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ABSTRACT 

In this study, we investigate a hierarchical decomposition approach for the design of survivable 

networks based on failure-independent path-protecting (FIPP) p-cycles. FIPP p-cycles extend 

link-protection p-cycles by adding the property of providing end-to-end failure independent path 
switching against either link or node failures. Most existing work on FIPP p-cycles suffer from 

either a lack of scalability or a lack of information about the quality of their heuristic solutions. In 

order to overcome those drawbacks, we propose a hierarchical column generation formulation 

both with a more compact formulation and a decomposition of the pricing problem. It turns out to 
be a much more efficient formulation than the previously proposed column generation one. 

Computational results show that we are able to solve accurately large network and traffic 

instances. 

KEYWORDS. Optimization, Network survivability. Column generation.  Main Area: 

Mathematical Programming. 
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1. Introduction 

With the growth of Internet services and the enormous bandwidth capability of optical 
networks brought with DWDM (Dense Wavelength Division Multiplexing) technology, the 

information society of today relies massively on communication networks demanding more and 

more high quality service provisioning. In these network architectures, services are constantly 

exposed to risks of breakdown, either due to human errors or to equipment malfunctions. 
Therefore, service survivability mechanisms play a crucial role in the deployment of optical 

networks. Although several types of failures can occur in a network, such as fiber cut, equipment 

defect or bad operation, the most predominant scenario is single link failures due to fiber cuts by 
entrepreneurs or by natural disasters [Ramaswami and Sivarajan (2002), Grover (2004), Stern et 

al.(2008)]. 

Several schemes have been proposed to achieve survivability by employing protection 
or restoration in the optical layer. A quite interesting and recent option among these schemes is p-

cycle protection [Grover and Stamatelakis (1998)]. The main concept behind p-cycles is that they 

recover from on-cycle link failures exactly as BLSR rings, but they protect chord links, also 

called straddling links, as well. The practical importance of p-cycles is their ability to achieve a 
good trade-off between capacity efficiency and restoration time since they provide fully pre-

cross-connected protection paths over their cyclic structure. This means that, upon a failure 

detection, no more action, besides switching the affected traffic at the end nodes, is needed for 
restoration. Since p-cycles were introduced in 1998, many studies have been carried out on the 

topic, including extensions of the p-cycle concept from link protection to node failure recovery 

[Stamatelakis and Grover (2000)], path-segment protection [Shen and Grover (2003)], and path 
protection [Kodian and Grover (2005)], among others. In this study, we are particularly interested 

in failure-independent path-protecting (FIPP) p-cycles proposed by Kodian and Grover (2005). 

FIPP p-cycles extend link-protection p-cycles to allow for end-to-end path protection. Likewise 

the original concept, the same end-node preplanned protection switching response takes effect. 

1.1. FIPP p-cycle concept 

First of all, let us define the concept of working and protection paths. A working path is 
a path used to carry some traffic under normal operation conditions while a protection path is a 

backup path that is only used in case of failure. 

The FIPP p-cycle concept is explained using the example illustrated in Figure 7.1. FIPP 
p-cycles and working paths are represented by dotted and dashed lines respectively. In Figure 

1(a), path 2-1-6 is a straddling working path since it is link-disjoint from the cycle. Whether link 

1-2 or 1-6 fails, protection paths 2-6 and 2-3-4-5-6 over the cycle can be used to restore the 

traffic on this path. In Figure 1(b), a failure on links 2-3 or 3-4 of on-cycle working path 2-3-4 
can be recovered by using protection path 2-6-5-4. More complicated relationships between a 

working path and a FIPP p-cycle can appear as shown in Figure 1(c). In this case, called z-

relationship, the whole cycle is needed for protecting working path 2-3-6-5 and the protection 
path used depends on which working link is affected. For example, protection path 2-6-5 can be 

used to recover from a failure on links 2-3 and 3-6, and protection path 2-3-4-5 protects against a 

failure on link 5-6. 
The cyclical protection structure of a FIPP p-cycle can be shared by a set of working 

paths for protection as long as they are mutually disjoint or, if it is not the case, their 

corresponding protection paths are mutually disjoint. These criteria have to be met in order to 

avoid contention for protection resources after a failure. Using our example again, working paths 
2-1-6 and 2-3-4 can share the same unit-capacity p-cycle, but working paths 2-3-4 and 2-3-6-5 

cannot. 
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Figure 1: A FIPP p-cycle example. Working paths are represented by dashed lines and the p-cycle is 

represented by dotted lines. 

 

               
         (a) Straddling working path     (b) Fully on-cycle working path    (c) Partially on-cycle working path 

1.2. Related work 

The first work on FIPP p-cycles is documented by Kodian and Grover (2005) and 

includes an integer linear programming (ILP) model, entitled FIPP-SCP, to solve the non-joint 

design of FIPP p-cycle networks. In this problem, the working paths are routed prior to the 

placement of FIPP p-cycles. The solution approach consists in first identifying a set of candidate 
cycles and providing it for the model to determine the best assignment of working paths to cycles 

with respect to the protection cost. In their study, the authors assume that only mutually disjoint 

working paths can share the same p-cycle while one can impose different conditions. 
An alternative approach, called FIPP-DRS, is proposed by Kodian et al. (2005). At 

first, sets of mutually disjoint routes (DRSs) are identified by a heuristic algorithm. Then, a 

number of candidate cycles is identified for each DRS and all preprocessed data are provided to 
an ILP model. Both previous methods have focused on the idea of mutual disjointness between 

working routes protected by the same cycle in order to reduce the complexity of the problem. 

Different assumptions are considered by Jaumard et al. (2007). Therein, the authors allow non-

disjoint paths to be protected by the same cycle but not paths in a z-relationship. They proposed a 
column generation formulation and solution framework for the linear relaxation of the problem, 

and a heuristic approach to obtain integer solutions. Although this solution approach was shown 

to be more efficient in obtaining near optimal solutions than the existing methods, the complexity 
of the pricing problem compromises its scalability. An improved formulation of the pricing 

problem is then used by Rocha and Jaumard (2008) and Rocha et al. (2009b). Zhang and Zhong 

(2006) proposed a heuristic algorithm for the design of directed FIPP p-cycles. The key idea of 

their algorithm is to iteratively select the most efficient cycles from a list of enumerated cycles 
based on an efficiency metric, which resembles some of the previous approaches proposed for 

basic p-cycles. 

The mentioned studies deal with the non-joint optimization FIPP p-cycle design 
problem, i.e., firstly, the design of the working paths, secondly, the design of the protection 

scheme. Two further studies, however, turn their attention to joint designs. The first one is due to 

Ge et al.(2007). Therein, a purely heuristic algorithm without any embedded ILP component is 
used to solve the problem. The second study was carried out by Baloukov et al. (2008). Their 

method works as an extension of the DRS method proposed by Kodian et al. (2005).  

All previous work done on FIPP p-cycles suffer from either their lack of an assessment 

of the quality of their (heuristic) solutions or a lack of scalability. As shown by Jaumard et al. 
(2007), some heuristic solutions may be quite far from an optimal solution, sometimes up to 37%. 

The objective of this paper is to propose first an enhancement on the previous column generation 

formulation for the non-joint design of FIPP p-cycles. It consists of a much more compact 
formulation of the pricing problem. In addition, we present a new decomposition of the pricing 

problem which allows us to significantly speed up the run times. 

The rest of the paper is organized as follows. In the next section, we formally define the 

FIPP p-cycle optimization problem, and then a mathematical formulation is presented. In Section 
3, the pricing problem is formally defined. Also, we present a new enhanced formulation and a 

decomposition of the pricing problem. The column generation algorithm is described in detail in 
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Section 4. Finally, computational experiments are presented in Section 5, followed by the 
conclusions of the work.  

2. Design of FIPP p-cycle networks 

In the following, the problem of designing survivable networks using FIPP p-cycles is 

formally described. For this, some important assumptions and definitions are discussed and 

presented in Section 2.1, and then a mathematical formulation of the problem is provided in 
Section 2.2.  

2.1. Assumptions and definitions 

We consider an optical network represented by an undirected graph         where   

is the set of nodes and   is the set of links, which represent physical entities that collect all 

channels between neighbor nodes. For instance, a link can represent a set of cables co-routed in 

the same duct and each cable may contain multiple fibers. There is a linear cost    for using one 

unit of spare capacity of each link    . Link costs can represent information such as the cost of 

the interconnection equipment at endpoints, link length, etc. Furthermore, we are given a static 

set of connection requests, each of them associated with a distinct pair of nodes. For each 

connection request    , we are given its required bandwidth    (number of optical channels) 

and its working route     between its end nodes,    and   . Let   denote the set of all potential 

candidate cycles in the network. The cost of cycle     is given by             . 
The following assumptions are taken into consideration in this study: 

(i)  The network is composed of bidirectional (undirected) links, i.e., each topological link 

consists of a pair of fiber links, one in each direction. We also assume that the traffic is 

symmetric since the connection requests are undirected. 
(ii)  Although FIPP p-cycles can provide resilience against node failures, we only address single 

link failures, which are the predominant failure scenario in optical networks [Grover, 2004]. 

Thus, whenever we refer to route disjointness hereinafter, we mean link disjointness, except 
where otherwise stated. 

(iii)  The working traffic of each connection request is assumed to take a single route. However, 

we assume that the traffic can be split into integer parts (integer numbers of channels) during 

protection.  
(iv)  The working traffic is sent through the lowest cost routes, computed a priori, therefore our 

focus is on determining the cycles needed to protect those working paths. 

 
The FIPP p-cycle design problem can now be defined as follows. 

FIPP p-cycle design problem: Given the above definitions and assumptions, determine a set of 

FIPP p-cycles with associated protection capacity so as to fully protect all connection requests in 

  while minimizing the overall protection cost, given by            , where    is the number 

of unit copies of cycle  . 

2.2. An ILP formulation 

We now present an ILP formulation for the FIPP p-cycle design problem under the 

above assumptions. For each cycle    , let us define set    as the set of all its cycle 

configurations. A cycle configuration corresponds to an association of a unit-capacity p-cycle and 
a subset of connection requests for which protection is provided. In particular, configuration 

     is represented by vector    of length    , where coefficients   
             , define 
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the level of protection (the number of protection paths) provided by cycle   for connection  . Let 

us recall that a connection can have two protection paths over a given cycle only if it fully 
straddles that cycle. In this study, we assume that a feasible cycle configuration meets the 

following requirements: i) It corresponds to a simple and unit-capacity cycle; ii) Only mutually 

disjoint connections are protected. 

The formulation is based on the decision variables            , representing the 

number of unit copies of p-cycle   reserved for configuration  . The FIPP p-cycle design 
problem can be formulated as follows: 

 

                   
    

 

   

 (1) 

subject to:    

     
      

       

      (2) 

                 (3) 

 

The objective function minimizes the cost of the overall capacity used for protection. 
The demand constraints (2) ensure that enough capacity to protect each connection is allocated 

over all cycle configurations. Finally, we have constraints (3) defining the integer domain of the 

variables.  

The main drawback of this model is that the number of possible cycles as well as cycle 
configurations grows exponentially with the network and traffic sizes. It clearly makes 

impracticable the optimization of this model through explicit enumeration of all cycle 

configurations. Fortunately, cycle configurations can be iteratively computed by means of a 
column generation algorithm so that, as a result, only a small fraction of cycles and 

configurations will be generated at the end of the process. In order to apply column generation to 

implicitly consider cycle configurations, the model above is relaxed by removing the integrality 

constraints, i.e.,                . The resulting model is the so-called master problem. 

When only some columns are considered in the master problem, this is called the restricted 
master problem (RMP). Columns are further generated based on their reduced costs, which are 

derived from the dual variables of RMP. The problem of finding negative reduced cost columns 

to be added to RMP is discussed in Section 3, and the proposed column generation algorithm is 

described in detail in Section 4. For background information about linear programming 
techniques, we refer the reader to [Dantzig (1963), Chvatal (1983)]. 

3. Generating columns 

The column generation algorithm iteratively requires the solution of the pricing 

problem. Assuming that the optimization problem under concern is a minimization one, by 
definition, the pricing problem corresponds to the problem of finding a column with minimum 

reduced cost, i.e., to the problem of generating an augmenting column that allows decreasing the 

current value of the objective function. Here, a cycle configuration with minimum reduced cost 
can be viewed as the one making the best compromise between protection cost and provision of 

protection for the connections. 

Let          be the dual variables associated with constraints (2). The reduced 

cost of a cycle configuration     , given by expression (4), is composed of two terms: the cost 

of cycle   and the revenue obtained for protecting connections. 

                 
   

  
  (4) 
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As mentioned, the pricing problem corresponds to the problem of finding a cycle 
configuration with a negative reduced cost, but it can be further decomposed thereby restraining 

the search to a set of mutually disjoint requests for a given cycle. At first, let us present a formal 

definition as well as a mathematical formulation for the original pricing problem. Then, we will 

explain how it can be decomposed and present a formulation for the resulting pricing problem. 
The pricing problem, hereinafter called the cycle configuration problem (CCP), can be defined as 

follows. 

Cycle configuration problem: Let us consider an undirected graph         with link costs 

      . Also, let us denote by   the set of requests with associated revenues       and 

working routes     between end nodes    and    for each request    . The cycle 

configuration problem asks for a cycle configuration of minimum total cost, where the cost of 

configuration   associated with cycle   is defined by expression (4). 

The following notation is introduced in order to present a formulation for CCP. Let us 

define binary variables   ,    , and   ,    , as follows:      if and only if link   belongs 

to the cycle;      if and only if node   is traversed by the cycle. In addition, let us define 

binary variables    and   ,    , as follows:      if and only if connection   is protected; 

     if and only if connection   is protected and straddles the cycle (  is a chord). Let us also 

define     ,    , as the cut induced by  , i.e, the set of links incident to a node in   and 

another node in    . For a single node    , we denote            . Additionally, let     , 
   , be the set of links induced by  , i.e., the set of links whose both adjacent nodes belong to 

 . The problem of generating cycle configurations can be formulated as follows: 

 

               
   

           

   

 (5) 

subject to:    

    
      

          (6) 

    
      

                                        (7) 

                      (8) 

                        (9) 

    
         

         (10) 

                  (11) 

                (12) 

                (13) 

 

The objective function (5) calculates the reduced cost. Degree constraints (6) require 
the degree of each node to be either 0 or 2. Inequalities (7) are connectivity constraints forcing 

each cut separating two visited nodes to be crossed at least twice. Constraints (8) ensure that each 

protected connection has both end nodes crossed by the cycle. Constraints (9) determine whether 
a protected connection is a chord of the cycle or not. Inequalities (10) are capacity constraints 

ensuring that concurrent connections are not simultaneously protected. Therefore, they prevent 

connections from using more than one unit of protection capacity. Finally, domain constraints 

(11), (12), and (13) ensure binary values for all variables. 
This formulation can be considered as an improvement with respect to the one proposed 

by Rocha et al. (2009b) since it has a much smaller number of variables and constraints. In the 

previous formulation, there are variables representing the protection paths taken over the cycle by 
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the connections so as to avoid contention for capacity by non-disjointly routed requests. This is 
not the case here because we do not allow non-disjoint requests to share the same unit p-cycle, 

which is ensured by constraints (10). A shortcoming of this formulation, which is the major 

contributor to its high complexity, lies in the exponential number of constraints (7) used to avoid 

subtours (or, in other words, multiple cycles). Those subtour elimination constraints are needed 
because generating more than one cycle at a time would make the identification of the straddling 

links very difficult. However, these constraints can be added to the model only when needed 

using a branch-and-cut algorithm, as explained in Section 4. 
The cycle configuration problem was proved NP-hard by Rocha et al. (2009a). Note, 

however, that the pricing problem does not need to be solved exactly at each iteration in order to 

obtain an improved solution, and hence heuristic generation of improving columns may be 

applied. Ultimately optimal solution of the pricing problem is still required to prove optimality of 
the column generation algorithm, nevertheless. 

With this in mind, an interesting finding allows us to efficiently compute heuristic 

solutions for CCP. The key idea is to decompose the problem into two subproblems: find a cycle 
and then identify the most profitable configuration for that cycle. Indeed, if the cycle associated 

with the best configuration to be added to RMP is known, then one only needs to find the set of 

mutually disjoint requests that can be protected by that cycle and maximizes the revenues from 
the dual prices. The corresponding subproblem is called the cycle packing problem. Indeed, a set 

of candidate cycles is known at each iteration of the column generation algorithm: Those 

associated with the previously generated configurations. The main advantage of this 

decomposition is that the complexity of this subproblem is greatly reduced in comparison with 
the aggregate pricing problem. Thus, the resulting column generating algorithm turns out to be 

less time consuming and more scalable. Note that an approximate solution for the CCP is 

obtained as a result of this decomposition unless the optimal cycle for the given dual prices is 
known. 

The cycle packing problem (CPP) can be formally defined as follows. 

Cycle packing problem: For a given FIPP p-cycle  , let us define set 

                                             . Each connection request      is 

associated with a nonnegative revenue    defined as follows:       if connection   is partially 

or fully on cycle  , otherwise       . CPP asks for the subset of mutually disjoint requests in 

  , called a cycle packing, that maximizes the total revenue. 

We strongly believe that the cycle packing problem is NP-hard, given its similarity to 

the maximum weight independent set problem (MWISP) [Bomze et al. (1999)]. In the following, 

we present a mathematical formulation for CPP. It also uses binary variables   ,     , such 

that      if and only if request   is protected by cycle  . 

               
    

 (14) 

subject to:    

    
          

         (15) 

               (16) 

 

The objective function (14) calculates the total revenue and constraints (15) 

ensure that only mutually disjoint requests are protected. Remark that this formulation 

relates to the classical formulation for MWISP in a graph         in which there are 

constraints                 , stating that two adjacent nodes in the graph cannot be 

part of an independent set. However, CPP formulation is certainly tighter than that one 

since it gathers information from the working paths. 
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4. Column generation algorithm 

The idea behind column generation technique is to only introduce variables when 

needed, i.e., when their reduced cost is negative. The method relies on a decomposition of the 

initial linear program into a master problem and a pricing problem. The master problem 
corresponds to a linear program subject to a first set of explicit constraints and a second set of 

implicit constraints expressed throughout properties of the coefficients of the constraint matrix. 

The pricing problem consists in the optimization of the reduced cost subject to the set of implicit 

constraints: It either identifies favorable columns to be added to the master problem or indicates 
that no such column exists. 

The general framework of the proposed column generation algorithm is 

summarized as follows. Initially, the algorithm starts with a set of artificial (dummy) 

columns, one for each request. An artificial column corresponds to a cycle configuration 

providing protection for only one request, which is so costly that it will never be part of 

the optimal solution. Then, the restricted master problem containing the initial set of 

variables is solved and the resulting dual variables are used to guide the search for a 

cycle configuration with negative reduced cost. This process continues until no 

improving cycle configuration is found. 

A typical iteration of our column generation works in the following fashion. 

Firstly, each known cycle is considered, from the last to the first generated one, and its 

corresponding cycle packing problem is solved. As soon as the solution of a given CPP 

produces an improving column, this is provided to the restricted master problem and a 

new iteration begins. Contrariwise, if no improving column can be found with the known 

cycles, we cannot yet claim optimality of the master problem and CCP ought to be 

solved. If the solution of CCP does not produce an improving column either, the optimal 

solution for the restricted master problem is also optimal for the original master problem 

and the algorithm terminates. Otherwise, the column with negative reduced cost is 

provided for the RMP and the algorithm iterates again.  

Solving CPP is the bottleneck of the column generation algorithm. The solutions 

for CPP are obtained by solving the proposed formulation which unfortunately contains 

the costly connectivity constraints. In order to avoid this pitfall, the model is solved with 

a branch-and-cut solver using a cutting plane scheme so as the connectivity constraints 

are only introduced to the model when violated in the incumbent solution. The most 

violated constraints are identified by the exact separation algorithm proposed by Fischetti 

et al. (1997), which is based on the computation of maximum flows in the network. Let 

us recall that CPP does not need to be solved exactly as long as we are able to find a 

cycle configuration with negative reduced cost for improving the solution of RMP. 

Hence, the solution of CPP is stopped as soon as a column with negative reduced cost is 

obtained. This approach does not hamper the optimality of the master problem solution, 

instead, it often speeds up the solution process. All CPPs are solved using the proposed 

formulation within a branch-and-cut solver. 

5. Computational results 

In this section, we evaluate the efficiency of our solution approach using a set of 16 

benchmark problem instances whose details are provided in Table 1. For each network, the 

number of nodes, the number of links, average node degree, and the number of connection 
requests are provided. When only asymmetric traffic was available for a given instance, we 

considered the maximum amount of traffic between each pair of nodes in order to obtain a 
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symmetric traffic matrix. The working route for each request was obtained by using Dijkstra 
algorithm to find the lowest cost route. All algorithms were implemented in C++ programming 

language using Concert Technology library and version 10.1 of CPLEX solver. The 

computational experiments were performed on a AMD 64-bit machine with 16GB of RAM. 

Table 1: Characteristics of the problem instances 

Instances Nodes Links Avg. Node Degree Requests 

9N17S [Grover (2010)] 9 17 3.8 36 

DFN-BWIN [Orlowski et al. (2007)] 10 45 9.0 45 

COST239 [Batchelor et al. (1999)] 11 26 4.7 55 

POLSKA [Orlowski et al. (2007)] 12 18 3.0 66 
USA [Hülsermann et al. (2004)] 14 21 3.0 91 

ATLANTA [Orlowski et al. (2007)] 15 22 2.9 210 

GERMANY [Hülsermann et al. (2004)] 17 26 3.1 136 

NEWYORK [Orlowski et al. (2007)] 16 49 6.1 240 

EON-19 [Grover (2010)] 19 37 3.9 171 

TA1 [Orlowski et al. (2007)] 24 55 4.6 163 

NORWAY [Orlowski et al. (2007)] 27 51 3.8 351 

BRAZIL [Noronha and Ribeiro (2006)] 27 70 5.2 351 

EON-28 [Hülsermann et al. (2004)] 28 41 2.9 378 

BT [Grover (2010)] 30 59 3.9 435 

CSELT [Grover (2010)] 30 56 3.7 435 
COST266 [Orlowski et al. (2007)] 37 57 3.1 666 

  

The first performed experiments evaluate the proposed column generation algorithm 

with the new formulation for CCP but without the embedded pricing problem decomposition, i.e, 

the CPP component was not included in the algorithm. Table 2 provides information about the 
performance of the solution approach. In more details, we provide the number of columns (cycle 

configurations) and the number of distinct cycles generated during the column generation 

process. We also provide the total running time in seconds as well as the percentage of time 
required for the solution of the master and pricing problems. In the worst case, the column 

generation algorithm took more than one day to obtain the optimal solution for the linear 

relaxation of the FIPP p-cycle design problem. From the information provided in Table 2, we can 
also notice that the solution of CPP is very time consuming, responding for more than 99% of the 

total running time in most cases. 

Table 2: Performance of the column generation algorithm without pricing decomposition 

Instances cost RR # columns time(s) master time CCP time 

9N17S 2,900.00 49.15% 78 4.68 0.43% 99.57% 

DFN-BWIN 178,550.00 52.40% 19 0.58 0.01% 99.99% 

COST239 60,263.91 43.93% 243 38.44 0.31% 99.69% 

POLSKA 3,398,548.00 72.42% 165 12.86 0.62% 99.38% 

USA 5,874,273.44 99.12% 253 49.32 0.43% 99.57% 

ATLANTA 135,951.00 90.02% 232 33.46 0.36% 99.64% 

GERMANY 446,372.50 109.64% 331 86.19 0.28% 99.72% 
NEWYORK 485.93 33.82% 598 347.26 0.24% 99.76% 

EON-19 89,489.39 98.05% 930 371.26 0.57% 99.43% 

TA1 5,576,871.50 84.78% 868 402.52 0.54% 99.46% 

NORWAY 5,504.75 51.01% 2,798 14,051.83 0.25% 99.75% 

BRAZIL 1,905,574.40 70.84% 2,99 18,043.30 0.23% 99.77% 

EON-28 1,908,707.50 106.24% 2,166 6,057.35 0.23% 99.77% 

BT 2,752.69 42.72% 6,155 84,705.04 0.54% 99.46% 

CSELT 1,710.23 41.12% 8,336 71,598.92 1.53% 98.47% 

COST266 11,866,362.78 96.42% 6,708 109,859.13 0.35% 99.65% 
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In order to appraise the benefits of the pricing problem decomposition, the performance 
of the resulting column generation algorithm can be evaluated in Table 3. For each tested 

network, the table shows, besides the number of columns and cycles generated, the running time 

and the percentage of the time required for solving each component of the algorithm (master 

problem, CCP, and CPP). We can see now that the total running time is significantly reduced in 
comparison with the algorithm without pricing decomposition. Indeed, the pricing decomposition 

yields a reduction of up to 90% in the running time. The decomposition also produces a more 

even distribution of consumed time among the components. Because the solutions obtained for 
CCP tend to be suboptimal with respect to CPP, a larger number of columns needs to be 

generated in order to reach optimality. 

Table 3: Performance of the column generation algorithm with pricing decomposition 

Instances # columns #cycles time(s) master time CPP time CCP time 

9N17S 206 26 2.56 2.34% 29.30% 68.36% 

DFN-BWIN 19 19 0.70 2.86% 18.57% 78.57% 

COST239 452 76 20.92 1.58% 23.18% 75.24% 

POLSKA 321 24 4.21 3.09% 28.98% 67.93% 

USA 561 45 14.17 2.82% 22.23% 74.95% 

ATLANTA 470 20 6.00 8.67% 32.50% 58.83% 
GERMANY 535 21 7.86 8.14% 25.06% 66.79% 

NEWYORK 1,7 149 146.80 3.03% 17.72% 79.25% 

EON-19 2,162 75 75.30 12.27% 32.58% 55.15% 

TA1 1,668 74 68.12 6.93% 22.50% 70.57% 

NORWAY 8,23 228 2,478.35 20.82% 12.96% 66.22% 

BRAZIL 10,603 280 2,909.12 16.05% 8.58% 75.37% 

EON-28 4,783 112 622.85 14.72% 16.08% 69.20% 

BT 25,14 589 22,342.81 22.19% 9.88% 67.93% 

CSELT 28,639 501 19,798.92 46.52% 10.07% 43.41% 

COST266 31,019 441 21,056.27 29.82% 16.45% 53.73% 

 
As mentioned when presenting the formulations, we made the assumption that only 

mutually disjoint connections can be protected by the same cycle. The column generation 

algorithm proposed by Rocha and Jaumard (2008) does not impose connection disjointness but it 
does not allow connections in a z-relationship with the cycle. In order to assess the impact of 

these assumptions on the obtained lower bounds, we tested both formulations on a 15-node 

family of related networks with number of links ranging from 16 to 30 [Doucette (2004)]. The 

time limit of 10 hours was used for both formulations. Figure 2(a) illustrates the lower bounds 
found with the previous and the new formulations for each network. From the results, there is no 

clear advantage of any formulation, except for the largest networks, for which slightly better 

bounds were found with the new formulation. However, regarding the running times, the column 
generation proposed in this paper is remarkably superior to the previous one. Note that, for a fair 

comparison, the column generation algorithm without pricing decomposition was used in these 

experiments. Figure 2(b) shows how much time is consumed for running the column generation 

algorithm using both formulations. Now, it is clear that the new formulation is much more 
effective. 

6. Conclusion 

In this paper, we proposed a new column generation approach for the efficient 

computation of FIPP p-cycles in survivable networks. The method relies on a new decomposition 
strategy in which two pricing problems are used, one for generating new cycles and another one 

for improving the use of existing cycles. By imposing mutual disjointness among working paths 

protected by the same cycle, we came up with a much more compact formulation for the pricing 
problem. This, together with the embedded decomposition, greatly reduced the running times and 
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allowed us to approach problem instances of size never yet approached. Results have shown that 
this assumption did not affect the quality of the lower bounds obtained in comparison with an 

existing method, which in turn did not allow a cycle to protect requests in a z-relationship with 

the cycle. 

As future research, it might be worthwhile to investigate valid inequalities to strengthen 
the formulation of the pricing problem thereby possibly accelerating the solution of the linear 

relaxation. Other research direction is the development of efficient heuristics in order to obtain 

good initial solutions for the column generation algorithm. 
 

Figure 2: Results for a 15-node network family. 

 
   (a) Lower bounds                                                        (b) Running times 
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