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Abstract

Arc routing problems are among the most challenging combinatorial optimization problems.
We tackle the Capacitated Arc Routing Problem where demands are spread over a subset of
the edges of a given graph, called the required edge set. Costs for traversing edges, demands
on the required ones and the capacity of the available identical vehicles at a vertex depot are
given. Routes that collect all the demands at minimum cost are sought. This work presents
new lower bounds for this problem. They are based on formulations on variables representing
routes. These are solved by column generation. Valid inequalities from formulations on arc
variables are added to the route based formulations. Issues regarding the use of elementary
and nonelementary routes are explored. Extensive experiments are presented.

Keywords: CARP, Column Generation, Dual Ascent. Main Area: Mathematical Program-
ming.

Resumo

Problemas de roteamento sobre arcos estdo entre os mais desafiantes na area de otimizagao
combinatoria. Neste trabalho, o Problema de Roteamento de Veiculos sobre Arcos é abordado,
onde as demandas estao distribuidas sobre um subconjunto de arestas de um grafo dado, cha-
mado de conjunto de arestas obrigatorias. Os custos de percorrer as arestas, as demandas das
obrigatodrias e a capacidade dos veiculos idénticos disponiveis em um vértice de depdsito sao
dados. Procura-se por rotas que atendam todas as demandas com um custo minimo. Este tra-
balho apresenta novos limites inferiores para este problema. Eles sao baseados em formulagoes
sobre variaveis que representam rotas. Estas sao resolvidas por geracao de colunas. Desigual-
dades validas a partir de formulagoes em variaveis de arestas sdo adicionadas as formulagoes
baseadas em rotas. Questoes relativas a utilizagdo de rotas elementares e nao-elementares sao
exploradas. Experiementos sao apresentados.

Palavras-Chave: CARP, Geracio de Colunas, Dual Ascent. Area Principal: Programacio
Matematica.
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1 Introduction

The Capacitated Arc Routing Problem (CARP) can be defined as follows. Suppose a
connected undirected graph G = (V, FE) with vertex set V and edge set F, costs ¢ : E — ZT,
demands ¢ : E — Z™, a set I containing k available identical vehicles with capacity @ and
a distinguished depot vertex labeled 0. Define Er = {e € F'|g. > 0} as the set of required
edges. Let F' be a set of closed walks that start and end at the depot, where edges in a walk
can be either serviced or deadheaded (when the vehicle traverses the edge without servicing
it). Set F' is a feasible CARP solution if:

e Each required edge is serviced by exactly one walk in F

e The sum of demands of the serviced edges in each walk in F' does not exceed the
vehicle capacity.

We want to find a solution minimizing the sum of the costs of the walks. It can be noted
that > ., c(e) is a trivial lower bound on the cost of an optimal solution, the remaining
costs in a solution are the costs of the deadheaded edges.

This problem was first presented by Golden and Wong in 1981 |Golden and Wong| (1981)
and has been used to model many situations, including street garbage collection, postal
delivery and routing of electric meter readers. The reader may refer to for
further applications.

The CARP is strongly NP-hard (Golden and Wong (1981)). Several heuristics have
been proposed for it. Among them we can cite Golden et al.|(1983), |Chapleau et al.| (1984),
Ulusoy| (1985)), [Pearn| (1989, [1991)), Hertz et al.| (2000), Hertz and Mittaz| (2001)), Brandao
and Eglese| (2008)), [Santos et al| (2009) and Mei et al| (2009a]b). Many other heuristics are
described in [Assad and Golden| (1995)), [Eiselt et al| (1995) and [Dror| (2000). Algorithms
yielding lower bounds for the CARP are presented in |Golden and Wong (1981)), |Assad
et al.| (1987), Pearn| (1988), Benavent et al. (1992),|Amberg and Vol (2002)), Belenguer and
Benavent| (2003) and [Wghlk (2006]).

As previously mentioned, CARP is a very difficult problem to be solved exactly. For this
reason, few works that use an exact approach to this problem were made. We can cite the
most recent and successful. In Gomez-Cabrero et al.| (2005), a set covering formulation with
additional cuts was proposed and a column generation, which allowed nonelementary routes
(routes servicing the same edge more than once), together with a cutting plane were used
to try to solve this formulation. In Longo et al| (2006), the algorithm first transforms the
instance into a Capacitated Vehicle Routing Problem instance (CVRP) and, after that, the
instance is solved using the algorithm proposed in Fukasawa et al. (2006). In Letchford and|
, two column generation algorithms were proposed over the same set covering
formulation from |Gomez-Cabrero et al.| (2005). The first algorithm was similar to the one
proposed in (Gomez-Cabrero et al.| (2005), but simpler. The second allowed only elementary
routes and was implemented with different mixed-integer formulations.

Our present goal is to show the best results for the CARP, using algorithms specifically
developed for this problem that generate columns allowing and not allowing nonelementary
routes, with additional cuts. In section 2, we show the evolution of the formulations until
the set partitioning formulation used in the rest of this work and the so-called capacity cuts.
In section 3, we explain our pricing algorithm which allows only elementary routes and one
formulation from [Letchford and Oukil (2009) used just to compare our values. In section 4,
we explain our pricing algorithm which allows nonelementary routes. In section 5, we define
our Dual Ascent Heuristic, used to generate the capacity cuts. Computational experiments
are in section 6 and our conclusions in section 7.
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2 Mathematical Formulation

2.1 Edge Formulation

The intuitive formulation for the CARP is to create one boolean variable associated with
each serviced edge for each vehicle (z£) and an integer variable to represent the number of
times each edge is deadheaded by each available vehicle (22). This approach is usually called
the two-index formulation, because both variables types have indexes e for edge and p for
vehicle.

MIN > ( ST ocext + > cez§> (1)

pel \eeER eckE
s.t. Sab=1 Ve € Er (2)
pel
> gere <Q Vpel (3)
ecER
>ooak+ > > 256‘? VS CV\{0}, f € Er(S),pel (4)
€8 (S) ce8(S)
2k € {0,1} Ve € Er,pel (5)
Lert Vee E,pel (6)

Constraints assure unique vehicle service for each required edge, constraints
limit the total demand serviced by each vehicle to the capacity @ and, given Fr(S) =
{(i,j) € Egli € S,j € S}, where S is a vertex set, constraints are sub-tour elimination
constraints, used to force a closed walk for every vehicle.

2.2 Set Partitioning Formulation

The structure of the CARP suggests to reformulate it as a Set Partitioning Problem
(SPP) in order to apply column generation. A solution to the CARP consists of a set of
routes (interpreted as columns), one for each vehicle, which can be calculated independently,
since they cover the set of required edges to be serviced. In a column generation approach,
the master problem is a SPP like the following formulation:

MIN Y A, (7)
reQ)
st. S A=k (8)
reQ)
SSalh =1 Vee Eg (9)
reQ)
A €{0,1} VreQ (10)

where (1 is the set of feasible routes, ¢, is the cost of the route r and af, is 1 if route r services
the required edge e € ER or is 0 otherwise. The constraints specify the number of routes
in a solution, as each vehicle is associated with a single route. Constraints @D indicate that
each required edge e € FR is serviced by exactly one route r.

This formulation allows only elementary routes. An elementary route can service only
once a required edge. A nonelementary route can service more than once a required edge.
In order to allow these routes, one can relax the ), variables to be continuous or change the
equal sign from @D to a greater-equal sign. We chose the first approach.
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2.3 Capacity Cuts

In Belenguer and Benavent| (2003), a cutting plane algorithm was devised for the CARP
which uses cuts over z. variables, called capacity cuts. However, these cuts are not enough
to give a formulation for the CARP, they are only a relazation since they allow some integer
solutions that do not correspond to feasible solutions. Instead, this relaxation give very good
lower bounds for the CARP. Using these cuts together with others defined in
Benavent| (2003)), the cutting plane algorithm matched the best heuristic solutions on 47
out of 87 instances tested from the literature.

Given a set S € V\{0}, 6(S) ={(i,j) e Eli € S,j ¢ S}, 6r(S) ={(i,j) € Erli € S,j ¢
S} and a lower bound k(S) on the number of vehicles needed to service the required edges
of this set .S, the capacity cuts are defined as follows:

> Ze = 2K(S) — |0r(S)| VS S VA{0} (11)
e€d(S)

To calculate exactly the value of k(S), we need to solve a Bin Packing Problem, which
is NP-hard, as described in |Garey and Johnson (1979). Instead of it, a good relaxation is
k(S) = [ZeeER(S)uéR(S) q¢/ Q]

In addition to the capacity cuts, Belenguer and Benavent defined the so-called odd edge
cutset cuts. For any set S, if |0r(S5)| is odd, at least one edge from §(S) must be deadheaded.

T 2 >1 ¥SCV\{0} with |5x(S)| odd (12)
e€d(S)

Using these two cuts together with only deadheaded variables z., the usually called
one-index formulation can be created with the following objective function:

MIN > ceze (13)
eck

For the cutting plane algorithm from Belenguer and Benavent| (2003), several separation
routines were used to identify violated and cuts. The separation for (12]) cuts
can be done in polynomial time using the Odd Minimum Cut algorithm from
(1982). For the , the separation is more difficult and was solved by heuristics in

Belenguer and Benavent| (2003)) and exactly in (2004).

3 Pricing with Elementary Routes

The pricing subproblem consists of finding an elementary route (column) of minimum
reduced cost within a given maximum load capacity. This subproblem is a special case of the
Elementary Shortest Path Problem with Resource Constraints (ESPPRC) where the only
resource constraint is the vehicle’s capacity. The ESPPRC is strongly NP-hard ,

but one can eventually solve this problem exactly when the graph is sparse (Letchford and
(2009)).

3.1 Dynamic Programming Approach

In the dynamic programming approach, our algorithm follows the label correcting ap-
proach from |[Feillet et al. (2004). The data structure is a @ x |V| matrix M. Each entry
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M (q,v) represents a bucket that consists of a set of partial elementary (meaning that a
required edge must be serviced at most once) walks that start at the depot and end at
vertex v with a total demand exactly ¢ on the required edges serviced (we assign a label
to each partial walk). Each label belonging to the bucket M (q,v) records the cost, the
reduced cost and the set of required edges serviced (not necessarily the order in which these
edges are serviced) of the partial walk represented. We use dynamic programming to fill
the matrix M starting with ¢ = 0 and going up to ¢ = @ . When extending a label we
rely upon the possibility of fathoming labels that cannot be part of an optimal solution
following the dominance tests criterion described in [Feillet et al. (2004)) (i.e., we only record
non-dominated labels).

To further reduce the number of labels to be handled by the dynamic programming
algorithm, we apply the relaxation technique proposed in [Righini and Salani (2008) to
the ESPPRC. For this purpose, we identify some required edges as critical, according to
the structure of an optimal solution obtained when nonelementary walks are allowed. The
algorithm works iteratively: let © be the set of critical required edges of the current iteration.
In the subsequent iteration, the dynamic programming algorithm prevents multiple visits
to the edges in O, still allowing multiple visits to the others. At the final of this iteration
we update the critical edge set as 0 =vU O, where ¥ denotes the set of required edges
serviced more than once on the optimal solution found at the final of the current iteration.
Obviously, the algorithm eventually provides an optimal solution that corresponds to an
elementary route.

3.2 Mixed-Integer Programming Approach

In Letchford and Oukil (2009), the ESPPRC was solved using different MIP formula-
tions, all of them exploiting the sparsity of G. Oddly, the results found using the dynamic
programming approach were different from the ones found with the MIP formulations from
Letchford and Oukil (2009)). To investigate this problem, we decided to implement one of
the MIP formulations. More exactly, we implemented the directed MIP formulation, which
defines binary variables z;; and z;; for each edge (i,j) € Eg, representing if edge (i,7) is
serviced. It also defines binary variables z;; and z;; for each edge (i,j) € E, representing if
edge (4, ) is traversed (serviced or not). Finally, it defines continuous variables f;; and fj;,
representing the remaining load on the vehicle when it goes from ¢ to j.

MIN > cijlziy+z) — > cij (@i + xi) (14)

{i.j}eE {i,j}€ER
s.t. Tij + Tj; <1 V(Z,]) c ER (15)
Zij > Tij, Zji > Zji V(Z,]) € ER (16)
zii— >,z =0 Vi € V\{0} (17)

{7,136~ (3) (4,5)€07F(4)
o fii— > fi= Y. aijxig vi € V\{0} (18)

{j,iYes— () (4,9)€67F(4) (i,5) €84 (4)
fop=— X fio+ X aojzo; £Q (19)
{0,5}€6%(0) {3,0}€6-(0) {0,5}€81(0)

fii < Qzij, fji < Qzj; V(i,j) € E\Er  (20)
Jii < Qzij — qijwig, fii < Qzji — qjiTji V(i,j) € Er (21)
fij, fii €R V(i,j) e & (22)
Tij, Tji € {0, 1} V(i,j) e Ep (23)
Zijy Rji S {0, 1} V(Z,]) ekl (24)
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4 Pricing with Nonelementary Routes

We can relax pricing with elementary routes to nonelementary which in the CARP’s
case has the meaning that a required edge can be serviced more than once in a single route.
What motivates us to do pricing with nonelementary routes is that this can be solved in
pseudopolynomial time, as shown in |Christofides et al.| (1981).

Our basic algorithm for nonelementary pricing is based on dynamic programming. We
use a  x |ERr| matrix M where each entry M(q, (i,7)) (respectively, a @ x |Eg| matrix
M’ where each entry M'(q, (j,i))) represent the least reduced costly walk that reaches
the required edge (i,7) € Epg servicing it from vertex i to j (respectively, from vertex j
to i) using total demand exactly ¢. Initially, the only known label represents an empty
walk and has reduced cost zero. All other entries of the matrices M and M  are ini-
tialized with empty labels that represent partial walks with infinite cost. Then both
matrices M and M are filled with dynamic programming, starting with ¢ = 1 and go-
ing up to ¢ = Q. For each entry M(q, (i,5)) (respectively, M'(q,(j,7)), the algorithm
goes through each required edge (k,l) € Er and evaluates the reduced cost of the walk
represented by min{M (q, (k1)) + dist(l,i),Ml(q, (I,k)) + dist(k,i)} + &; (respectively,
min{ M (q, (k,1)) +dist(l,§), M (q, (1, k)) + dist(k, )} +;;) to update the reduced cost rep-
resented by the entry M(q, (i, 7)) (respectively, M (¢, (j,1))) (where dist(i, j) is the shortest
path from vertex i to j and ¢; is the reduced cost of the required edge (i, j) € Er). Figure
shows the dynamic programming matrix M and how we update the entry M(q, (,7)).

Q k

A
-

M(q,e) ¢

[Er|

<o Y

-
N
~
\\
~
€ - - - -

1 ! j 1 j
(a) (b)

Figure 1: (a) The dynamic programming matrix; (b) Updating an entry of the matrix.

To strengthen the formulation, we look for walks that do not have any sequence e’ —
e — €' of edges serviced, following the dominance criterion described in |Christofides et al.|
. It is a 2-cycle elimination on the required edges.

In addition, we include in this pricing routine a modification of the cuts defined in
section We just converted the capacity cuts and the odd edge cutset cuts into
Ar variables. We also define b, the number of times route r deadheads edge e.

S X bA > 20(S) — R(S)] VS € 1\{0} (25)
reQlecd(S)
SO A > 1 VS C V\{0} with |65(S)| odd (26)
reQeed(S)

These cuts affect the reduced cost of the deadheadeds edges, which in turn affects the
values of the shortest path between each pair of vertices (dist(i,7)). In each iteration of
the pricing routine, these values must be recalculated in order to reflect the reduced cost
variation.
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5 The Dual Ascent Heuristic

Aiming to accelerate the discovery of cuts, a heuristic that works in the dual formulation
of the one-index formulation was created, called the dual ascent heuristic (DAH). The DAH
works on a modified graph G’ = (V’, E), which can have united vertices. At each iteration,
the heuristic generates several cuts by following the four strategies described below:

e Simple Cut Set: Any single vertex in the current graph;
o Complement Cut Set: The complement of any single vertex in the current graph;

e Random Connected Component Cut Set: Randomly choose the size of the cutset (1 <
|S| < |V']), randomly choose a start vertex and go on adding adjacent vertices. First
add all adjacent to the first vertex, then all to the second one and so on, until S has
the required size. Repeat this operation 2|E’| times;

e Minimum Spanning Tree (MST) Cut Set: Calculate the MST of the graph and create
all the possible cuts having only one edge from the MST in §(S).

After that, the heuristic chooses the cut with the biggest right hand side (rhs) and
subtracts the value min(c. : e € §(S)) from the costs of all edges in §(S) and adds min(c. :
e € 0(S)) xrhs to the value of the solution. Then, the heuristics unite the vertices adjacent
to all edges having c. = 0. This whole procedure is repeated until there is only one vertex

in G.

6 Computational Experiments

All algorithms for the CARP were implemented in C++ programming language, using
CPLEX 12.1 as linear programming solver. Tests were conducted on a Intel Core 2 Duo 2.8
GHz, using just one core, with 4GB of RAM.

In the computational experiment, we applied our algorithms to the instances of the
datasets kshs, gdb, beem (usually known as wal) and egl, available at http://www.uv.es/
“belengue/carp.html. These datasets were originally used in Kiuchi et al.| (1995) (kshs),
DeArmon|(1981)) and |Golden et al| (1983)(gdb), Benavent et al|(1992)) (bcem), and [Li| (1992)
and [Li and Eglese| (1996))(egl). Except for the beem instances, that are named 14, 1B, - -,
6C, the remaining three sets have their names starting with the names of the sets.

From these four sets, three of them kshs, gdb and bcem were randomly generated follow-
ing different construction patterns, where subsets were obtained by varying the underlying
graph, the vehicle capacity or the capacities themselves. In these three sets of instances
all edges are required, i.e., Fp equals FE. The fourth set, egl, was constructed using as
underlying graph regions of the road network of the county of Lancashire (UK). They used
cost and demands proportional to the length of the edges and most of the instances have
non-required edges.

Tables , , and show results for each of the instance sets mentioned. The first
column is the instance name, the following two columns present the best known lower and
upper bounds (LB and UB). The column NER-L shows the results reported by
land Oukil (2009) for the pricing allowing nonelementary routes. The following columns
presents our results using the pricing with elementary routes (ER), the pricing allowing
nonelementary routes with 2-cycle elimination without capacity cuts (NER), the dual ascent
heuristic (DAH) and the pricing allowing nonelementary routes with 2-cycle elimination with
capacity cuts generated by the dual ascent heuristic (NERC). Values marked in bold show
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when a specific algorithm found the optimal value for that instance and values in italics
show when a specific algorithm found a new lower bound for that instance.

For all instances tested, the lower bounds obtained using the dynamic programming
algorithm described in section [3.1] are the same obtained using our own implementation of

the directed MIP pricing from section [3.2]

problem in generating the results reported by [Letchford and Oukil (2009).

Instance LB UB | NER-L ER NER DAH NERC
kshs1 14661 14661 13363 | 13553 13876 14661 14661
kshs2 9863 9863 8195 | 8723 8929 9863 9863
kshs3 9320 9320 8401 | 8614 8538 9320 9320
kshs4 11498 11498 11442 | 11297 11498 11098 11498
kshsb 10957 10957 10215 | 10358 10370 10957 10957
kshs6 10197 10197 9080 | 9232 9345 10197 10197
Table 1: Computational results for kshs instances.
Instance | LB UB | NER-L | ER NER DAH NERC
gdbl 316 316 282 | 285 288 316 316
gdb2 339 339 313 | 314 318 339 339
gdb3 275 275 248 | 250 254 275 275
gdb4 287 287 266 | 272 270 287 287
gdbb 377 377 358 | 360 364 377 377
gdb6 298 298 282 | 285 287 298 298
gdb7 325 325 288 | 293 293 325 325
gdb8 348 348 319 | 331 330 344 347
gdb9 303 303 291 | 294 294 303 303
gdb10 275 275 254 | 254 256 275 275
gdbll 395 395 364 | 363 368 395 395
gdbl12 458 458 422 | 445 445 450 453
gdb13 936 536 525 | 526 525 536 536
gdb14 100 100 98 99 100 100 100
gdbl5 58 58 56 57 58 58 58
gdb16 127 127 122 | 122 122 127 127
gdbl7 91 91 85 86 87 91 91
gdbl8 164 164 159 | 159 164 164 164
gdb19 55 955 47 | 55 55 55 55
gdb20 121 121 107 | 114 114 121 121
gdb21 156 156 151 | 152 152 156 156
gdb22 200 200 196 | 197 197 200 200
gdb23 233 233 233 | 233 233 233 233

Table 2: Computational results for gdb instances.

7 Conclusions

This suggests that there may have been some

In this work, we showed different pricing strategies for the CARP based on set partition-
ing formulation. First we showed a new dynammic algorithm for pricing with elementary
routes, which had never been done specifically for the CARP. We compared our results
using this approach with the only other similar work available (Letchford and Oukil (2009))
and found an inconsistency on the results reported. After implementing their approach, we
could validate the results we showed in section [6l
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Instance | LB UB | NER-L | ER NER DAH NERC
1A 173 173 146 | 146 146 173 173
1B 173 173 149 | 150 149 173 173
1C 245 245 220 | 226 235 233 242
2A 227 227 199 | 206 202 227 227
2B 259 259 229 | 234 233 257 258
2C 457 457 444 | 457 457 455 457
3A 81 81 68 | 69 69 79 80
3B 87 87 |77 7 87 87
3C 138 138 129 | 131 131 135 136
4A 400 400 356 | 357 357 400 400
4B 412 412 368 | 370 370 412 412
4C 428 428 389 | 394 393 426 426
4D 930 530 493 | 500 498 014 922
5A 423 423 381 | 382 383 423 423
5B 446 446 402 | 405 405 443 444
5C 474 474 431 | 435 435 467 469
5D 7T BTT 539 | 547 547 969 572
6A 223 223 193 | 198 195 223 223
6B 233 233 202 | 208 204 229 229
6C 317 317 290 | 298 299 301 311

Table 3: Computational results for beccm instances.

Instance LB UB | NER-L ER NER DAH NERC
egl-el-a 3548 3548 2983 | 3426 3395 3527 3544
egl-el-b 4498 4498 3791 | 4290 4246 4372 4430
egl-el-c 5566 5595 4931 | 5473 5424 5427 5528
egl-e2-a 5018 5018 4221 | 4832 4707 4915 4971
egl-e2-b 6305 6317 9463 | 6106 5978 6193 6259
egl-e2-c 8243 8335 7679 | 8188 8116 7936 8196
egl-e3-a 5898 5898 5076 | 5706 5607 5809 5870
egl-e3-b 704 7T 6882 | 7542 7476 7487 7613
egl-e3-¢c | 10163 10305 9434 | 10086 9957 9971 10128
egl-ed-a 6408 6456 9634 | 6234 6118 6272 6345
egl-e4-b 8884 9000 8048 | 8678 8558 8784 8839
egl-ed-c | 11427 11601 10770 | 11411 11281 11285 11431
egl-sl-a 5018 5018 4170 | 4986 4803 4887 4996
egl-sl-b 6384 6388 5542 | 6285 6077 6143 6287
egl-sl-c 8493 8518 7716 | 8424 8247 8230 8403
egl-s2-a 9824 9956 8867 | 9667 9520 9598 9789
egl-s2-b | 12968 13165 | 12146 | 12802 12713 12697 12927
egl-s2-c | 16353 16505 | 15618 | 16262 16190 16049 16292
egl-s3-a | 10143 10260 9190 | 9925 9777 9833 10076
egl-s3-b | 13616 13807 | 12752 | 13388 13309 13369 13570
egl-s3-¢c | 17100 17234 | 16390 | 17014 16950 16797 17067
egl-sd-a | 12143 12341 11314 | 11906 11810 11886 12074
egl-s4-b | 16093 16442 | 15266 | 15754 15688 15826 16026
egl-sd-c | 20375 20591 19651 | 20144 20090 20086 20346

Table 4: Computational results for egl instances.
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Then, we showed a pricing algorithm which allows nonelementary routes using 2-cycle
elimination on the required edges and additional cuts. |Gomez-Cabrero et al.| (2005) is the
only work which used a similar approach, but it did not reported detailed results. Therefore,
our results are the best found so far using an algorithm specifically devised for the CARP.

There are possibilities for future research. For the nonelementary pricing algorithm,
one can implement the exact separation of the capacity cuts from @ , a k-cycle
elimination procedure as the one described in [Irnich and Villeneuve| (2006) or a complete
branch-cut-and-price algorithm. For the elementary pricing algorithm, one can include in
the formulation a modification of the lifting of the capacity cuts described on [Baldacci et al

(2005).
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