

OBTAINING LOWER BOUNDS FOR THE FIPP P-CYCLE PROBLEM

Caroline Rocha
Escola de Ciências e Tecnologia, UFRN

Campus Universitário Lagoa Nova, 59072-970, Natal-RN, Brazil

caroline.rocha@ect.ufrn.br

Brigitte Jaumard

CSE, Concordia University

1455 de Maisonneuve Blvd W., H3G 1M8, Montreal-QC, Canada
bjaumard@ciise.concordia.ca

Thomas Stidsen

IMM, Technical University of Denmark
Richard Petersens Plads, building 321, DK-2800 Lyngby, Denmark

tks@imm.dtu.dk

ABSTRACT

In this study, we investigate a hierarchical decomposition approach for the design of survivable

networks based on failure-independent path-protecting (FIPP) p-cycles. FIPP p-cycles extend

link-protection p-cycles by adding the property of providing end-to-end failure independent path
switching against either link or node failures. Most existing work on FIPP p-cycles suffer from

either a lack of scalability or a lack of information about the quality of their heuristic solutions. In

order to overcome those drawbacks, we propose a hierarchical column generation formulation

both with a more compact formulation and a decomposition of the pricing problem. It turns out to
be a much more efficient formulation than the previously proposed column generation one.

Computational results show that we are able to solve accurately large network and traffic

instances.

KEYWORDS. Optimization, Network survivability. Column generation. Main Area:

Mathematical Programming.

3002

mailto:bjaumard@ciise.concordia.ca

1. Introduction

With the growth of Internet services and the enormous bandwidth capability of optical
networks brought with DWDM (Dense Wavelength Division Multiplexing) technology, the

information society of today relies massively on communication networks demanding more and

more high quality service provisioning. In these network architectures, services are constantly

exposed to risks of breakdown, either due to human errors or to equipment malfunctions.
Therefore, service survivability mechanisms play a crucial role in the deployment of optical

networks. Although several types of failures can occur in a network, such as fiber cut, equipment

defect or bad operation, the most predominant scenario is single link failures due to fiber cuts by
entrepreneurs or by natural disasters [Ramaswami and Sivarajan (2002), Grover (2004), Stern et

al.(2008)].

Several schemes have been proposed to achieve survivability by employing protection
or restoration in the optical layer. A quite interesting and recent option among these schemes is p-

cycle protection [Grover and Stamatelakis (1998)]. The main concept behind p-cycles is that they

recover from on-cycle link failures exactly as BLSR rings, but they protect chord links, also

called straddling links, as well. The practical importance of p-cycles is their ability to achieve a
good trade-off between capacity efficiency and restoration time since they provide fully pre-

cross-connected protection paths over their cyclic structure. This means that, upon a failure

detection, no more action, besides switching the affected traffic at the end nodes, is needed for
restoration. Since p-cycles were introduced in 1998, many studies have been carried out on the

topic, including extensions of the p-cycle concept from link protection to node failure recovery

[Stamatelakis and Grover (2000)], path-segment protection [Shen and Grover (2003)], and path
protection [Kodian and Grover (2005)], among others. In this study, we are particularly interested

in failure-independent path-protecting (FIPP) p-cycles proposed by Kodian and Grover (2005).

FIPP p-cycles extend link-protection p-cycles to allow for end-to-end path protection. Likewise

the original concept, the same end-node preplanned protection switching response takes effect.

1.1. FIPP p-cycle concept

First of all, let us define the concept of working and protection paths. A working path is
a path used to carry some traffic under normal operation conditions while a protection path is a

backup path that is only used in case of failure.

The FIPP p-cycle concept is explained using the example illustrated in Figure 7.1. FIPP
p-cycles and working paths are represented by dotted and dashed lines respectively. In Figure

1(a), path 2-1-6 is a straddling working path since it is link-disjoint from the cycle. Whether link

1-2 or 1-6 fails, protection paths 2-6 and 2-3-4-5-6 over the cycle can be used to restore the

traffic on this path. In Figure 1(b), a failure on links 2-3 or 3-4 of on-cycle working path 2-3-4
can be recovered by using protection path 2-6-5-4. More complicated relationships between a

working path and a FIPP p-cycle can appear as shown in Figure 1(c). In this case, called z-

relationship, the whole cycle is needed for protecting working path 2-3-6-5 and the protection
path used depends on which working link is affected. For example, protection path 2-6-5 can be

used to recover from a failure on links 2-3 and 3-6, and protection path 2-3-4-5 protects against a

failure on link 5-6.
The cyclical protection structure of a FIPP p-cycle can be shared by a set of working

paths for protection as long as they are mutually disjoint or, if it is not the case, their

corresponding protection paths are mutually disjoint. These criteria have to be met in order to

avoid contention for protection resources after a failure. Using our example again, working paths
2-1-6 and 2-3-4 can share the same unit-capacity p-cycle, but working paths 2-3-4 and 2-3-6-5

cannot.

3003

Figure 1: A FIPP p-cycle example. Working paths are represented by dashed lines and the p-cycle is

represented by dotted lines.

 (a) Straddling working path (b) Fully on-cycle working path (c) Partially on-cycle working path

1.2. Related work

The first work on FIPP p-cycles is documented by Kodian and Grover (2005) and

includes an integer linear programming (ILP) model, entitled FIPP-SCP, to solve the non-joint

design of FIPP p-cycle networks. In this problem, the working paths are routed prior to the

placement of FIPP p-cycles. The solution approach consists in first identifying a set of candidate
cycles and providing it for the model to determine the best assignment of working paths to cycles

with respect to the protection cost. In their study, the authors assume that only mutually disjoint

working paths can share the same p-cycle while one can impose different conditions.
An alternative approach, called FIPP-DRS, is proposed by Kodian et al. (2005). At

first, sets of mutually disjoint routes (DRSs) are identified by a heuristic algorithm. Then, a

number of candidate cycles is identified for each DRS and all preprocessed data are provided to
an ILP model. Both previous methods have focused on the idea of mutual disjointness between

working routes protected by the same cycle in order to reduce the complexity of the problem.

Different assumptions are considered by Jaumard et al. (2007). Therein, the authors allow non-

disjoint paths to be protected by the same cycle but not paths in a z-relationship. They proposed a
column generation formulation and solution framework for the linear relaxation of the problem,

and a heuristic approach to obtain integer solutions. Although this solution approach was shown

to be more efficient in obtaining near optimal solutions than the existing methods, the complexity
of the pricing problem compromises its scalability. An improved formulation of the pricing

problem is then used by Rocha and Jaumard (2008) and Rocha et al. (2009b). Zhang and Zhong

(2006) proposed a heuristic algorithm for the design of directed FIPP p-cycles. The key idea of

their algorithm is to iteratively select the most efficient cycles from a list of enumerated cycles
based on an efficiency metric, which resembles some of the previous approaches proposed for

basic p-cycles.

The mentioned studies deal with the non-joint optimization FIPP p-cycle design
problem, i.e., firstly, the design of the working paths, secondly, the design of the protection

scheme. Two further studies, however, turn their attention to joint designs. The first one is due to

Ge et al.(2007). Therein, a purely heuristic algorithm without any embedded ILP component is
used to solve the problem. The second study was carried out by Baloukov et al. (2008). Their

method works as an extension of the DRS method proposed by Kodian et al. (2005).

All previous work done on FIPP p-cycles suffer from either their lack of an assessment

of the quality of their (heuristic) solutions or a lack of scalability. As shown by Jaumard et al.
(2007), some heuristic solutions may be quite far from an optimal solution, sometimes up to 37%.

The objective of this paper is to propose first an enhancement on the previous column generation

formulation for the non-joint design of FIPP p-cycles. It consists of a much more compact
formulation of the pricing problem. In addition, we present a new decomposition of the pricing

problem which allows us to significantly speed up the run times.

The rest of the paper is organized as follows. In the next section, we formally define the

FIPP p-cycle optimization problem, and then a mathematical formulation is presented. In Section
3, the pricing problem is formally defined. Also, we present a new enhanced formulation and a

decomposition of the pricing problem. The column generation algorithm is described in detail in

3004

Section 4. Finally, computational experiments are presented in Section 5, followed by the
conclusions of the work.

2. Design of FIPP p-cycle networks

In the following, the problem of designing survivable networks using FIPP p-cycles is

formally described. For this, some important assumptions and definitions are discussed and

presented in Section 2.1, and then a mathematical formulation of the problem is provided in
Section 2.2.

2.1. Assumptions and definitions

We consider an optical network represented by an undirected graph where

is the set of nodes and is the set of links, which represent physical entities that collect all

channels between neighbor nodes. For instance, a link can represent a set of cables co-routed in

the same duct and each cable may contain multiple fibers. There is a linear cost for using one

unit of spare capacity of each link . Link costs can represent information such as the cost of

the interconnection equipment at endpoints, link length, etc. Furthermore, we are given a static

set of connection requests, each of them associated with a distinct pair of nodes. For each

connection request , we are given its required bandwidth (number of optical channels)

and its working route between its end nodes, and . Let denote the set of all potential

candidate cycles in the network. The cost of cycle is given by .
The following assumptions are taken into consideration in this study:

(i) The network is composed of bidirectional (undirected) links, i.e., each topological link

consists of a pair of fiber links, one in each direction. We also assume that the traffic is

symmetric since the connection requests are undirected.
(ii) Although FIPP p-cycles can provide resilience against node failures, we only address single

link failures, which are the predominant failure scenario in optical networks [Grover, 2004].

Thus, whenever we refer to route disjointness hereinafter, we mean link disjointness, except
where otherwise stated.

(iii) The working traffic of each connection request is assumed to take a single route. However,

we assume that the traffic can be split into integer parts (integer numbers of channels) during

protection.
(iv) The working traffic is sent through the lowest cost routes, computed a priori, therefore our

focus is on determining the cycles needed to protect those working paths.

The FIPP p-cycle design problem can now be defined as follows.

FIPP p-cycle design problem: Given the above definitions and assumptions, determine a set of

FIPP p-cycles with associated protection capacity so as to fully protect all connection requests in

 while minimizing the overall protection cost, given by , where is the number

of unit copies of cycle .

2.2. An ILP formulation

We now present an ILP formulation for the FIPP p-cycle design problem under the

above assumptions. For each cycle , let us define set as the set of all its cycle

configurations. A cycle configuration corresponds to an association of a unit-capacity p-cycle and
a subset of connection requests for which protection is provided. In particular, configuration

 is represented by vector of length , where coefficients
 , define

3005

the level of protection (the number of protection paths) provided by cycle for connection . Let

us recall that a connection can have two protection paths over a given cycle only if it fully
straddles that cycle. In this study, we assume that a feasible cycle configuration meets the

following requirements: i) It corresponds to a simple and unit-capacity cycle; ii) Only mutually

disjoint connections are protected.

The formulation is based on the decision variables , representing the

number of unit copies of p-cycle reserved for configuration . The FIPP p-cycle design
problem can be formulated as follows:

 (1)

subject to:

 (2)

 (3)

The objective function minimizes the cost of the overall capacity used for protection.
The demand constraints (2) ensure that enough capacity to protect each connection is allocated

over all cycle configurations. Finally, we have constraints (3) defining the integer domain of the

variables.

The main drawback of this model is that the number of possible cycles as well as cycle
configurations grows exponentially with the network and traffic sizes. It clearly makes

impracticable the optimization of this model through explicit enumeration of all cycle

configurations. Fortunately, cycle configurations can be iteratively computed by means of a
column generation algorithm so that, as a result, only a small fraction of cycles and

configurations will be generated at the end of the process. In order to apply column generation to

implicitly consider cycle configurations, the model above is relaxed by removing the integrality

constraints, i.e., . The resulting model is the so-called master problem.

When only some columns are considered in the master problem, this is called the restricted
master problem (RMP). Columns are further generated based on their reduced costs, which are

derived from the dual variables of RMP. The problem of finding negative reduced cost columns

to be added to RMP is discussed in Section 3, and the proposed column generation algorithm is

described in detail in Section 4. For background information about linear programming
techniques, we refer the reader to [Dantzig (1963), Chvatal (1983)].

3. Generating columns

The column generation algorithm iteratively requires the solution of the pricing

problem. Assuming that the optimization problem under concern is a minimization one, by
definition, the pricing problem corresponds to the problem of finding a column with minimum

reduced cost, i.e., to the problem of generating an augmenting column that allows decreasing the

current value of the objective function. Here, a cycle configuration with minimum reduced cost
can be viewed as the one making the best compromise between protection cost and provision of

protection for the connections.

Let be the dual variables associated with constraints (2). The reduced

cost of a cycle configuration , given by expression (4), is composed of two terms: the cost

of cycle and the revenue obtained for protecting connections.

 (4)

3006

As mentioned, the pricing problem corresponds to the problem of finding a cycle
configuration with a negative reduced cost, but it can be further decomposed thereby restraining

the search to a set of mutually disjoint requests for a given cycle. At first, let us present a formal

definition as well as a mathematical formulation for the original pricing problem. Then, we will

explain how it can be decomposed and present a formulation for the resulting pricing problem.
The pricing problem, hereinafter called the cycle configuration problem (CCP), can be defined as

follows.

Cycle configuration problem: Let us consider an undirected graph with link costs

 . Also, let us denote by the set of requests with associated revenues and

working routes between end nodes and for each request . The cycle

configuration problem asks for a cycle configuration of minimum total cost, where the cost of

configuration associated with cycle is defined by expression (4).

The following notation is introduced in order to present a formulation for CCP. Let us

define binary variables , , and , , as follows: if and only if link belongs

to the cycle; if and only if node is traversed by the cycle. In addition, let us define

binary variables and , , as follows: if and only if connection is protected;

 if and only if connection is protected and straddles the cycle (is a chord). Let us also

define , , as the cut induced by , i.e, the set of links incident to a node in and

another node in . For a single node , we denote . Additionally, let ,
 , be the set of links induced by , i.e., the set of links whose both adjacent nodes belong to

 . The problem of generating cycle configurations can be formulated as follows:

 (5)

subject to:

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

The objective function (5) calculates the reduced cost. Degree constraints (6) require
the degree of each node to be either 0 or 2. Inequalities (7) are connectivity constraints forcing

each cut separating two visited nodes to be crossed at least twice. Constraints (8) ensure that each

protected connection has both end nodes crossed by the cycle. Constraints (9) determine whether
a protected connection is a chord of the cycle or not. Inequalities (10) are capacity constraints

ensuring that concurrent connections are not simultaneously protected. Therefore, they prevent

connections from using more than one unit of protection capacity. Finally, domain constraints

(11), (12), and (13) ensure binary values for all variables.
This formulation can be considered as an improvement with respect to the one proposed

by Rocha et al. (2009b) since it has a much smaller number of variables and constraints. In the

previous formulation, there are variables representing the protection paths taken over the cycle by

3007

the connections so as to avoid contention for capacity by non-disjointly routed requests. This is
not the case here because we do not allow non-disjoint requests to share the same unit p-cycle,

which is ensured by constraints (10). A shortcoming of this formulation, which is the major

contributor to its high complexity, lies in the exponential number of constraints (7) used to avoid

subtours (or, in other words, multiple cycles). Those subtour elimination constraints are needed
because generating more than one cycle at a time would make the identification of the straddling

links very difficult. However, these constraints can be added to the model only when needed

using a branch-and-cut algorithm, as explained in Section 4.
The cycle configuration problem was proved NP-hard by Rocha et al. (2009a). Note,

however, that the pricing problem does not need to be solved exactly at each iteration in order to

obtain an improved solution, and hence heuristic generation of improving columns may be

applied. Ultimately optimal solution of the pricing problem is still required to prove optimality of
the column generation algorithm, nevertheless.

With this in mind, an interesting finding allows us to efficiently compute heuristic

solutions for CCP. The key idea is to decompose the problem into two subproblems: find a cycle
and then identify the most profitable configuration for that cycle. Indeed, if the cycle associated

with the best configuration to be added to RMP is known, then one only needs to find the set of

mutually disjoint requests that can be protected by that cycle and maximizes the revenues from
the dual prices. The corresponding subproblem is called the cycle packing problem. Indeed, a set

of candidate cycles is known at each iteration of the column generation algorithm: Those

associated with the previously generated configurations. The main advantage of this

decomposition is that the complexity of this subproblem is greatly reduced in comparison with
the aggregate pricing problem. Thus, the resulting column generating algorithm turns out to be

less time consuming and more scalable. Note that an approximate solution for the CCP is

obtained as a result of this decomposition unless the optimal cycle for the given dual prices is
known.

The cycle packing problem (CPP) can be formally defined as follows.

Cycle packing problem: For a given FIPP p-cycle , let us define set

 . Each connection request is

associated with a nonnegative revenue defined as follows: if connection is partially

or fully on cycle , otherwise . CPP asks for the subset of mutually disjoint requests in

 , called a cycle packing, that maximizes the total revenue.

We strongly believe that the cycle packing problem is NP-hard, given its similarity to

the maximum weight independent set problem (MWISP) [Bomze et al. (1999)]. In the following,

we present a mathematical formulation for CPP. It also uses binary variables , , such

that if and only if request is protected by cycle .

 (14)

subject to:

 (15)

 (16)

The objective function (14) calculates the total revenue and constraints (15)

ensure that only mutually disjoint requests are protected. Remark that this formulation

relates to the classical formulation for MWISP in a graph in which there are

constraints , stating that two adjacent nodes in the graph cannot be

part of an independent set. However, CPP formulation is certainly tighter than that one

since it gathers information from the working paths.

3008

4. Column generation algorithm

The idea behind column generation technique is to only introduce variables when

needed, i.e., when their reduced cost is negative. The method relies on a decomposition of the

initial linear program into a master problem and a pricing problem. The master problem
corresponds to a linear program subject to a first set of explicit constraints and a second set of

implicit constraints expressed throughout properties of the coefficients of the constraint matrix.

The pricing problem consists in the optimization of the reduced cost subject to the set of implicit

constraints: It either identifies favorable columns to be added to the master problem or indicates
that no such column exists.

The general framework of the proposed column generation algorithm is

summarized as follows. Initially, the algorithm starts with a set of artificial (dummy)

columns, one for each request. An artificial column corresponds to a cycle configuration

providing protection for only one request, which is so costly that it will never be part of

the optimal solution. Then, the restricted master problem containing the initial set of

variables is solved and the resulting dual variables are used to guide the search for a

cycle configuration with negative reduced cost. This process continues until no

improving cycle configuration is found.

A typical iteration of our column generation works in the following fashion.

Firstly, each known cycle is considered, from the last to the first generated one, and its

corresponding cycle packing problem is solved. As soon as the solution of a given CPP

produces an improving column, this is provided to the restricted master problem and a

new iteration begins. Contrariwise, if no improving column can be found with the known

cycles, we cannot yet claim optimality of the master problem and CCP ought to be

solved. If the solution of CCP does not produce an improving column either, the optimal

solution for the restricted master problem is also optimal for the original master problem

and the algorithm terminates. Otherwise, the column with negative reduced cost is

provided for the RMP and the algorithm iterates again.

Solving CPP is the bottleneck of the column generation algorithm. The solutions

for CPP are obtained by solving the proposed formulation which unfortunately contains

the costly connectivity constraints. In order to avoid this pitfall, the model is solved with

a branch-and-cut solver using a cutting plane scheme so as the connectivity constraints

are only introduced to the model when violated in the incumbent solution. The most

violated constraints are identified by the exact separation algorithm proposed by Fischetti

et al. (1997), which is based on the computation of maximum flows in the network. Let

us recall that CPP does not need to be solved exactly as long as we are able to find a

cycle configuration with negative reduced cost for improving the solution of RMP.

Hence, the solution of CPP is stopped as soon as a column with negative reduced cost is

obtained. This approach does not hamper the optimality of the master problem solution,

instead, it often speeds up the solution process. All CPPs are solved using the proposed

formulation within a branch-and-cut solver.

5. Computational results

In this section, we evaluate the efficiency of our solution approach using a set of 16

benchmark problem instances whose details are provided in Table 1. For each network, the

number of nodes, the number of links, average node degree, and the number of connection
requests are provided. When only asymmetric traffic was available for a given instance, we

considered the maximum amount of traffic between each pair of nodes in order to obtain a

3009

symmetric traffic matrix. The working route for each request was obtained by using Dijkstra
algorithm to find the lowest cost route. All algorithms were implemented in C++ programming

language using Concert Technology library and version 10.1 of CPLEX solver. The

computational experiments were performed on a AMD 64-bit machine with 16GB of RAM.

Table 1: Characteristics of the problem instances

Instances Nodes Links Avg. Node Degree Requests

9N17S [Grover (2010)] 9 17 3.8 36

DFN-BWIN [Orlowski et al. (2007)] 10 45 9.0 45

COST239 [Batchelor et al. (1999)] 11 26 4.7 55

POLSKA [Orlowski et al. (2007)] 12 18 3.0 66
USA [Hülsermann et al. (2004)] 14 21 3.0 91

ATLANTA [Orlowski et al. (2007)] 15 22 2.9 210

GERMANY [Hülsermann et al. (2004)] 17 26 3.1 136

NEWYORK [Orlowski et al. (2007)] 16 49 6.1 240

EON-19 [Grover (2010)] 19 37 3.9 171

TA1 [Orlowski et al. (2007)] 24 55 4.6 163

NORWAY [Orlowski et al. (2007)] 27 51 3.8 351

BRAZIL [Noronha and Ribeiro (2006)] 27 70 5.2 351

EON-28 [Hülsermann et al. (2004)] 28 41 2.9 378

BT [Grover (2010)] 30 59 3.9 435

CSELT [Grover (2010)] 30 56 3.7 435
COST266 [Orlowski et al. (2007)] 37 57 3.1 666

The first performed experiments evaluate the proposed column generation algorithm

with the new formulation for CCP but without the embedded pricing problem decomposition, i.e,

the CPP component was not included in the algorithm. Table 2 provides information about the
performance of the solution approach. In more details, we provide the number of columns (cycle

configurations) and the number of distinct cycles generated during the column generation

process. We also provide the total running time in seconds as well as the percentage of time
required for the solution of the master and pricing problems. In the worst case, the column

generation algorithm took more than one day to obtain the optimal solution for the linear

relaxation of the FIPP p-cycle design problem. From the information provided in Table 2, we can
also notice that the solution of CPP is very time consuming, responding for more than 99% of the

total running time in most cases.

Table 2: Performance of the column generation algorithm without pricing decomposition

Instances cost RR # columns time(s) master time CCP time

9N17S 2,900.00 49.15% 78 4.68 0.43% 99.57%

DFN-BWIN 178,550.00 52.40% 19 0.58 0.01% 99.99%

COST239 60,263.91 43.93% 243 38.44 0.31% 99.69%

POLSKA 3,398,548.00 72.42% 165 12.86 0.62% 99.38%

USA 5,874,273.44 99.12% 253 49.32 0.43% 99.57%

ATLANTA 135,951.00 90.02% 232 33.46 0.36% 99.64%

GERMANY 446,372.50 109.64% 331 86.19 0.28% 99.72%
NEWYORK 485.93 33.82% 598 347.26 0.24% 99.76%

EON-19 89,489.39 98.05% 930 371.26 0.57% 99.43%

TA1 5,576,871.50 84.78% 868 402.52 0.54% 99.46%

NORWAY 5,504.75 51.01% 2,798 14,051.83 0.25% 99.75%

BRAZIL 1,905,574.40 70.84% 2,99 18,043.30 0.23% 99.77%

EON-28 1,908,707.50 106.24% 2,166 6,057.35 0.23% 99.77%

BT 2,752.69 42.72% 6,155 84,705.04 0.54% 99.46%

CSELT 1,710.23 41.12% 8,336 71,598.92 1.53% 98.47%

COST266 11,866,362.78 96.42% 6,708 109,859.13 0.35% 99.65%

3010

In order to appraise the benefits of the pricing problem decomposition, the performance
of the resulting column generation algorithm can be evaluated in Table 3. For each tested

network, the table shows, besides the number of columns and cycles generated, the running time

and the percentage of the time required for solving each component of the algorithm (master

problem, CCP, and CPP). We can see now that the total running time is significantly reduced in
comparison with the algorithm without pricing decomposition. Indeed, the pricing decomposition

yields a reduction of up to 90% in the running time. The decomposition also produces a more

even distribution of consumed time among the components. Because the solutions obtained for
CCP tend to be suboptimal with respect to CPP, a larger number of columns needs to be

generated in order to reach optimality.

Table 3: Performance of the column generation algorithm with pricing decomposition

Instances # columns #cycles time(s) master time CPP time CCP time

9N17S 206 26 2.56 2.34% 29.30% 68.36%

DFN-BWIN 19 19 0.70 2.86% 18.57% 78.57%

COST239 452 76 20.92 1.58% 23.18% 75.24%

POLSKA 321 24 4.21 3.09% 28.98% 67.93%

USA 561 45 14.17 2.82% 22.23% 74.95%

ATLANTA 470 20 6.00 8.67% 32.50% 58.83%
GERMANY 535 21 7.86 8.14% 25.06% 66.79%

NEWYORK 1,7 149 146.80 3.03% 17.72% 79.25%

EON-19 2,162 75 75.30 12.27% 32.58% 55.15%

TA1 1,668 74 68.12 6.93% 22.50% 70.57%

NORWAY 8,23 228 2,478.35 20.82% 12.96% 66.22%

BRAZIL 10,603 280 2,909.12 16.05% 8.58% 75.37%

EON-28 4,783 112 622.85 14.72% 16.08% 69.20%

BT 25,14 589 22,342.81 22.19% 9.88% 67.93%

CSELT 28,639 501 19,798.92 46.52% 10.07% 43.41%

COST266 31,019 441 21,056.27 29.82% 16.45% 53.73%

As mentioned when presenting the formulations, we made the assumption that only

mutually disjoint connections can be protected by the same cycle. The column generation

algorithm proposed by Rocha and Jaumard (2008) does not impose connection disjointness but it
does not allow connections in a z-relationship with the cycle. In order to assess the impact of

these assumptions on the obtained lower bounds, we tested both formulations on a 15-node

family of related networks with number of links ranging from 16 to 30 [Doucette (2004)]. The

time limit of 10 hours was used for both formulations. Figure 2(a) illustrates the lower bounds
found with the previous and the new formulations for each network. From the results, there is no

clear advantage of any formulation, except for the largest networks, for which slightly better

bounds were found with the new formulation. However, regarding the running times, the column
generation proposed in this paper is remarkably superior to the previous one. Note that, for a fair

comparison, the column generation algorithm without pricing decomposition was used in these

experiments. Figure 2(b) shows how much time is consumed for running the column generation

algorithm using both formulations. Now, it is clear that the new formulation is much more
effective.

6. Conclusion

In this paper, we proposed a new column generation approach for the efficient

computation of FIPP p-cycles in survivable networks. The method relies on a new decomposition
strategy in which two pricing problems are used, one for generating new cycles and another one

for improving the use of existing cycles. By imposing mutual disjointness among working paths

protected by the same cycle, we came up with a much more compact formulation for the pricing
problem. This, together with the embedded decomposition, greatly reduced the running times and

3011

allowed us to approach problem instances of size never yet approached. Results have shown that
this assumption did not affect the quality of the lower bounds obtained in comparison with an

existing method, which in turn did not allow a cycle to protect requests in a z-relationship with

the cycle.

As future research, it might be worthwhile to investigate valid inequalities to strengthen
the formulation of the pricing problem thereby possibly accelerating the solution of the linear

relaxation. Other research direction is the development of efficient heuristics in order to obtain

good initial solutions for the column generation algorithm.

Figure 2: Results for a 15-node network family.

 (a) Lower bounds (b) Running times

Acknowledgment

Support for this work from the Brazilian National Council for Scientific and Technologic

Development (CNPq), under grant 200497/2005-7, is gratefully acknowledged.

References

Baloukov, D., Grover, W., and Kodian, A. (2008). Toward jointly optimized design of failure-

independent path-protecting p-cycle networks. Journal of Optical Networking, 7(1):62–79.

Batchelor, P., van Caenegem, B., Daino, B., Heinzmann, P., Hjelme, D., Inkret, R., Jäger,

H., Joindot, M., Kuchar, A., Coquil, E. L., Leuthold, P., de Marchis, G., Matera, F., Mikac,

M., Nolting, H., Späath, J., Tillerot, F., Wauters, N., and Weinert, C. (1999). Ultra high-
capacity optical transmission networks: Final report of action COST 239. Technical report,

Faculty of Electrical Engineering and Computing, University of Zagreb.

Bomze, I., Budinich, M., Pardalos, P., and Pelillo, M. (1999). The maximum clique problem. In
Handbook of Combinatorial Optimization, pages 1–74. Kluwer Academic Publishers.

Chvatal, V. (1983). Linear Programming. Freeman.

Dantzig, G. (1963). Linear Programming and Extensions. Princeton University Press, Princeton.

Doucette, J. (2004). Advances on Design and Analysis of Mesh-Restorable Networks. PhD
thesis, University of Alberta, Edmonton, AB, Canada.

Fischetti, M., Gonzalez, J. J. S., and Toth, P. (1997). A branch-and-cut algorithm for the
symmetric generalized traveling salesman problem. Operations Research, 45(3):378-394.

Ge, C., Bai, N., Sun, X., and Zhang, M. (2007). Iterative joint design approach for failure-
independent path-protecting p-cycle networks. Journal of Optical Networking, 6(12):1329–1339.

Grover, W. D. (2010). www.ece.ualberta.ca/~grover/book/.

Grover, W. D. (2004). Mesh-Based Survivable Networks. Prentice Hall.

3012

Grover, W. D. and Stamatelakis, D. (1998). Cycle-oriented distributed pre-configuration: Ring-
like speed with mesh-like capacity for self-planning network restoration. In IEEE International

Conference on Communications (ICC 1998), pages 537–543.

Hülsermann, R., Bodamer, S., Barry, M., Betker, A., Gauger, C., Jäger, M., Köhn, M., and
Späth, J. (2004). A set of typical transport network scenarios for network modelling. Technical

report, ITG-Fachtagung Photonische Netze, Leipzig.

Jaumard, B., Rocha, C., Baloukov, D., and Grover, W. D. (2007). A column generation
approach for design of networks using path-protecting p-cycles. In Proceedings of the Sixth
International Workshop on the Design of Reliable Communication Networks (DRCN).

Kodian, A. and Grover, W. D. (2005). Failure-independent path-protecting p-cycles efficient
and simple fully preconnected optical-path protection. Journal of Lightwave Technology,

23(10):3241–3259.

Kodian, A., Grover, W., and Doucette, J. (2005). A disjoint route sets approach to design of
failure-independent path-protection p-cycle networks. In Proceedings of the International

Workshop on the Design of Reliable Communication Networks (DRCN).

Noronha, T. and Ribeiro, C. (2006). Routing and wavelength assignment by partition coloring.

European Journal of Operational Research, 171(3):797–810.

Orlowski, S., Pióro, M., Tomaszewski, A., and Wessäly, R. (2007). SNDlib 1.0–Survivable
Network Design Library. In Proceedings of the Third International Network Optimization

Conference (INOC), Spa, Belgium. http://sndlib.zib.de.

Ramaswami, R. and Sivarajan, K. (2002). Optical networks: A practical perspective. Morgan
Kaufmann, 2nd edition.

Rocha, C. and Jaumard, B. (2008). Revisiting p-cycles / FIPP p-cycles vs. shared link / path
protection. In 17th International Conference on Computer Communications and Networks

(ICCCN), St. Thomas, USA.

Rocha, C., Jaumard, B., and Bougué, P.-E. (2009a). Asymmetry issues in p-cycle and FIPP p-

cycle protection schemes. Submitted to publication.

Rocha, C., Jaumard, B., and Bougué, P.-E. (2009b). Directed vs. undirected p-cycles and FIPP
p-cycles. In Proceedings of the International Network Optimization Conference (INOC), Pisa,

Italy.

Shen, G. and Grover, W. (2003). Extending the p-cycle concept to path segment protection for
span and node failure recovery. IEEE Journal on Selected Areas in Communications,

21(8):1306–1319.

Stamatelakis, D. and Grover, W. D. (2000). IP layer restoration and network planning based on
virtual protection cycles. IEEE Journal on Selected Areas in Communications, 18(10):1938–
1949.

Stern, T., Ellinas, G., and Bala, K. (2008). Multiwavelength Optical Networks: Architectures,
design, and Control. Cambridge University Press, second edition.

Zhang, F. and Zhong, W.-D. (2006). A novel path-protecting p-cycle heuristic algorithm. In

Proceedings of the International Conference on Transparent Optical Networks (ICTON),

volume 3, pages 203–206, Nottingham, UK.

3013

