XLIISBPO LA 1

OptFrame: a computational framework for combinatorial
optimization problems

Igor Machado Coelho!, Sabir Ribas', Mario Henrique de Paiva Perché'
Pablo Luiz Araidjo Munhoz', Marcone Jamilson Freitas Souza?, Luiz Satoru Ochi'

! Instituto de Computagdo — Universidade Federal Fluminense (UFF)
Rua Passo da Patria, 154 — Bloco E, 3° andar — CEP 24.210-240 — Niter6i (RJ), Brasil

?Departamento de Ciéncia da Computagio — Universidade Federal de Ouro Preto (UFOP)
Campus Universitdrio, Morro do Cruzeiro, CEP 35.400-000, Ouro Preto (MG), Brasil

imcoelho@ic.uff.br, sribas@ic.uff.br, mperche@ic.uff.br
pmunhoz@ic.uff.br, marcone@iceb.ufop.br, satoru@ic.uff.br

Abstract. This work presents OptFrame, a computational framework for the de-
velopment of efficient heuristic based algorithms. The objective is to provide
a simple C++ interface for common components of trajectory and population
based metaheuristics, in order to solve combinatorial optimization problems.
Since many methods are very common in literature, we provide efficient im-
plementations for simple versions of these methods but the user can develop
“smarter” versions of the methods considering problem-specific characteris-
tics. Moreover, parallel support for both shared-memory and distributed-memory
computers is provided. OptFrame has been successfully applied to model and
solve some combinatorial problems, showing a good balance between flexibility
and efficiency.

KEYWORDS: Optimization. Framework. Metaheuristics. Main area: MH —
Metaheuristics.

Resumo. Este trabalho apresenta o OptFrame, um arcabouco computacional
para o desenvolvimento de algoritmos heuristicos eficientes. O objetivo é prover
uma interface simples em C++ de componentes comuns para resolver proble-
mas de otimizagdo combinatoria por meio de metaheuristicas populacionais e
de busca local. Como alguns métodos sdo amplamente explorados na literatura,
sdo providas implementacoes eficientes para versoes simples de tais métodos.
Porém, ao considerar caracteristicas especificas do problema, o usudrio pode
desenvolver versoes mais “inteligentes” dos métodos. Além disso, o arcabougo
tem suporte a paralelismo em arquiteturas de memoria compartilhada e dis-
tribuida. O OptFrame tem sido aplicado com sucesso na modelagem e resolugdo
de problemas combinatorios, demonstrando um bom equilibrio entre flexibilidade
e eficiéncia.

PALAVRAS-CHAVE: Otimizacdo. Arcabouco. Metaheuristicas. Area princi-
pal: MH — Metaheuristicas.

1887

XLIISBPO LA 1

1 Introduction

In the development of optimization systems it is common to face up with combina-
torial NP-Hard problems. To produce algorithms that solve such problems is often a hard
and long task, since the algorithm must solve the problem with low gaps in short computa-
tional time. That is, the heuristic algorithm must find good solutions at each execution. The
solutions should be good enough for the application that uses the method and the elapsed
time to generate them must be acceptable in terms of the application. One way of speeding
up the development of such algorithms is by using tools that provide famous algorithms
for the resolution of combinatorial problems, both in practical and theoretical cases.

Moreover, several successful applications in the resolution of combinatorial prob-
lems combine different strategies in one algorithm. Algorithms with this feature are clas-
sified as hybrid algorithms. It is easy to observe that the development and maintenance of
such systems is an even more complex task. This fact often motivates the use of a tool that
provides adaptable software components that encapsulate a domain-specific abstraction,
that 1s, a framework.

The architecture of a framework, that typically follows the object-oriented
paradigm, defines a model for code reuse (Fink and Vof, 2002). This fact justifies the
development of frameworks that seek to solve optimization problems by means of heuris-
tics and metaheuristics. Mainly because metaheuristics are essentially independent of the
addressed problem structure. In the context of metaheuristics development, the developers
that do not use any framework or library in general expend much effort by writing and
rewriting code. Thus, the focus that should be at the problem and its efficient resolution is
often directed to many programming aspects.

This work presents OptFrame!, a white-box object oriented framework in C++ for
the development of efficient heuristic based algorithms. Our objective is to provide a sim-
ple interface for common components of trajectory and population based metaheuristics.
Since many methods are very used in literature we provide efficient implementations for
simple versions of these methods but the user can develop smarter versions of the methods
considering problem-specific characteristics.

The present work is organized as follows. Section 2 describes some optimization
frameworks in literature. Section 3 defines important optimization concepts about meta-
heuristics that are behind OptFrame architecture. In Section 4 we present OptFrame archi-
tecture in details. Section 5 concludes the work with some applications and proposes some
future development on the framework.

2 Frameworks in Optimization

Many authors have already proposed frameworks for optimization problems,
among which we cite: Neighbor Searcher (Andreatta et al., 1998), TabOO Builder (Grac-
cho and Porto, 1999), NP-Opt (Mendes et al., 2001), HotFrame (Fink and VoB, 2002),
EasyLocal++ (Gaspero and Schaerf, 2003), ParadisEO (Cahon et al., 2004), iOpt (Dorne
et al., 2005), JFFO (Neves et al., 2005), jMetal (Durillo et al., 2006) and TOGAI (Souza,
2008). Now, we present some of them in details.

!OptFrame website: http://sourceforge.net/projects/optframe/

1888

XLIISBPO LA 1

Andreatta et al. (1998) point that comparison between algorithms, strategies and pa-
rameters of heuristics is crucial when applied to combinatorial problems. But, many times
comparisons are biased by some reasons. Sometimes methods are compared in different
programming languages so as different architectures. The authors present a C++ com-
putational framework, Neighbor Searcher, in order to make fairer comparisons between
heuristic algorithms. Many implementation aspects are showed, but no real comparison
between heuristics and problems is presented.

In Mendes et al. (2001) NP-Opt is presented, a computational framework for NP
class problems. The framework proposes to minimize code rewriting when the focused
problem is changed. NP-Opt supports five distinct problems: Single Machine Scheduling,
Parallel Machine Scheduling, Flowshop Scheduling with job families, Grid Matrix Layout
(VLSI design) and non-linear continuous function optimization. It is provided an interface
for the extension of the framework for other problems. The methods for the resolution of
problems are Memetic and Genetic Algorithms, so as Multiple Start. The authors of NP-
Opt points to a code reuse of 75% when dealing with a new problem. The framework is
programmed in Java language.

Fink and VoB (2002) present the C++ computational framework HotFrame, that
shares some similarities with OptFrame, proposed in this work. HotFrame, so as Opt-
Frame, was firstly designed for Iterated Local Search, Simulated Annealing and Tabu
Search metaheuristics. And also in this sense HotFrame is very complete, since the authors
show many implementation details and many variations of these metaheuristics. According
to the authors a framework provides adaptable software components, which encapsulate
common domain abstractions. To develop a framework requires solid knowledge in the
considered domain.

Gaspero and Schaerf (2003) point that local search is a common interest theme of
scientific community, at the same time that there isn’t a standard software in this sense.
So, the authors propose EasyLocal++, a computational object-oriented framework for the
design and analysis of local search algorithms. According to the authors the architecture
of EasyLocal++ allows code modularization and the combination of basic techniques and
neighborhood structures. Some successful applications of Easyl.ocal++ are showed and
according to the authors EasylLocal++ provides flexibility enough for the implementation
of many scheduling problems.

ParadisEO (Cahon et al., 2004) is a white-box object-oriented framework written in
C++ and dedicated to the reusable design of parallel and distributed metaheuristics. This
framework is based on a conceptual separation of the solution methods from the prob-
lems they are intended to solve. According authors, this separation confers to the user
a maximum code and design reuse. ParadisEO provides some modules that deals with
population based metaheuristics, multiobjective optimization, single-solution based meta-
heuristics, and it also provides tools for the design of parallel and distributed metaheuris-
tics. ParadisEQO, as the OptFrame, is one of the rare frameworks that provide parallel and
distributed models. Their implementation is portable on distributed-memory machines as
well as on shared-memory multiprocessors, as it uses standard libraries such as MPI, PVM
and PThreads.

The Intelligent Optimization Toolkit (iOpt), proposed by Dorne et al. (2005) can
be seen as an IDE for the rapid construction of combinatorial problems. The iOpt takes as

1889

XLIISBPO LA 1

input problems modeled in “one-way constraints” and uses metaheuristics to solve them.
The authors show how to model the Vehicle Routing Problem with iOpt and good results
are reported. Finally, the authors conclude that a better understanding of the problem can
be achieved by a fairer comparison between heuristic methods.

jMetal (Durillo et al., 2006) is an object-oriented Java-based framework aimed at fa-
cilitating the development of metaheuristics for solving multi-objective optimization prob-
lems (MOPs). According authors, this framework provides a rich set of classes which can
be used as the building blocks of multi-objective metaheuristics; thus, taking advantage
of code-reusing, the algorithms share the same base components, such as implementations
of genetic operators and density estimators, so making the fair comparison of different
metaheuristics for MOPs possible.

In general, frameworks are based on the authors experience with the implementa-
tion of many methods for different problems. In this work we also review some important
concepts of combinatorial problems and metaheuristics, in order to propose an architecture
that is both problem and heuristic independent. The following section shows the theoretical
modeling of combinatorial problems behind OptFrame architecture.

3 Metaheuristics

We present now some important concepts of metaheuristics and combinatorial op-
timization problems.

Let S be a set of discrete variables s (called solutions) and f : S — R an objective
function that associates each solution s € S to a real value f(s). We seek any s* € S
such that f(s*) < f(s),Vs € S for minimization problems, or f(s*) > f(s),Vs € S for
maximization problems. The solution s* is called a global optimum.

A function N associates a solution s € S to a set N(s) C S (called neighborhood
of s). This is also an important concept in the subject of heuristic based algorithms. This
way, a neighbor s’ of s is such that s = s & m, where m is called a move operation. The
cost of a move m is defined as [= f(s") — f(s), which means that s’ = s ®m —
f(s) = f(s)+ f. So, a local optimum (in terms of a neighborhood N) is a solution s’ such
that f(s') < f(s),Vs € N(s') for minimization problems, or f(s') > f(s),Vs € N(s') for
maximization problems.

Many combinatorial optimization problems are classified as NP-Hard and it is com-
mon to use approximate algorithms (or heuristics) to solve these problems. These methods
have the capability of finding good local optimums in short computational time. Classical
local search heuristics stop on the first local optimum found. However, metaheuristics can
go beyond the local optimum and thus these methods are able to produce final solutions of
better quality.

4 OptFrame

OptFrame is a white-box object oriented framework in C++. In the following sec-
tions its implementation and design aspects are presented and discussed.
4.1 Representation and Memory

The OptFrame framework is mainly based on two important structures: the solution
representation and the memory.

1890

XLIISBPO

The representation is the data structure you use to represent a valid solution for
a specific problem. For example, for the Traveling Salesman Problem (Applegate et al.,
2006) a user may wish to represent the solution as an array of integers, so the representation
in this heuristic approach for TSP is vector < int >.

On the other hand, the memory is a set of auxiliary data structures needed for a
smarter version of your method.

4.2 Solution and Evaluation

There are two important container classes® in OptFrame: Solution and Evaluation.
Solution carries a reference to a Representation of your problem, while a Evaluation carries
areference to a Memory structure for your problem. When you implement a smart version,
you can use the information of the Memory to reevaluate a Solution in a smarter way.

Both Solution and Evaluation classes implement the Cloning Pattern (Henney,
1999) in order to provide copies of their objects in real time. The carried objects (rep-
resentation or memory) need to be in the Orthodox Canonical Form and also to provide an
implementation of the operator <<.

Figure 1 depicts the Solution and Evaluation classes.

R:class |

F--=-=-=--
1
1

Solution Ewaluation

Frnemory: M
#objFunction: double
#infMeasure: double

#Frepresentation: R

<arreate = =-Solution(r: R)
< sereatex=-30lution{s: Solution=R=)

< <destroy = =-Salution()
+setRir: B woid
+aetR({): R

<<rreate > =-Evaluation{obj: double, inf: double, m: M)
< sereatex=-Evaluationiobj: double, m: 1)
<rreate > =-Evaluation(e: Evaluation<M:=)

< =destroy = =-Evaluation])
“+qetti): M

+consk getili: M
+qgetObjFunction): double
+getInfMeasurel): double
+setMim: M) void
+setObjFunction{obj: double): woid
+setInfMeasurelinf; double): waid
+evaluation): double
+isFeasible(): bool

+prink(y: woid

+operator=(g: Evaluation<M=): Evaluation <M=
+cloned): Evaluation =M=

+consk getROn R

+prink(); vaid

+operator=is; Solution <R =) Solution <R =
+clone(): Solution<R =

Figure 1. Solution<R> and Evaluation<M> template classes

4.3 Evaluators

The Evaluator concept is a very important in OptFrame. It encapsulates the function
f S — R (defined in Section 3) as an specific case of its function f : S — FE, where
E = (R,R, M). The tuple E can be seen as the Evaluation class defined in Subsection 4.2.

The first value of the tuple ' is the objective function value itself and the second
one is an infeasibility measure value. By evaluating a solution this way you can implement

2What we name here as a container class is in some ways related to with Proxy Pattern (Gamma et al., 1995) since the
idea is to carry a reference to an object (representation or memory) and to delete it when the container itself is destroyed.
But in this case a container is also used to provide some extra operations over the carried object like printing, reference
counting and cloning.

30/08 A 03/09

BENTO GONCALVES = RS

1891

XLIISBPO LA 1

heuristic methods that are able to see unfeasible solutions, by giving a high penalty value
to the infeasibility measure value. When the infeasibility measure value is zero the solution
is considered feasible. So, the evaluation function value over a solution consists in the sum
of objective_function_value + in feasibility _measure_value.

The third value M of the tuple F is called memory defined in Subsection 4.1. In this
context the memory can record some steps of the evaluation algorithm, so they won’t be
repeated in future evaluations. This way, some future computational effort can be avoided.

There is also a more general definition for the evaluation method where the func-
tion f is defined by f : (S, E) — E. This way it is possible to develop smarter versions
of a Evaluator by using informations of a previous evaluation F.

An approach for multiobjective optimization (Arroyo, 2009) is also provided, al-
though many kinds of multiobjective evaluation functions can be written as a single Eval-
uator. The MultiObjectiveEvaluator class is built given an array of Evaluators of the same
direction (minimization or maximization) and its evaluation consists on the sum of the
partial evaluations over a single Solution. In future versions of the framework it will be
possible to provide more abstractions for the final user in terms of multiobjective optimiza-
tion, like on Durillo et al. (2006) and Cahon et al. (2004), but we don’t plan to go to much
deeper in order to keep simplicity.

Figure 2 depicts the Evaluator and MultiObjectiveEvaluator classes.

VR ielass

Evaluator

+evaluate(s: Solution<R =) Evaluation<M=

+evaluatelr: B): Evaluation =M=

+evaluatele: Evaluation<M=, s Solution<R =) vaid

+evaluateie; Evaluation <Mz, r: B void

+applyMavele: Evaluation<M=, m: Move<R,M>, 5i Solution <R =): Move<R,M>
+applyMovelm: Move<R, M=, s Solution=R=): (Move<R, M=, Evaluation=M:z=)
+moveCost(e: Evaluation<M:=, m: Move<R,M:=, 5 Solution<R =): double
+moveCostim: Move <R, M=, 5: Solution =R >): double

+hetterThan(s1: Solution<R., s2; Solution<R =): bool

+betterThaniel; Evaluation <Mz, e2: Evaluation=M=}: bool

+hetterThana: double, b: double): bool
Z‘S 'R:class |
'M:class |

MultiObjectiveEvaluater

#partialEvaluators: vector < const Evaluator <R, M=% =

< <reate = =-MultiobjectiveEvaluator(e: Evaluator <R, M=)
+add(e: Evaluator <R, M=) vaid

+evaluateir: R): Evaluation =M=

+evaluatele: Evaluation<M=, r: R): void

+betterThania; double, b: double): bool

Figure 2. Evaluator<R,M> and MultiObjectiveEvaluator<R,M> template classes

4.4 Moves

A move operation defines a neighborhood structure. In OptFrame the Move class
has two most important methods: canBeApplied and apply.

The canBeApplied method of a Move object m returns true if the application of
m to a solution s will produce a valid solution. Otherwise it returns false. This is method
is often used before the apply method.

1892

XLIISBPO LA 1

The apply method of a Move m to a solution s transforms s into a neighbor s’ and
returns another Move m that can undo the changes made by m. Since complete copies
of solutions are expensive operations it is possible to avoid them by developing efficient
implementations of the reverse Move m.

Figure 3 depicts the Move class.

VR class
"I : class

Move

+canBedpplied(s: Solution<R.=): bool

+canBedppliedr: B bool

+apply(s: Solution<R =) Move<R,M=

+applyie: Evaluation<M:, s Solution=R=): Move<R, M=
+apphe(rs B Move<R, M=

+applyim: M, ri R): Move<R, M=

+operator=={m; Move <R, M=) bool

+operator!={m: Move<R, M=) bool

+Horink(): void

Figure 3. Move<R,M> template class

4.5 Neighborhood Structures

There are three types of neighborhood structure in OptFrame: NS, NSSeq and
NSEnum.

NS is the simplest definition of a neighborhood structure. It only requires the user to
define a move(s) method, that returns a random move operation of the neighborhood type.
Although it’s not in focus in this paper, it is possible to define neighborhood structures for
continuous problems optimization using this kind of structure.

NSSeq is a more elaborated version of NS. It also requires the user to define a
getlterator(s) method, that returns an object capable of generating moves of the neigh-
borhood structure in a sequential way. The returned object must implement the NSIterator
interface, that itself implements the Iterator Pattern (Gamma et al., 1995).

NSEnum is the most complete definition of a neighborhood structure in Opt-
Frame. It provides an enumerable set of move operations for a given combinatorial prob-
lem. Although it only requires the user to define the move(int) and size() methods,
with these methods it is possible to define default implementations for the move(s) and
getIterator(s) methods of NS and NSSeq.

Figure 4 depicts the NS, NSSeq and NSEnum classes.

4.6 Heuristic based methods

Heuristic methods are mainly divided in two classes: trajectory based and popula-
tion based methods (Ribeiro and Resende, 2010).

In order to maximize the code reuse and to favor testing of Hybrid Metaheuristics
(Blum and Roli, 2008), all heuristic methods should be implemented using the Heuristic
class abstraction. With this abstraction we have already been able to implement the fol-
lowing methods: First Improvement, Best Improvement, Hill Climbing and other classical
heuristic strategies (Hansen and Mladenovié, 2006); Iterated Local Search, Simulated An-
nealing, Tabu Search, Variable Neighborhood Search and other basic versions of many

1893

XLIISBPO LA 1

———————— s ‘R:class P
\Riclass M class ! :M : class :
(Midlass | NSIterator | £ I
N5 NSEnumlIterator
+Firsh): viid -ns: MSEnum <R, M=
+rmovels: Solution <R =) Move <R, M +next): void -move: unsigned ink
+movel: B Mowve <R, Mx +isDane): baal -nsSize: unsigned ink
rink}: waoid + : Move <R, M=
gR smendibione o) < create = x-N3Enumlteratorins: N3Enum <R, M=)

A +first(): woid
v S : +nexk(): woid
b (Rocass +isDianed): boal

'M:class +current(): Move <R,M:=
N55eq +ab(k: unsigned int): Move<R, M=
+sized): unsigned ink
+miovelr B Move <R, M= il
+getlterator(r: R M3lberator <R, M= i
+orink) ; waid y
_I..l
s A e e ap————————
1
K b \Riclass
M dass |
NSEnum

+rmovelr: R Move<R, M=
+getIteratorr: R): M3lberator <R, M=
+rmovelm: unsigned ink): Move <R, M
+sizeli: unsigned ink

ok} vaid

Figure 4. NS<R,M>, NSSeq<R,M> and NSEnum<R,M> template classes

famous trajectory based metaheuristics (Glover and Kochenberger, 2003); and, finally, the
basic versions of population based metaheuristics Genetic Algorithm and Memetic Algo-
rithm (Glover and Kochenberger, 2003).

So, there are four definitions of the method exec and the user must implement at
least two of them. For trajectory based heuristics, the user must implement:

void exec (Solution){ ... }
void exec(Solution, Evaluation){ ... }

For population based heuristics:

void exec (Population){ ... }
void exec (Population, FitnessValues){ ... }

where: Population is alist of Solutions and FitnessValues 1S a list of Evaluations.

The first one is the simplest version of the method while the second is a more
elaborated version. But if the user wish to implement only one of them there is a trivial
way of doing this (since the heuristic class uses at least one Evaluator):

void exec (Solution s) void exec (Solution s, Evaluation e)
{ {

Evaluation e = eval (s) call exec(s)

call exec(s,e) e = eval (s)

delete e }
}

For population based heuristics the same idea can be applied.

Figure 5 depicts the Heuristic class.

1894

XLIISBPO LA 1

Heuristic

< <rreate = =-Heuristic()

< =destroy = =-Heuristic()

+searchis: Solution <R =, timelimit: double, target_F: double): Solukion <R =

+searchis; Solution<R =, e: Evaluation<M:, timelimit: double, target_f: double): (Solution <R >, Evaluation<M=)
+searchip: Population, kmelimit: double, karget_F: double): Population

+searchip: Population, ev: Fitnessvalues, timelimit: double, target_f: double): {Population, Fitnessitalues)
+exec(s: Solution<R. =, timelimit: double, target_Fi double): vaid

+exec!s: Solution<R >, e Evaluation <Mz, timelimit; double, target_f: double): woid

+exec(p: Population, timelinit: double, target_F: double): woid

+exec(p: Population, ev: FitnessYalues, timelimit; double, target_F: doubled: void

Figure 5. Heuristic<R,M> template class

4.7 Other structures

Some metaheuristics may require specific structures, but they can also be defined
in specific files, e.g., Perturbation for Iterated Local Search; Mutation and Crossover oper-
ators for Genetic and Memetic Algorithms.

4.8 Parallel and Distributed Processing Support

One of the most important concepts in optimization local search heuristics is the
notion of neighborhood. All classic local search heuristics, as well as local search meta-
heuristics, explore the search space by means of neighborhood structures. Thus, it is easy
to observe that by parallelizing basic heuristics like Best/First Improvement many local
search metaheuristics will be automatically parallelized.

As the search space of solutions is generally very wide, checking all possible neigh-
bors of a solution is a costly task. To accelerate this process, OptFrame has a parallel
generator of best neighbors. Thus, at each step, the solution space is divided among the
processing nodes, reducing it into smaller sub-spaces.

The parallelization developed on OptFrame is similar to that proposed in Ribas
et al. (2010). In that work, the authors present the framework MaPI and apply the paral-
lelization to optimization algorithms. To test such an application the authors implemented
an algorithm widely used in literature, the Hill Climbing, and applied it to a classic opti-
mization problem, the Traveling Salesman Problem. When using MaPI, any user is able
to implement a parallel application without worrying about the communication scheme
between processes or how the system makes the parallelization.

OptFrame implements the best neighborhood generator in a Heuristic class called
BestImprovement, which has two parallel versions, one focused on multi-core computers
and other for MPI-based clusters. In order to develop an efficient parallelization but without
worrying about problematic and advanced aspects of distributed programming, we use
the library MapMP (Ribas et al., 2009) and MaPI framework (Ribas et al., 2010), both
developed in the project MapReduce++ 3. This project, under the GNU LGPLv3, provides
different implementations of the MapReduce abstraction (Dean and Ghemawat, 2008) in
C++ programming language.

3MapReduce++ project is available on http://sourceforge.net/projects/mapreducepp/ under GNU LGPLv3 license

1895

XLIISBPO LA 1

Figure 6 presents the BestImprovement heuristic with MapReduce abstraction. In
this case, each process is responsible for analyzing a sub-space neighborhood of a given
solution. The input of MapReduce is a list of solutions. The map function receives a solu-
tion and a sub-space of a neighborhood and returns the movement that generated the best
solution neighbor in this sub-space. The output of MapReduce is the best move generated
among all sub-spaces.

MapReduce

|5, N(s)]-b[s, N(s)"22d(S”] reduce

5. NP(s) (s

Figure 6. Bestimprovement heuristic with MapReduce abstraction

The best neighbor of a solution s is generated by the move m that have the most
favorable value of the evaluation function in the neighborhood of s. Since a neighbor can
be generated by direct application of a movement and its manipulation is less costly than
the manipulation of a neighbor solution, we chose to parallelize the method BestM ove(.)
instead of BestNeighbor(.). The idea is to generate the set M of moves that defines
the neighborhood N(s) of a solution s, and then divide this set M in |P| disjoint subsets
{(s, M"),--- (s, MIPI)}, where | P| is the number of mapping processors. The next step is
to apply the map function to each subset in order to generate their best moves. In possession
of the best moves, the reduce function chooses the best among them.

The pseudo-code of the parallel generator of BestMove(.) with the MapReduce
abstraction is presented below.

Procedure bestMove (s, N)

M « Set of possible moves in_N(s);
Split M in | P| parts and let M* be the i-th part of M;
return mapReduce(mapmm, reducemm, {(s, M"), ..., (s, MIP)});

Procedure mapmm (s, M*)

foreach each m, € M* withk =1,...,|M"| do
Evaluate the application of m}, to the solution s;
m** « acceptanceCriterion(m**, m});

end

c*? « cost of the application of m*? to the solution s;

return (m*’, bestCost);

Procedure reducemm (B)

Let B = {(m*!,c*), ..., (m*IP! c*IP1)} be the set of mapped elements;
m* <« move m** such that ¢** be the minimum B, Vi =1, ..., |P
return m*;

E)

In the procedure mapmm, acceptanceCriterion (m*', mt) returns the better of
two movements, with m*’ the best so far of i-th part the neighborhood of s and m, the
current movement in this part of the neighborhood.

1896

XLIISBPO LA 1

5 Concluding remarks, Applications and Future Work

This work presents OptFrame, a white-box object oriented framework in C++ for
the development of efficient heuristic based algorithms. Our objective is to provide a simple
interface for common components of trajectory and population based metaheuristics.

OptFrame’s architecture is intended to minimize the differences among code and
theoretical concepts of combinatorial optimization. Thus, this paper describes a C++ mod-
eling of the framework, but this model can also be applied to other programming languages,
since generic programming features are available.

OptFrame is a free software licensed under LGPLv3. You can get the newer sta-
ble version of OptFrame on http://sourceforge.net/projects/optframe/ or browse the project
SVN files repository for development versions. It has been successfully applied to model
many realistic optimization problems. See Souza et al. (2010), Coelho et al. (2009), Ribas
et al. (2009) and Munhoz et al. (2009) for applications in open-pit-mining and single-
machine scheduling problems, for example.

In future works we plan to compare pure C language implementation of some meth-
ods and combinatorial problems, in order to validate the implementation of OptFrame so
as to benchmark its efficiency limitations. Currently, we are working on a language for
automated testing of heuristic methods and an interactive mode for OptFrame.

You’re invited to visit our homepage and collaborate with the project, as
an user or as a developer. Code reuse must be maximized, with clear
abstractions based on optimization concepts, but always keeping in mind
that the target user should use only simple C++ on his/her code.

Acknowledgments

The authors are grateful to CNPq (CT-INFO and UNIVERSAL), CAPES (PRO-
CAD and PRO-ENG), FAPERJ and FAPEMIG that partially funded this research.

References

Andreatta, A. A.; Carvalho, S. E. R. and Ribeiro, C. C. (1998). An object-oriented frame-
work for local search heuristics. TOOLS ’98: Proceedings of the Technology of Object-
Oriented Languages and Systems, p. 1-33, Washington, USA. IEEE Computer Society.

Applegate, D. L.; Bixby, R. E.; Chvatal, V. and Cook, W. J. (2006). The Traveling Salesman
Problem: A Computational Study. Princeton University Press, United Kingdom.

Arroyo, J. E. C. Heuristics and metaheuristics for multi-objective combinatorial optimiza-
tion (in Portuguese). PhD thesis, Unicamp, Campinas, (2009).

Blum, C. and Roli, A. (2008). Hybrid Metaheuristics. Springer.

Cahon, S.; Melab, N. and Talbi, E.-G. (2004). Paradiseo: A framework for the reusable
design of parallel and distributed metaheuristics. Journal of Heuristics, v. 10, n. 3, p.
357-380.

Coelho, I. M.; Ribas, S.; Souza, M. J. F.; Coelho, V. N. and Ochi, L. S. (2009). A
hybrid heuristic algorithm based on grasp, vnd, ils and path relinking for the open-pit-
mining operational planning problem. Proceedings of the XXX Iberian-Latin-American
Congress on Computational Methods in Engineering — CILAMCE, Buzios.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clus-
ters. Commun. ACM, v.51,n. 1, p. 107-113.

1897

XLIISBPO LA 1

Dorne, R.; Mills, P. and Voudouris, C. (2005). Solving vehicle routing using iOpt. Proceed-
ings of MIC 2005 - The 6th Metaheuristics International Conference, Viena, Austria.
Durillo, Juan J.; Nebro, Antonio J.; Luna, Francisco; Dorronsoro, Bernabé and Alba, En-
rique. (2006). jMetal: A java framework for developing multi-objective optimization
metaheuristics. Technical Report ITI-2006-10, Departamento de Lenguajes y Ciencias

de la Computacién, University of Mélaga, E.T.S.I. Informatica, Campus de Teatinos.

Fink, A. and VoB, S. (2002). HotFrame: a heuristic optimization framework. Vo8, S.
and Woodruff, D. L., editors, Optimization Software Class Libraries, p. 81-154. Kluwer
Academic Publishers, Boston.

Gamma, E.; Helm, R.; Johnson, R. and Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-2.

Gaspero, L. Di and Schaerf, A. (2003). EasyLocal++: an object-oriented framework for the
flexible design of local-search algorithms. Softw. Pract. Exper., v. 8, n. 33, p. 733-765.

Glover, F. W. and Kochenberger, G. A. (2003). Handbook of Metaheuristics. Springer.
ISBN 1402072635.

Graccho, M. and Porto, S. C. S. (1999). TabOOBuilder: An object-oriented framework for
building tabu search applications. Proceedings of the Third Metaheuristics International
Conference, p. 247-251, Angra dos Reis, Rio de Janeiro.

Hansen, P. and Mladenovié, N. (2006). First vs. best improvement: an empirical study.
Discrete Appl. Math., v. 154, n. 5, p. 802-817. ISSN 0166-218X.

Henney, K. (1999). Coping with copying in c++. Overload, v. 7, n. 33, p. 1-16.

Mendes, A.; Franga, P. and Moscato, P. (2001). NP-Opt: an optimization framework for
np problems. Proceedings of the IV SIMPOI/POMS 2001, p. 11-14, Guaruja, Sao Paulo.

Munhoz, P. L. A.; Perché, M. H. P. and Souza, M. J. F. (2009). A new algorithm based
on Iterated Local Search for a class of scheduling problems on a single machine with
earliness and tardiness penalties (in portuguese). Proceedings of the XXIX ENEGEP,
Salvador.

Neves, T. A.; Souza, M. J. F. and Martins, A. X. (2005). Construction of a prototype of
an optimization framework and its use to solve the heterogeneous fleet vehicle routing
problem with time windows (in portuguese). Proceedings of the XXVIII CNMAC, Santo
Amaro.

Ribas, S.; Coelho, I. M.; Souza, M. J. F. and Menotti, D. (2009). Parallel Iterated Local
Search applied to the open-pit-mining operational planning problem (in portuguese).
Proceedings of the XLI SBPO, p. 2037-2048, Porto Seguro.

Ribas, S.; Perché, M. H. P.; Coelho, I. M.; Munhoz, P. L. A.; Souza, M. J. F. and Aquino, A.
L. L. (2010). MaPI: a framework for algorithms parallelization (in portuguese). Learning
and Nonlinear Models, v. 8. Accepted for publication.

Ribeiro, C. and Resende, M. (2010). Path-relinking intensification methods for stochastic
local search algorithms. Technical Report NJ 07932, AT&T Labs Research.

Souza, F. D. (2008). TOGALI: A tool for development of genetic algorithms (in portuguese).
Master’s thesis, Programa de P6s-Graduacdo em Pesquisa Operacional e Inteligéncia
Computacional, Universidade Candido Mendes, Campos dos Goytacazes.

Souza, M. J. E.; Coelho, I. M.; Ribas, S.; Santos, H. G. and Merschmann, L. H. C. (2010).
A hybrid heuristic algorithm for the open-pit-mining operational planning problem. Eu-
ropean Journal of Operational Research, v. . Accepted for publication.

1898

