently solving the problem. For 

testing and validating this approach, a simplified version (to be extended in the near future) of the 

problem has been designed based on the following assumptions:  

- a single depot from which a set of uncapacited vehicles starts and finishes the routes; 

- each passenger specifies a pickup time window and a corresponding delivery time 

window; 

- time windows have a fixed, common duration (e.g., 15 minutes); 

- transportation requests must be issued before the start of the service in order to have 

an a priori and static route planning. Transportation requests that arrive after the 

vehicle starts the service are not accepted for the ongoing route and are postponed for 
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Step 1:initialize  S
 

While   KP
 

Step 2:initialize  R  

Step 3:start at the depot  0R  

Step 4:for all feasible nodes: 

Step 4.1:compute Cost Rank List (CRL) - sort all nodes in 

increasing distance from the current position, and normalize 

the values obtained, such that the closest node is assigned 

with the highest value, and so on; 

Step 4.2:compute Number of Passengers Rank List (NRL) – sort 

all nodes in decreasing order by load index 
im  and normalize. 

Step 4.3:compute Delivery time-window Rank List (DRL) – sort 

the nodes that have delivery requests ( 0
ioutP )by increasing 

earliest delivery time defined by the time window plus the trip 

time from the current position to every remaining node and 
normalize. 

Step 4.4:compute Time-window Rank List (TRL) - sort the nodes 

that have pickup requests ( 0
iinP )by increasing earliest 

pickup time defined by the time window plus the trip time from 

a later service, if feasible. 

4.1 A greedy constructive algorithm  

The problem objectives are classified into two perspectives: a vehicle’s perspective and 

a passengers’ perspective. From the vehicle’s perspective we have the minimization of total route 

cost and the maximization of the serviced requests, and on the passengers’ perspective (reflecting 

the quality of service) we have the minimization of the sum of passenger waiting times and the 

sum of passenger ride times. 

A Node Ranking Function (NRF) has been defined to determine, at each iteration, the 

next node to be inserted into the route (under construction), taking into account the two 

aforementioned perspectives. In terms of the vehicle’s perspective, the major factors for 

determining the next node to be selected are the distance to all other nodes from the current 

position and the number of passengers on those nodes. From the passengers’ perspective, the 

major factors to be considered are the number of passengers on the bus having as destination a 

given node, and the time windows on the remaining nodes. For each of these factors a weight 

 is assigned, to account for the different perspectives of the decision maker in a multi-criteria 

context. Let d  be the weight of the distance factor, p the weight of the number of passengers’ 

factor, v  the weight of the delivery time window factor and, finally, t  the weight of pickup 

time window factor. The NRF can then be defined as:  

           iTRLiDRLiNRLiCRLiNRFVi tvpd  },0{\  

with the first operator representing the vehicle’s perspective and the second operator representing 

the passengers’ perspective. The  iCRL  (Cost Rank List) is the node’s travel cost normalized 

value, the  iNRL  (Number of passengers Rank List) is the node’s load index im  normalized 

value,  iTRL  (Delivery time rank list) is node’s earliest delivery time normalized value and 

 iDRL  (Time window rank list) is the node’s associated earliest pickup time normalized value. 

The normalization of the values is obtained setting
kk

kk

i

N

k

i
ZZ

ZZ
Z

minmax

min)(



 , for maximization and 

kk

k

i

k

N

k

i
ZZ

ZZ
Z

minmax

max)(



 , for minimization. The NRF algorithm is as follows: 
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the current position to every remaining node and normalize. 

Step 5:set NRF for each node, according to 

           iTRLiDRLiNRLiCRLiNRFVi tvpd  },0{\
 

Step 6: select the node with highest NRF that does not violate the 

constraints (feasible node) and add it to the route - 

  iNRFRR max ; 

Step 7: update requests data, possibly removing requests already 

satisfied and moving the unfeasible ones to the list U ;  

Step 8:if P  then close route R adding the depot (0) at the end and 

add route to solution set S , RSS  ; 

Step 9:if U then do UP  and go to Step3; else go to next; 

end-while 

return solution S . 

 

 

The next figure shows the route solution set obtained using the NRF algorithm in the 

hypothetical initial state for the static DVRDRT problem instance shown in Figure 1, with the 

weight parameters equal to: 10,0,55,0,15,0,20,0  tvpd  , 

 
Figure 2 NRF algorithm solution 

 

The NRF algorithm solution for the hypothetical initial state for a static DVRDRT 

problem is a set of three routes: 

- Depot /Aliados / Marquês / Boavista /Aliados / Depot 

- Depot / S.João / P.da Galiza / Depot 

- Depot /Aliados / Boavista / Depot 

4.2 Randomized enhanced heuristic 

In the quest to obtain better results, hopefully closer to the Pareto front, the next step 
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Parameters:MAX_iterations 

while(num_iterations<MAX_iterações) 

 choose k  parameter with probability
 

  mkp k ,..,1,   

 initialize  S  

//construction phase 

while   KP
 

initialize
 

 R  

start at the depot
 

 0R  

while P  

Build Candidate List (CL) from current node using NRF 

Build Restricted Candidate List (RCL) using current k  

was to lessen the myopic-greedy nature of the NRF algorithm, embedding the NRF in a 

randomized choice procedure for the next node to be inserted on the route being constructed. The 

result is a GRASP-like metaheuristic. As in other metaheuristics, the Greedy Randomized 

Adaptive Search Procedure (GRASP) (Feo and Resende 1989), at each iteration constructs an 

initial solution (construction phase) and them performs local search procedures to improve that 

initial solution (local search phase). The difference to other metaheuristic lies at the construction 

of the initial solution in a greedy, randomized and adaptative manner (and that’s where its name 

comes from). The focus of this metaheuristics is in the attempt to build the best possible initial 

solution and not so much in the local search phase. The construction strategy is to evaluate the 

elements to be inserted in the solution at each iteration according to some criteria – recall that the 

DVRDRT is a multi-criteria problem. These criteria adapts to the already built solution, such that 

the evaluation of the elements changes during the construction of the solution. In the process, 

there is a random choice between the best elements according the defined criteria at each 

iteration. The evaluation of each element according to the criteria is made the NRF function. We 

have yet to address the address the local search phase.  

In the construction phase, a feasible solution (set of routes) is built by applying the NRF 

algorithm, adding to the each initially empty route one element at a time. Each NRF algorithm 

iteration constructs a candidate list (CL) of the elements to be inserted in the current route.  From 

this CL a number of its best elements are selected to form a restricted candidate list (RCL) - 

CLRCL  . The size of the RCL is defined by a parameter  1,0 that sets either the numbers 

of elements or a threshold between the value of best element of the CL and the value of the last 

element to be included in the RCL. This last approach was considered the best for the DVRDRT 

problem because, being a very constrained problem and due to the adaptative nature of each 

iteration of the algorithm, the size of the CL varies and, sometimes, has very few elements. By 

setting the  parameter to zero, only the best element from the CL is select, in a “pure greedy” 

manner, while setting the parameter to 1 it will be completely random. We have implemented a 

memory scheme to learn the appropriate value for the  parameter that controls how random and 

greedy the construction process following the Reactive GRASP (Resende and Ribeiro 2003) 

implementation. The algorithm reacts to solutions produced using different values for the    

parameter and tries to adjust it (at every 200
th
 algorithm iteration) to give the “best” balance 

between greediness and randomness. The next step in the algorithm is to randomly select one 

element from the RCL in insert it in the route being constructed. When a route cannot satisfy any 

more transportation request, the route is finished. If there are any unsatisfied feasible requests left 

and other vehicles available, a new route for another vehicle is started and built in the same 

manner. The process is repeated until there are no more feasible transportation requests left to 

satisfy or no more available vehicles (it is useful to recall at this stage that, if one has enough 

vehicles at hand, every feasible request can be satisfied assigning a  “individual” vehicle to it). 

The final solution is the resulting set of routes and its cost is calculated. The found solution could 

then used in the local search phase. It is a multi-start metaheuristic, so each iteration returns a 

solution  mRRS ,..,1 with its cost. Only the best overall solution is kept as the final result. 

The randomized, enhanced algorithm is as follows: 
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Randomly select next node from RCL -  iRCL  

Check feasibility of next node according to problem’ 

constraints  

if (feasible) then: 

update requests data, possibly removing requests 

already satisfied and moving the unfeasible ones 

to the list U
 

add it to the route -   iNRFRR max
 

“move” to this position 

   else: 

add this node to a “unfeasible nodes for current 

route” list 

end-while 

close route: if P  then close route R adding the depot (0) at 

the end and add route to solution set S , RSS  ; 

if U then do UP   

end-while 

compute solution cost ))()(()(
1 1

 
 


m

i

u

j

ji UCRCSF  

//update   parameter probabilities at each 200th iteration 

if mod(num_iterações,200)==0 then   mkqqp
m

j jkk ,..,1,
1

  
  

update best solution found so far
*S : if  *)( SFSF 

 
then SS *

 

end-while 

return best solution 
*S  

 
The figure below shows the route solution set obtained using the Randomized-enhanced 

NRF algorithm in the hypothetical initial state for the static DVRDRT problem shown in Figure 

1, with the weight parameters equal to: 10,0,55,0,15,0,20,0  tvpd  , 

 

 
Figure 3 Randomized enhanced NRF algorithm solution 

 

The solution produced by the randomized algorithm for the example is a set of two 

routes with significant smaller cost than the solution obtained with the “pure greedy” NRF 

algorithm (see Figure2 for comparison): 

- Depot / S.João / Boavista / P.da Galiza / Aliados / Depot 

- Depot / Aliados / Marquês / Aliados / Boavista / Depot 
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4.3 Computational results 

Being a “new” problem, there are no “off-the-shelf” benchmark data bases to test the 

algorithm for the DVRDRT and to compare it with other published approaches. To the best of 

our knowledge, the most similar instances in the literature are the ones for the Capacitated VRP 

with Time Windows (e.g. Solomon 1987), the Capacitated VRP with Pick-up and Deliveries and 

Time Windows (e.g. Haibing and Lim 2001) and the Dial-A-Ride-Problem (DARP) (e.g. Gilbert 

and Cordeau). But, even if the two problems are similar, at least two adaptations need to be 

made: one on the DVRDRT program to accept a different input format, and a second adaptation 

in the benchmark database itself to convert it to a DVRDRT instance. Our decision was to use 

randomly generated instances. 

Computational tests were done using an Intel Core Duo running at 1,67GHz, 2GB 

RAM memory, and the adjustment of the   parameter that controls greediness/randomness level 

at every 100th algorithm iteration. Preliminary computational results on these instances look very 

promising, both in terms of cost savings and in terms of computational efficiency. These results 

seem to highlight that the major factor affecting the algorithm running time is the number of 

passengers. The following picture, obtained using 50 stops and 1000 algorithm iterations shows 

the effect of increasing the number of passengers (requests): 

 
Figure 4 Number of passengers effect on the randomized enhanced NRF algorithm 

 

Moreover, if the number of passengers is fixed, adding possible stops does not increase 

the algorithm running time. Another observation is the linear increase in running time with the 

number of iterations, the running time for each iteration being constant – this is in line with 

literature results for GRASP-based algorithms. The next picture captures this observation for a 

problem with 50 stops and 20 transportation requests, gradually adding 1000 iterations to the 

algorithm. 

 
Figure 4 Number of iterations effect on the randomized enhanced NRF algorithm 

5. Preliminary conclusions 

Providing quality public transportation is extremely expensive when demand is low, 

variable and unpredictable. DRT services try to address this problem by providing a kind of 

hybrid approach between a taxi and a bus, with routes and frequencies that may vary according to 

the actual observed demand. The advantages of such a service in terms of social cohesion, 

mobility, traffic, or environment, are fairly obvious. However, in terms of financial sustainability 
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and quality level, the design of this type of services may be rather difficult. 

The problems of designing and operating DRT services are closely related to the 

Vehicle Routing Problem (VRP), and in particular the Dial-A-Ride models. Given the complexity 

of these problems, optimal solutions can take an enormous amount of time to be found, ruling out 

their usefulness in the context at hand. Besides, in a multiple criteria decision analysis the 

“optimal” solution is in general meaningless because it is impossible to satisfy all (usually 

contradictory) objectives simultaneously. So we are interested in finding a set of efficient 

solutions hopefully close to the Pareto front. The approach proposed in this work seems to be a 

powerful and flexible tool to model quite different DRT services. The constructive, heuristic 

algorithm developed here allows for different weights for each factor to be set at the beginning of 

the process or, more interestingly, at each iteration (thus “changing” the neighbourhood 

structure). Solutions are sensitive to both the weighs and the rank scale values used. 

Preliminary computational results on randomly generated instances look very 

promising, both in terms of cost savings and in terms of computational efficiency. 
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