
Mathematical Programming Models for the

one-dimensional cutting stock problem with usable

leftover

Santiago Valdés Ravelo

Instituto de Informática

Universidade Federal de Goiás

santiago@inf.ufg.br

Cláudio Nogueira de Meneses

Centro de Matemática, Computação e Cognição

Universidade Federal do ABC

claudio_n_meneses@yahoo.com

Maristela Oliveira dos Santos

Departamento de Matemática Aplicada e Estatística

Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo - São Carlos

mari@icmc.usp.br

Abstract

We consider the one-dimensional cutting stock problem in which the non-used material in the

cutting patterns may be used in the future, if large enough. This variant is more complicated

to solve than the traditional one because it introduces a new objective to be minimized besides

minimizes the loss material, being a multiobjective optimization problem and also an NP-hard

problem. We analyze the existing mathematical models and propose new models, comparing

them by solving instances from the literature and practical instances with the CPLEX solver.

The computational experiments show that we proposed a model quite superior to the existing

models for this problem.

Keywords: One-dimensional Cutting Stock Problem, Mathematical Modeling, Multiobjective

Optimization. Combinatorial Optimization

2195



1 Introduction

Cutting stock problems arise from many applications in the industry, they consist in

cutting a set of items from a stock of larger objects, in order to satisfy the item demands,

minimizing the loss material, the cost of the objects to cut or maximizing the pro�t of the

produced items, being in general all these problems computationally di�cult to solve. In

this article we consider the one-dimensional cutting stock problem with usable leftover, in

which if the non-used material in the cutting patterns is large enough it may be used in the

future. This feature introduces more di�culties to the problem and has received attention

in the literature, creating mathematical models and several algorithms to get good solutions

(Gradisar et al. (1997), Gradisar et al. (1999), Gradisar and Trkman (2005), Ababuara and

Morabito (2008), Cherri et al. (2008)).

Cherri et al. (2008) gave the following de�nition to the problem:

De�nition 1. The one-dimensional cutting stock problem with usable leftover (CSPUL)

is de�ned as:

A set of pieces (items) must be produced by cutting large units (objects) of standard sizes

(objects bought from suppliers) or non-standard (objects that are leftover of previous cuts).

The demand of the items and the availability of the objects are given. Demand must be

met by cutting the available objects such that the leftovers are �small� (denoted by scrap) or

�su�ciently large� (denoted by retails) to return to stock, but in a reduced number.

In this work we begin with Section 2 analyzing the existing models, and in Section 3

are presented new mathematical models to the problem. Section 4 presents computational

tests and �nally the conclusions are in Section 5.

2 Existing Mathematical Models

To the best of our knowledge Gradisar et al. (1997) was the �rst one proposing a model

to the cutting stock problem that considers the existence of usable leftover (retails). Lets

see that model:

• m: number of objects

• dj : size of object j (1 ≤ j ≤ m)

• n: number of items

• si: length of item i (1 ≤ i ≤ n)

• bi: demand of item i (1 ≤ i ≤ n)

• UB: minimum size of a leftover material to be considered as retail

• Y , M : constants to determine the maximum number of di�erent items cut out of one

object (used Y = M = 4)

Variables:

• xij : number of items type i having being cut from object j (1 ≤ i ≤ n and 1 ≤ j ≤ m)

• δj : leftover material of the object j (1 ≤ j ≤ m)

• ∆i: uncut order of items type i (1 ≤ i ≤ n)

• tj : loss of the object j (1 ≤ j ≤ m)

2196



• yij : indicates if an item type i is being cut from object j (1 ≤ i ≤ n and 1 ≤ j ≤ m)

• zj : indicates if object j is used in the cutting plan (1 ≤ j ≤ m)

Model:

min
n∑

i=1

∆i (1)

min
m∑

j=1

tj (2)

s.t :
n∑

i=1

sixij + δj = dj ∀j (knapsack constraints)

m∑
j=1

xij + ∆i = bi ∀i (demand constraints)

n∑
i=1

yij ≤ Y ≤M ∀j (maximum number of di�erent items for an object)

tj =
{
δj , if zj = 1 and δj < UB
0, otherwise

∀j

yij =
{

0, if xij = 0
1, otherwise

∀i, j

zj =
{

0, if
∑n

i=1 xij = 0
1, otherwise

∀j

Integers : xij ≥ 0, δj ≥ 0, tj ≥ 0, ∆i ≥ 0, yij , zj ∈ {0, 1}
(1 ≤ i ≤ n and 1 ≤ j ≤ m)

The knapsack constraints guarantee that the sum of lengths of the items cut from an

object is not larger than the length of the object, and the demand constraints guarantee

that the number of item of a type is no greater than the demand of that type of item.

The above model does not solve our problem, but solves a very similar other one, so

making some modi�cations we get a model that actually solves CSPUL. In �rst place we

do not need the variables yij , because in the formulation of our particular problem there is

no restriction to the number of types of items that can be produced by one object. Also we

can drop the variables zj and rede�ne the variables tj as:

tj =
{
δj , if δj < dj and δj < UB
0, otherwise

Adding the variables rj =
{

1, if δj < dj and δj ≥ UB
0, otherwise

And dropping the variables ∆i because we are considering that all demands can be

satis�ed, we replace the objective function (1) by:

min
m∑

j=1

rj (3)

2197



Finally, we get a mathematical model for CSPUL:

min
m∑

j=1

rj

min
m∑

j=1

tj

s.t :
n∑

i=1

sixij + δj = dj ∀j (knapsack constraints)

m∑
j=1

xij = bi ∀i (demand constraints)

tj =
{
δj , if δj < dj and δj < UB
0, otherwise

∀j

rj =
{

1, if δj < dj and δj ≥ UB
0, otherwise

∀j

Integers : xij ≥ 0, δj ≥ 0, tj ≥ 0, rj ∈ {0, 1}
(1 ≤ i ≤ n and 1 ≤ j ≤ m)

In Gradisar et al. (1999) and Gradisar and Trkman (2005) the same model of Gradisar

et al. (1997) is analyzed by cases and are added a new variable and a constraint associated

to the maximum length of retails (there must not be more than one retail larger than the

largest item):

m∑
j=1

uj ≤ 1, where: uj =
{

1, if δj < dj and δj > maxi si

0, otherwise

We do not consider this constraint because it could be interesting having few but larger

retails.

In Ababuara and Morabito (2008), the model of Gradisar et al. (1997) is modi�ed and

they proposed the following two models:

Model 1:

Adds the variables: wj (1 ≤ j ≤ m)

min
m∑

j=1

tj

s.t :
n∑

i=1

sixij + δj = dj ∀j (knapsack constraints)

m∑
j=1

xij = bi ∀i (demand constraints)

zj ≤
n∑

i=1

xij ∀j (object constraints)

n∑
i=1

xij ≤Mzj ∀j (object constraints)

2198



δj − UB ≥ −Mwj ∀j (lost constraints)

δj − UB ≤ (M + ε)(1− wj)− ε ∀j (lost constraints)

tj −Mwj ≤ 0 ∀j (lost constraints)

tj −Mzj ≤ 0 ∀j (lost constraints)

tj − δj ≤ 0 ∀j (lost constraints)

δj − tj +Mwj +Mzj ≤ 2M ∀j (lost constraints)

−zj + uj ≤ 0 ∀ j (retail constraints)

wj + uj ≤ 1 ∀ j (retail constraints)

zj − wj − uj ≤ 0 ∀ j (retail constraints)
m∑

j=0

uj ≤ RUB (maximum number of retails)

δj , tj , xij ≥ 0, xij ∈ Z, zj , uj , wj ∈ {0, 1} (4)

(1 ≤ i ≤ n and 1 ≤ j ≤ m)

Where are de�ned: UB = mini si, M = maxj dj −mini si, RUB is an upper bound for

the number of retails in the solution (the proposal is RUB = 1), and ε is a small positive

value to change the signal of the inequalities (when all values are integers ε = 1).
On this model the object constraints set zj to 1 if object j is used in the solution and

to 0 otherwise. The lost constraints are to guarantee that if the object is used the leftover

from that object is not a retail, then the leftover of that object is loss material. The retail

constraints are to guarantee that if an object is used and it leftover is not loss material, then

it must be a retail.

Model 2:

min
m∑

j=1

tj

s.t :
n∑

i=1

sixij ≤ dj ∀j (knapsack constraints)

m∑
j=1

xij = bi ∀i (demand constraints)

m∑
j=1

uj ≤ RUB (maximum number of retails)

UBuj ≤ djzj −
n∑

i=1

sixij ∀j (leftover constraints)

djzj −
n∑

i=1

sixij ≤ tj +Muj ∀j (leftover constraints)

tj , xij ≥ 0, xij ∈ Z, uj ∈ {0, 1}
(1 ≤ i ≤ n and 1 ≤ j ≤ m)

The leftover constraints collapse all the object constraints, lost constraints and retail

constraints from the previous model.

The second model is a simpli�cation of the �rst one, but the two models solve the same

problem, and their objective is to minimize the leftover material with a limited number of

2199



retails. They are approximated models to CSPUL, but their solutions are not necessarily the

best solutions we can get because the original problem is multiobjective and those models

reduce it to a single objective problem �xing the number of retails with a constraint.

For the CSPUL the Pareto optimal set is �nite so solving the models of Ababuara and

Morabito (2008) with RUB = 0...K, with K large enough, it is possible to get all non-

dominated solutions of the multiobjective problem.

3 New Mathematical Models

The models of Ababuara and Morabito (2008) allow symmetry arising identical solutions

to the problem by swapping the objects j1 and j2 if they are of same type. So it could be

interesting to create models breaking the symmetry.

Ordering the objects by their lengths and adding the constraints: zj+1 ≤ zj ∀j if objects
j and j + 1 are the same type.

We reduce the number of symmetric solutions allowed by the Model 2, and we get the

Model 3:

min
m∑

j=1

tj

min
m∑

j=1

uj

s.t :
n∑

i=1

sixij ≤ dj ∀j (knapsack constraints)

m∑
j=1

xij = bi ∀i (demand constraints)

UBuj ≤ djzj −
n∑

i=1

sixij ∀j (leftover constraints)

djzj −
n∑

i=1

sixij ≤ tj +Muj ∀j (leftover constraints)

zj+1 ≤ zj ∀j if objects j and j + 1 are the same type

tj , xij ≥ 0, xij ∈ Z, uj ∈ {0, 1}
(1 ≤ i ≤ n and 1 ≤ j ≤ m)

But Model 3 still allows symmetric solutions and that is the reason we decided to

introduce a totally di�erent model:

• m: number of types of objects

• Cj : number of objects of type j (1 ≤ j ≤ m)

• n: number of items

• bi: demand of item i (1 ≤ i ≤ n)

• Kj : number of possible cut patterns for objects of type j (1 ≤ j ≤ m)

2200



• aijk: number of items i in cut pattern k of objects of type j (1 ≤ i ≤ n, 1 ≤ j ≤ m,

1 ≤ k ≤ Kj)

• ujk: indicates if cut pattern k of objects of type j generates a retail (1 ≤ j ≤ m,

1 ≤ k ≤ Kj)

• tjk: loss of cut pattern k of objects of type j (1 ≤ j ≤ m, 1 ≤ k ≤ Kj)

Variables:

• xjk: number of times that cut pattern k of objects of type j has been included in the

solution

Model 4:

min
m∑

j=1

Kj∑
k=1

tjkxjk

min
m∑

j=1

Kj∑
k=1

ujkxjk

s.t :
m∑

j=1

Kj∑
k=1

aijkxjk = bi ∀i (demand constraints)

Kj∑
k=1

xjk ≤ Cj ∀j (stock constraints)

xjk ≥ 0, xjk ∈ Z
(1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ Kj)

The stock constraints are to guarantee that there are not used more objects of a type

than the amount of them in the stock.

4 Computational Tests

In this section we present tests with instances used by Cherri et al. (2008), some of

them taken from Gradisar and Trkman (2005) (the numerical instances) and others from

Ababuara and Morabito (2008) (the practical instances).

To compare the models we �x a maximum number of retails and solve a single objective

model using the CPLEX solver, on a PC Intel Core 2 Duo, 2.8GHz and 3.25GB of RAM,

under Microsoft Windows XP Professional operating system.

The following subsections discuss the instances and the obtained results. The results are

given in tables in which are used Var.Numb. to denote the number of variables, Const.Numb.

to denote the number of constraints, RUB to denote the number of retails, Init.Sol. to

denote the initial integer solution, Init.GAP to denote the gap calculated by the CPLEX

for the initial solution, Last.Sol. to denote the last integer solution, GAP to denote the gap

calculated by the CPLEX for the last solution, Nod.Numb. to denote the number of nodes,

Iter. to denote the number of iterations, Stop.Crit. to denote the stop criterion being:

OPT by optimal solution and OME by out of memory exception, and Time to denote the

execution time in seconds.

2201



4.1 Numerical Instances

For these instances there is just one object in stock for each type of object, so models 2

and 3 result the same model.

Instance 1: with 20 types of objects with lengths between 2200 and 6000 cm; and

availability of one unit of each object type. Table 1 shows size and demand of each item.

Table 2 shows the CPLEX solutions for this instance with the di�erent models.

Item Length (cm) Demand

1 235 4

2 200 51

3 347 42

4 471 16

5 274 37

Table 1: Item lengths and demands of instance 1

Model 1 Model 2 and Model 3 Model 4

Var.Numb. 200 160 228928

Const.Numb. 246 66 26

RUB 0 1 0 1 0 1

Init.Sol. 812 666 1612 706 212 128

Init.GAP 100 100 100 100 100 100

Last.Sol. 412 56 212 2 12* 0*

GAP 100 100 100 100 100 0

Nod.Numb. 12311549 13982753 299588 2816951 159119 14800

Iter. 246490262 51903397 63764569 72973808 326807 68008

Stop.Crit. OME OME OME OME OME OPT

Time 81131.97 99449.89 54980.63 224907.99 851.56 5239.51

Table 2: CPLEX solutions for each model with instance 1. The * indicates that the solution

is optimal.

Instance 2: with 20 types of objects with lengths between 2100 and 5000 cm; and

availability of one unit of each object type. Table 3 shows size and demand of each item.

Tables 4, 5 and 6 show the CPLEX solutions for this instance with the di�erent models.

Item Length (cm) Demand

1 549 39

2 433 27

3 207 43

4 308 30

5 583 2

Table 3: Item lengths and demands of instance 2

From the tables it is evident that even when the Model 4 has much more variables

than the rest of the models, it seems to be much better than the other proposed models,

reaching an optimal solution in each case and on almost all the tests stopping by optimality

in a very short time while for the other models the CPLEX solver takes much more time to

stop, and when it does is by out of memory exception without reaching optimal values.

2202



Model 1

Var.Numb. 200

Const.Numb. 246

RUB 0 1 2 3 4

Init.Sol. 1523 1144 1044 747 1319

Init.GAP 100 100 100 100 100

Last.Sol. 763 412 588 263 335

GAP 100 100 100 100 100

Nod.Numb. 13319148 16888927 13788840 14090112 13225677

Iter. 133503248 274466473 127304689 166485902 129522082

Stop.Crit. OME OME OME OME OME

Time 13213.92 20635.11 15711.78 34251.25 56088.31

Table 4: CPLEX solutions for model 1 with instance 2.

Model 2 and Model 3

Var.Numb. 160

Const.Numb. 66

RUB 0 1 2 3 4

Init.Sol. 6359 2480 2704 2988 1256

Init.GAP 100 100 100 100 100

Last.Sol. 639 322 99 11 46

GAP 100 100 100 100 100

Nod.Numb. 11246014 31677069 21057922 32281347 28203188

Iter. 113908074 172418711 121279869 221740224 186045954

Stop.Crit. OME OME OME OME OME

Time 12484.94 233656.75 79663.91 32032.25 30844.71

Table 5: CPLEX solutions for models 2 and 3 with instance 2.

Model 4

Var.Numb. 44389

Const.Numb. 26

RUB 0 1 2 3 4

Init.Sol. 183 92 2* 1* 1

Init.GAP 98 97.2 61.96 100 100

Last.Sol. 31* 3* 2* 1* 0*

GAP 79.15 0 0 0 0

Nod.Numb. 561368 9 8 57 260

Iter. 3012034 229 226 778 5025

Stop.Crit. OME OPT OPT OPT OPT

Time 1793.03 210.8 183.02 60.67 111.02

Table 6: CPLEX solutions for model 4 with instance 2. The * indicates that the solution is

optimal.

2203



4.2 Practical Instances

Instance 3: with one object type of length 3000 cm, and availability of 10 in stock.

Table 7 shows size and demand of each item. Table 8 shows the CPLEX solutions for this

instance with the di�erent models.

Item Length (cm) Demand

1 250 2

2 273 2

3 285 4

4 525 4

5 1380 4

Table 7: Item lengths and demands of instance 3

Model 1 Model 2 Model 3 Model 4

Var.Numb. 100 80 80 257

Const.Numb. 126 36 45 7

RUB 1 2 1 2 1 2 1 2

Init.Sol. 574 244 574 264 529 70 240* 0*

Init.GAP 100 100 100 100 100 100 0 0

Last.Sol. 240* 0* 240* 0* 240* 0* 240* 0*

GAP 0 0 0 0 0 0 0 0

Nod.Numb. 24639 30 64134 135 331 69 1 0

Iter. 116008 179 239880 509 1385 354 26 10

Stop.Crit. OPT OPT OPT OPT OPT OPT OPT OPT

Time 143.5 0.92 35.49 1.05 1.13 1 0.75 0.31

Table 8: CPLEX solutions for each model with instance 3. The * indicates that the solution

is optimal.

Instance 4: with one object type of length 6000 cm, and availability of 10 in stock.

Table 9 shows size and demand of each item. Tables 10 and 11 show the CPLEX solutions

for this instance with the di�erent models.

Item Length (cm) Demand

1 370 5

2 905 5

3 910 5

4 930 5

Table 9: Item lengths and demands of instance 4

As in the previous subsection, the CPLEX solver reaches with our Model 4 the optimal

values in less time, less iterations and using less nodes than the other models. In fact for

these instances the CPLEX solver withModel 4 reaches optimal solutions as initial feasible

solutions, proving their optimality in few steps.

2204



Model 1 Model 2

Var.Numb. 90 70

Const.Numb. 125 35

RUB 1 2 3 1 2 3

Init.Sol. 435 110 0* 3875 2034 0*

Init.GAP 100 100 0 100 100 0

Last.Sol. 250* 70* 0* 250* 70* 0*

GAP 0 0 0 0 0 0

Nod.Numb. 316596 2200604 0 270638 805423 0

Iter. 923668 7593572 14 576347 2231684 12

Stop.Crit. OPT OPT OPT OPT OPT OPT

Time 203.74 1872.75 0.75 149.39 82.53 0.74

Table 10: CPLEX solutions for models 1 and 2 with instance 4. The * indicates that the

solution is optimal.

Model 3 Model 4

Var.Numb. 70 343

Const.Numb. 44 6

RUB 1 2 3 1 2 3

Init.Sol. 6060 190 5615 250* 70* 0*

Init.GAP 100 100 100 18.46 16.67 0

Last.Sol. 250* 70* 0* 250* 70* 0*

GAP 0 0 0 0 0 0

Nod.Numb. 1888 5072 18 10 0 0

Iter. 6872 16508 151 75 26 27

Stop.Crit. OPT OPT OPT OPT OPT OPT

Time 1.88 3.91 1.13 0.81 0.83 0.70

Table 11: CPLEX solutions for models 3 and 4 with instance 4. The * indicates that the

solution is the optimal value.

2205



5 Conclusions

We have shown new mathematical models for the One-dimensional Cutting Stock Prob-

lem with Usable Leftover, which belongs to the Cutting Problems class that are generally

NP-hard problems. We also compare our models with the existing models for these prob-

lem using instances from the literature being some of them practical instances. For all

experiments we have performed, our Model 4 was quite superior to the other ones.

References

Ababuara, A. and Morabito, R. (2008). Cutting optimization of structural tubes to build

agricultural light aircrafts. Annals of Operation Research, 169:149�165.

Cherri, A., Arenales, M., and Yanasse, H. (2008). The one-dimensional cutting problem

with usable leftover - A heuirstic approach. European Journal of Operational Research,

196:897�908.

Gradisar, M., Jesenco, J., and Resinovic, G. (1997). Optimization of roll cutting in clothing

industry. Computers and Operational Research, 10:945�953.

Gradisar, M., Kljajic, M., Resinovic, G., and Jesenco, J. (1999). A sequential heuris-

tic procedure for one-dimensional cutting. European Journal of Operational Research,

114:557�568.

Gradisar, M. and Trkman, P. (2005). A combined approach to the solution to the general

one-dimensional cutting stock problem. Computers and Operational Research, 32:1793�

1807.

2206


	Introduction
	Existing Mathematical Models
	New Mathematical Models
	Computational Tests
	Numerical Instances
	Practical Instances

	Conclusions

