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REFERENCE  MODELREFERENCE  MODEL

terminals

concentrators

switches

A COMMUNICATION NETWORK
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REFERENCE  MODELREFERENCE  MODEL

backbone, or core

A COMMUNICATION NETWORK
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REFERENCE  MODELREFERENCE  MODEL

access network

A COMMUNICATION NETWORK

3327



42 SBPO- 30 August- 2 September 2010 7

REFERENCE  MODELREFERENCE  MODEL

• nodes are perfect

• lines behave independently

• lines are up or down

• for each line i,
         ri = Pr(line i is up)

Associated key-words:

• reliability diagrams, fault-trees…

• graph theory, coherent binary structure theory
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MATHEMATICAL MODELMATHEMATICAL MODEL
• V : the nodes

K : the terminals, or target-set, K ⊆ V 

E : the lines or edges
{ri}i in E : the elementary reliabilities

• N = (V, E ): (the underlying) undirected 
graph

• Simple example: the “bridge”, K={s,t } 

s t
r1

r2

r3

r4

r5
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PROBABILITY STRUCTUREPROBABILITY STRUCTURE
• Ω : set of all partial sub-graphs of N

(same nodes, part of the edges)
• G = (V, F ): a random graph on Ω ;

probabilistic structure:
   for any H ⊆ E 
                  Pr(G = (V, H )) = ∏ ri ∏ (1 - rj)

• Example: H ={1,3,5} , 
Pr(G = (V, H )) = 
 r1 r3 r5 (1 – r2) (1 – r4)

i ∈ H
 

j ∉ H 

s t
r1

r2

r3

r4

r5
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RELIABILITY METRICRELIABILITY METRIC
• Goal: R = K-network reliability,

           = Pr(the nodes in K are connected)
     (or equivalently Q = 1 - R)

• U : set of all partial sub-graphs of N where 
all nodes in K are connected; thus,
            R = Pr(G ∈ U ).
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SERIES-PARALLEL  SERIES-PARALLEL  
REDUCTIONSREDUCTIONS

R
r1 r2

r3

r4
r5

r1
r2Series reduction: R =

r1r2R

=R
r1 r2 r3

r4
r5
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R
r1 r2 r3

r4
r5

r1

r2

Parallel reduction: R =
r1+r2- r1 r2

R

= R
r1

r5

r2 r3 + r4 - r2 r3 r4
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R
r1

r5

r1
r2R =

r1r2R

r2 r3 + r4 - r2 r3 r4

= r1(r2 r3 + r4 - r2 r3 r4) r5

Series-parallel reductions have polynomial cost, but they are 
not always  applicable (f.e, the “bridge” can not be reduced). 
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PATHSETS AND CUTSETSPATHSETS AND CUTSETS

A minimal pathset, or A minimal pathset, or 
minpathminpath (| (|K K | = 2)| = 2)
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A minimal cutset, orA minimal cutset, or
mincutmincut (| (|K K | = 2)| = 2)
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A A minpathminpath (| (|K K | = 4)| = 4)
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A A mincutmincut (| (|K K | = 4)| = 4)
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• Let P be a pathset.
• Let P-up denote the event

         P-up = “all links in P are up”,
         Pr(P-up) = ∏link i is in P ri 

• Since P-up ⇒ system is up,
         Pr(P-up) ≤ R

• Let C be a cutset.
• Let C-down denote the event

         C-down = “all links in C are down”,
         Pr(C-down) = ∏link i is in C (1 - ri) 

• Since C-down ⇒ system is down,
         Pr(C-down) ≤ Q = 1 - R
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EXACT EVALUATIONEXACT EVALUATION

• Computational complexity  
– General case : #P-hard.
– For K={s,t}  :  #P-hard 
– For K=V: #P-hard
– #P-hard for planar graphs.
– Polynomial complexity for s-p reducible networks
– Polynomial complexity for complete topologies 

and equireliable links, and K={s,t}.
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OTHER ALTERNATIVES TO OTHER ALTERNATIVES TO 
EXACT EVALUATIONEXACT EVALUATION

• Upper and lower bounds
– Can be used in place of exact results, for 

evaluating or designing a network.
– Should be tight and computed efficiently

• Monte Carlo simulation.
– Computational complexity grows moderately 

with network size (usually linearly or 
quadratically). 

– Compromise between precision and computation 
time.

– Precision depends on  value of edge reliabilities; 
problems when the reliabilities are very small 
(rare event situation).
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AGENDAAGENDA
• Classical network reliability model.
• Monte Carlo Simulation
• Variance Reduction methods
• Recursive Variance Reduction
• Splitting 
• Conclusions 
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STANDARD MONTE CARLO STANDARD MONTE CARLO 
SIMULATIONSIMULATION

• #failed = 0
• for m = 1, 2, …, M

– g = sample(G)
– if g ∉ U then #failed += 1

• Qstd = #failed/M
•V std = Qstd (1 - Qstd)/(M-1)

•M – sample size

•Qstd – unreliability estimator

•V std – estimator of the variance of Qstd
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COMPUTATIONAL COMPUTATIONAL 
COMPLEXITYCOMPLEXITY

• Internal loop: sampling a graph state (state of 
each edge), and verify if belongs or not to set U 
(DFS search); total complexity of order O(|E|).

• M iterations; initialization time and final 
computations of O(1).

• Total computation time O(M|E|), linear in nb. of 
edges and nb. of replications.
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PRECISIONPRECISION
• Relative error estimation:

RelErr = (V std ) 1/2 /Qstd

 = [(1 - Qstd) Qstd /(M-1)]1/2/Qstd

 = [(1 - Qstd) /((M-1) Qstd )]1/2

 ≈ 1/(MQstd)1/2

• When Q « 1, relative error grows, and if Q→0, 
RelErr →∞ (Rare Event problem). 

• Error does not depend on the network size, but 
depends on edge reliability; if high reliabilities, a 
failure of the network has very low probability to 
be observed (rare event). 
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• It is possible to improve precision, taking 
more replications. To obtain a relative 
error relativo RelErr, we can compute M 
from the previous formula, obtaining 
M ≈ 1/(Q( RelErr)2).

• Total computation time of order O(M |E|); 
when Q  or RelErr very small, it will be 
prohibitively large⇒ motivation to develop 
variants improving the behavior of 
standard Monte Carlo (“Variance reduction 
methods”).
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VARIANCE REDUCTION VARIANCE REDUCTION 
METHODSMETHODS

• Generic methods, applicable to any 
simulation problem:
– Importance sampling; cross-entropy.
– Antithetic variates.
– Control variates.
– Stratified sampling.

• Specific for network reliability:
– Employ structure and properties of the 

reliability problem to improve variance or 
computation time. 

– Many times adapt ideas from generic methods 
and from exact computation methods.
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• Many ideas and methods in literature. 
• A high level classification:

– Based on bounds on the reliability (sampling in a 
subset of Ω , which lowers the variance). Van Slyke 
and Frank/ Kumamoto, Tanaka and Inoue / Fishman.

– Based on antithetic sampling or generalizations 
(improve efficiency in generation of uniform 
variates and lowers the variance). Kumamoto, Tanaka 
and Inoue / Rubino and El Khadiri / Wei-Chang Yeh .

–  Based on partitioning state space Ω. , or on 
reformulating the problem in terms of other random 
variables with smaller variance. Karp and Luby / Jun 
and Ross / Cancela and El Khadiri.

3348



42 SBPO- 30 August- 2 September 2010 28

– Based on graph evolution  models (stochastic 
processes), with importance sampling to reduce 
variance. Wong and Easton / Elperin, Gertsbakh 
and Lomonosov. 

– Cross-Entropy based variants to optimize the 
IS parameters. Hui, Bean, Kraetzl,  and Kroese.

– Reformulations of the standard method to 
improve the computational efficiency. Rubino 
and El Khadiri.
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ALTERNATIVES FOR ALTERNATIVES FOR 
METHOD EVALUATIONMETHOD EVALUATION

• Computational studies over test sets.
• Study of theoretical properties and 

asymptotic behavior.
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COMPUTATIONAL STUDIESCOMPUTATIONAL STUDIES
• Over test sets, comprising different 

topologies and reliabilities.
• Problems: 

– Absence of standardized test library.
– Unavailability of methods' implementations..
– Literature results which only include variances, 

not running times.
–  Difficulties in normalizing runnng itmes over 

different computers.
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• Performance measures for a method x:
– Variance Var(Qx), for a fixed sample size M, or 

for a given time T.
– Computation time T(Qm), for a fixed sample size 

M, or to obtain a predetermined precision.
– Comparison against a reference method, 

standard Monte Carlo.
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• How to compute the “speedup” of method x 
w.r.t. method y?
– Fixed M,  variance ratio Var(Qy) / Var(Qx) . 

Problem: does not take into account computing 
time per iteration.

– More fair alternative:
• Fix the precision
• Run until obtaining this precision, compute 
• T(Qy) / T(Qx) . 

– Problem: if computing times differ by many 
orders of magnitude, unfeasible (example:       
if T(Qy) / T(Qx)=109 , and T(Qx)=1 sec, T(Qy)=31 
years).
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• A better alternative 
– Relative efficiency (or speedup) 

Var(Qy)T(Qy)/Var(Qx)T(Qx).
– Interpretation:

if Var(Qy)T(Qy)/Var(Qx)T(Qx) = W, then 
“method x is W times faster than method y ” 
(i.e, it obtains the same precision with W times 
smaller effort).

– Alternatively, for a given computational effort, 
method x obtains a variance W times smaller 
than method y.
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THEORETICAL STUDIESTHEORETICAL STUDIES

• Direct comparison of variance, or upper 
bound of variance, to the standard Monte 
Carlo  one.

•  Asymptotic properties:
– Bounded relative error.
– Bounded normal approximation
– Bounded relative efficiency.

3355



42 SBPO- 30 August- 2 September 2010 35

BOUNDED RELATIVE ERRORBOUNDED RELATIVE ERROR
• Framework:

–  ε rarity parameter
– Link reliability : ri=1-ai εbi

– Q(ε) → 0 when ε → 0.
– Relative error of method x: RelErr = (V x ) 1/2 /Q

• Definition: 
x verifies “Bounded relative error” iff for 
every network G, and every fixed M, there 
is E such that (V x ) 1/2 /Q  < E when ε → 0.

• Interpretation: for a given topology and M, 
method x precision does not depend on ε.
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VANISHING VANISHING 
RELATIVE ERRORRELATIVE ERROR

• Framework:
–  ε rarity parameter
– Link reliability : ri=1-ai εbi

– Q(ε) → 0 when ε → 0.
– Relative error of method x: RelErr = (V x ) 1/2 /Q

• Definition: 
x verifies “Vanishing relative error” iff for 
every network G, and every fixed M, there 
is E such that (V x ) 1/2 /Q  → 0 when ε → 0.

• Interpretation: for a given topology and M, 
method precision improves for rare event 
cases. 3357
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BOUNDED NORMAL BOUNDED NORMAL 
APPROXIMTIONAPPROXIMTION

• Definition: 
x verifies “Bounded normal approximation” 
iff for every G, the distance between 
distribution of Qx and a normal distribution 
is bounded when ε → 0 (this condition can 
be expressed using the third moment of  
Qx and the variance, employing Berry-Essen 
theorem).

• Interpretation: employing Qx  and Vx it is 
possible to build an interval confidence 
based on the normal law, valid 
independently of ε.
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BOUNDED RELATIVE BOUNDED RELATIVE 
EFFICIENCYEFFICIENCY

• Definition: 
x verifies “Bounded relative efficiency” iff 
for every network  G, and fixed M, there 
exists E s.t. Q 2 / (V xTx) >E when ε → 0.

• Interpretation: given a topology, it is 
possible to obtain the same precision in the 
same computing time even when ε → 0 (the 
method is robust w.r.t. “rare events”)..
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Crude Monte Carlo simulation
Random state-vector of the network:

X = (X1, . . . ,Xm)

where Xe Bernoulli r.v. = 1 if link e is working, 0 otherwise.
Structure function Φ of {0, 1}m into {0, 1} such that Φ(x) = 1 if all
nodes in K are connected when the stat e−vector is x = (x1, . . . , xm),
and Φ(x) = 0 otherwise.
Searched reliability: E[Φ(X )] = r = r(G) and unreliability
q = 1− r = E[1− Φ(X )].

Consider n independent copies X (i) = (X
(i)
1 , . . . ,X

(i)
m ) of X , and

compute Y (i) = 1− Φ(X (i)).
The crude estimator of q is then

Ŷn =
1

n

n∑
i=1

Y (i).

Confidence interval built from the central limit theorem.
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(i)
1 , . . . ,X

(i)
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Rarity modeling
We assume that q = E[Y ]≪ 1.

This can be due to the large number of paths connecting nodes in K
or to large reliabilities of individual links.

We assume qe → 0 ∀e, so that q → 0.

The relative error is proportional to√
Var[Ŷn]

E[Y ]
=

√
q(1− q)

q
√

n − 1
→∞

as q → 0.

As a consequence, more and more paths are required to get a
specified relative error as q → 0.

Definition

An estimator Ŷ ′n is said to verify Bounded Relative Error (BRE) if√
Var[Ŷ ′n ]
E[Y ] is bounded as E[Y ]→ 0. Equivalently, if

√
E[(Ŷ ′n)2]
E[Y ] is bounded as

E[Y ]→ 0.

( ) 42 SBPO - 30 August - 2 September 2010 5
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Recursive Variance Reduction (RVR)

Principle: select a K-cutset, i.e., a set C of links whose failure ensures
the system failure.

If all links in C are failed (probability qC), the system is failed.
Clearly, qC ≤ q.

Bj=“the j − 1 first links of C are down, but the j-th is up”

ℙ[Bj ] =
(∏j−1

k=1 qk

)
rj

Define pj = ℙ[Bj ∣ at least one link is working] = ℙ[Bj ]/(1− qC)

( ) 42 SBPO - 30 August - 2 September 2010 7



Recursive Variance Reduction (RVR)

The RVR estimator:

Select a cut, and compute qC and the pjs.

Pick an edge at random in C according to the probability distribution
(pj)j=1,⋅⋅⋅ ,∣C∣

Let the chosen edge be the jth. Call Gj the graph obtained from G by
deleting the first j − 1 edges of C and by contracting the jth.

The value yRVR returned by the RVR estimator of q(G), the
unreliability of G, is recursively defined as

yRVR(G) = qC + (1− qC)yRVR(Gj).

( ) 42 SBPO - 30 August - 2 September 2010 8



RVR estimator
Formally, the RVR estimator of Q(G) is the random variable

YRVR = qC + (1− qC)

∣C∣∑
j=1

1Bj

1− qC
YRVR(Gj).

Theorem

The estimator is unbiased: E[YRVR ] = q(G) = q.
Second moment computed as

E[Y 2
RVR ] = q2

C + 2qC(1− qC)

⎛⎝ ∣C∣∑
j=1

ℙ[Bj ]

1− qC
E[YRVR(Gj)]

⎞⎠
+(1− qC)2

⎛⎝ ∣C∣∑
j=1

ℙ[Bj ]

1− qC
E[Y 2

RVR(Gj)]

⎞⎠ .
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No Bounded Relative Error for RVR

Proposition

RVR algorithm does not verify Bounded Relative Error property.

s

u

t

q1 = � q3 = �

q2 = �

Cut: the two links starting from node s and ordering them as first the
link from s to t.
qC = �2.

E[Y 2
RVR ] = �4 + 2�2

[
(1− �)E[YRVR(G1)] + �(1− �)E[YRVR(G2)]

]
+ (1− �2)

[
(1− �)E[Y 2

RVR(G1)] + �(1− �)E[Y 2
RVR(G2)]

]
.
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Counter-example for BRE (ctd)

where

G1: link from s to t is working ⇝ s and t are merged (the system is

necessarily connected).

s u

q1 = �

q3 = �

YRVR(G1) = 0. Thus E[YRVR(G1)] = E[Y 2
RVR(G1)] = 0.

G2: link from s to t failed, but the one from s to u is working ⇝ s

and u are merged.
s t

q3 = �

E[YRVR(G2)] = �, E[Y 2
RVR(G2)] = �2.

Finally, E[Y 2
RVR ] = Θ(�3), and E[Y 2

RVR ]/(E[YRVR ])2 = Θ(�−1)→∞
as �→ 0.

We may have BRE depending on the ordering of the links.
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Balanced RVR

Non-BRE comes from the crude distribution for sampling the first
working link on the cut.

Importance Sampling (IS) used instead; that is, the sampling of the
first line up in the cut is not anymore (pj).

So far, we built a partition by assigning to the events Bj , for
1 ≤ j ≤ ∣C∣, the conditional probabilities

pj = ℙ[Bj ∣A],

where A is the event “at least one link in cut C is up”.

Let us write the RVR estimator as

YRVR = qC + (1− qC)

∣C∣∑
j=1

1B′j YRVR(Gj),

where B ′j represents the same event as Bj but has the (conditional)
probability pj .

( ) 42 SBPO - 30 August - 2 September 2010 73



Balanced RVR

Now, we change this probability pj by the uniform distribution on
{1, 2, ⋅ ⋅ ⋅ , ∣C∣}, p̃j = 1/∣C∣, for sampling B ′j .

Let us call YBRVR the corresponding estimator, but using this uniform
distribution, we write

YBRVR = qC + (1− qC)

∣C∣∑
j=1

1B′j
pj

p̃j
YBRVR(Gj)

= qC + ∣C∣
∣C∣∑
j=1

1B′j ℙ[Bj ]YBRVR(Gj).

Estimator: using likelihood ratio pj/p̃j to keep it unbiased.
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Results on Balanced RVR

Theorem

The estimator YBRVR is unbiased: E[YBRVR ] = q.
BRVR algorithm verifies Bounded Relative Error property.

Proof by induction from

E[Y 2
BRVR ] = q2

C + 2qC ∣C∣

⎛⎝ ∣C∣∑
j=1

ℙ[Bj ]E[YBRVR(Gj)]

⎞⎠
+∣C∣2

⎛⎝ ∣C∣∑
j=1

(ℙ[Bj ])
2E[Y 2

BRVR(Gj)]

⎞⎠ .
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Zero-variance Approximation RVR

Zero-variance change of measure: chooses the appropriate (ideally the
best) IS for the first working link on the cut:

choose B ′j with probability p̃j in the IS estimator, with

p̃j =
ℙ[Bj ]q(Gj)∑∣C∣

k=1 ℙ[Bk ]q(Gk)
(1)

Resulting estimator:

YZRVR = qC +

⎛⎝ ∣C∣∑
k=1

ℙ[Bk ]q(Gk)

⎞⎠ ∣C∣∑
j=1

1B′j (G)
1

q(Gj)
YZRVR(Gj).

Theorem

YZRVR has variance Var[YZRVR ] = 0.

Implementing it requires the knowledge of the q(Gi ), but in that case,
no need to simulate!
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Zero Variance Approximation

Instead, use some approximation q̂(Gi ) of q(Gi ) plugged into (1).

YAZRVR = qC +

⎛⎝ ∣C∣∑
k=1

ℙ[Bk ]q̂(Gk)

⎞⎠ ∣C∣∑
j=1

1B′
j (G)

1

q̂(Gj)
YAZRVR(Gj).

Proposition

If ∀1 ≤ j ≤ ∣C∣, q̂(Gj) = Θ(q(Gj)) as �→ 0, YAZRVR verifies BRE property.
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Zero Variance Approximation

Define the mincut-maxprob approximation q̂(G) of q(G) as maximal
probability of a mincut of graph G (computed in polynomial time).

Proposition

With the mincut-maxprob approximation, q̂(Gj) = Θ(q(Gj)) as �→ 0, therefore
BRE property is obtained.

Proposition

If, q̂(Gj) = q(Gj) + o(q(Gj)) as �→ 0 for all 1 ≤ j ≤ ∣C∣, the Vanishing relative
(VRE) property (the RE tends to 0, stronger than just being bounded) is verified.
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Three topologies: arpanet, C6, dodecahedron
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Network (qe ) Q(G) N × Var(SMC) N × Var(RVR) N × Var(Bal) N × Var(AZV )

Arp (5.00 e−01) 9.63989 e-01 3.47133 e-02 3.71795 e-03 1.60608 e-01 1.69321 e-01
Arp(3.00 e-01) 6.81507 e-01 2.17055 e-01 4.74801 e-02 5.65742 e-01 8.45549 e-01
Arp (1.00 e-01) 9.54229 e-02 8.63174 e-02 1.46865 e-02 3.68529 e-02 9.55806 e-02
Arp (1.00 e-02) 6.54074 e-04 6.53646 e-04 1.63753 e-05 6.71095 e-07 3.06912 e-06
Arp (1.00 e-03) 6.05581 e-06 6.05577 e-06 1.60407 e-08 5.64473 e-11 3.43246 e-11
Arp (1.00 e-04) 6.00560 e-08 6.00560 e-08 1.60041 e-11 5.69261 e-15 3.47090 e-16
Arp (1.00 e-05) 6.00056 e-10 6.00056 e-10 1.60004 e-14 5.69924 e-19 3.47477 e-21
Arp (1.00 e-06) 6.00006 e-12 6.00006 e-12 1.60000 e-17 5.69992 e-23 3.47512 e-26
C6 (5.00 e-01) 7.64160 e-02 7.05766 e-02 7.72612 e-05 6.87599 e-4 7.27858 e-05
C6 (3.00 e-01) 5.26728 e-03 5.23953 e-03 2.56429 e-07 7.86630 e-06 2.27577 e-07
C6 (1.00 e-01) 2.00766 e-05 2.00762 e-05 1.28070 e-13 2.28489 e-10 1.17223 e-13
C6 (1.00 e-02) 2.00001 e-10 2.00001 e-10 1.01244 e-26 2.92080 e-20 1.00225 e-26
C6 (1.00 e-03) 2.00000 e-15 2.00000 e-15 1.00102 e-39 2.99201 e-30 1.00002 e-039
C6 (1.00 e-04) 2.00000 e-20 2.00000 e-20 1.00000 e-52 2.99920 e-40 1.00000 e-52
C6 (1.00 e-05) 2.00000 e-25 2.00000 e-25 1.42434 e-65 2.99992 e-50 1.42434 e-65
C6 (1.00 e-06) 1.99998 e-30 1.99998 e-30 num. pblm. 2.99986 e-60 num. pblm.
Dod (5.00 e-01) 7.09745 e-01 2.06007 e-01 1.57246 e-02 4.23225 e-01 1.34634 e-01
Dod (3.00 e-01) 1.68518 e-01 1.40120 e-01 9.22721 e-03 1.05285 e-01 1.68222 e-02
Dod (1.00 e-01) 2.87960 e-03 2.87131 e-03 5.80985 e-06 7.53573 e-06 6.32871 e-07
Dod (1.00 e-02) 2.06189 e-06 2.06189 e-06 2.17456 e-12 2.06824 e-12 1.12133 e-14
Dod (1.00 e-03) 2.00602 e-09 2.00602 e-09 2.01614 e-18 2.00608 e-18 1.01110 e-21
Dod (1.00 e-04) 2.00060 e-12 2.00060 e-12 2.00160 e-24 2.00060 e-24 1.00110 e-28
Dod (1.00 e-05) 2.00006 e-15 2.00006 e-15 2.00016 e-30 2.00006 e-30 1.00011 e-35
Dod (1.00 e-06) 2.00001 e-18 2.00001 e-18 2.00002 e-36 2.00001 e-36 1.00001 e-42
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Network (qe )
√
N ×

RE(RVR)

RE(SMC)
RE(RVR)

√
N ×

RE(Bal)

RE(SMC)
RE(Bal)

√
N ×

RE(AZV )

RE(SMC)
RE(AZV )

Arp (5.00 e-01) 1.69 e+00 3.06 e+00 1.11 e+01 4.65 e-01 1.14 e+01 4.53 e-01
Arp (3.00 e-01) 6.84 e-01 2.14 e+00 2.36 e+00 6.19 e-01 2.89 e+00 5.07 e-01
Arp (1.00 e-01) 1.27 e+00 2.42 e+00 2.01 e+00 1.53 e+00 3.24 e+00 9.50 e-01
Arp (1.00 e-02) 6.19 e+00 6.32 e+00 1.25 e+00 3.12 e+01 2.68 e+00 1.46 e+01
Arp (1.00 e-03) 2.09 e+01 1.94 e+01 1.24 e+00 3.28 e+02 9.67 e-01 4.20 e+02
Arp (1.00 e-04) 6.66 e+01 6.13 e+01 1.26 e+00 3.25 e+03 3.10 e-01 1.32 e+04
Arp (1.00 e-05) 2.11 e+02 1.94 e+02 1.26 e+00 3.24 e+04 9.82 e-02 4.16 e+05
Arp (1.00 e-06) 6.67 e+02 6.12 e+02 1.26 e+00 3.24 e+05 3.11 e-02 1.31 e+07
C6 (5.00 e-01) 1.15 e-01 3.02 e+01 3.43 e-01 1.01 e+01 1.12 e-01 3.11 e+01
C6 (3.00 e-01) 9.61 e-02 1.43 e+02 5.32 e-01 2.58 e+01 9.06 e-02 1.52 e+02
C6 (1.00 e-01) 1.78 e-02 1.25 e+04 7.53 e-01 2.96 e+02 1.71 e-02 1.31 e+04
C6 (1.00 e-02) 5.03 e-04 1.41 e+08 8.55 e-01 8.27 e+04 5.01 e-04 1.41 e+08
C6 (1.00 e-03) 1.58 e-05 1.41 e+12 8.65 e-01 2.59 e+07 1.58 e-05 1.41 e+12
C6 (1.00 e-04) 5.00 e-07 1.41 e+16 8.66 e-01 8.17 e+09 5.00 e-07 1.41 e+16
C6 (1.00 e-05) 1.89 e-08 1.18 e+20 8.66 e-01 2.58 e+12 1.89 e-08 1.18 e+20
C6 (1.00 e-06) num. pblm. num. pblm. 8.66 e-01 8.17 e+14 num. pblm. num. pblm.
Dod (5.00 e-01) 4.32 e-01 3.62 e+00 2.24 e+00 6.98 e-01 1.26 e+00 1.24 e+00
Dod (3.00 e-01) 5.70 e-01 3.90 e+00 1.93 e+00 1.15 e+00 7.70 e-01 2.89 e+00
Dod (1.00 e-01) 8.37 e-01 2.22 e+01 9.53 e-01 1.95 e+01 2.76 e-01 6.74 e+01
Dod (1.00 e-02) 7.15 e-01 9.74 e+02 6.97 e-01 9.98 e+02 5.14 e-02 1.36 e+04
Dod (1.00 e-03) 7.08 e-01 3.15 e+04 7.06 e-01 3.16 e+04 1.59 e-02 1.41 e+06
Dod (1.00 e-04) 7.07 e-01 1.00 e+06 7.07 e-01 1.00 e+06 5.00 e-03 1.41 e+08
Dod (1.00 e-05) 7.07 e-01 3.16 e+07 7.07 e-01 3.16 e+07 1.58 e-03 1.41 e+10
Dod (1.00 e-06) 7.07 e-01 1.00 e+09 7.07 e-01 1.00 e+09 5.00 e-04 1.41 e+12
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Conclusions

We have

Standard Monte Carlo method is easy to implement, but has
limitations for highly reliable networks, or when a small relative error
is needed.

To improve its efficiency, two main paths:
▶ Reduce the variance per iteration
▶ Reduce the computing time per iteration.

Theoretical results establishing desirable properties for the behavior of
variance reduction methods; BRE, VRE, etc.

Only in some cases it has been possible to verify these properties.
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Conclusions

We have

RVR does not always verify BRE;

RVR balanced version verifies BRE;

Zero-variance IS approximation verifies BRE, and even VRE;

Computational results illustrate the gain that can be obtained.
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