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ABSTRACT 

High power consumption efficiency in wireless sensor networks is always desirable. However it 
is not achievable easily. One way to deal with this issue is using a mathematical model based 
upon a schedule of sensor allocation plans in multiple time intervals subject to coverage and 
connectivity constraints.  The use of pure linear integer programming approach is limited to a 
certain level of complexity that sometimes is not enough for a real size network. The use of a 
new hybrid methodology that gathers the strengths of metaheuristics and exact methods has 
obtained good results in other problem domains. The adoption of this tool provided solutions to 
problem instances larger than found in previous works related to the issue discussed before, 
proving that it is adaptable to a broad range of problem classes. Its adaptation from its original 
form to the particularities found in this problem is discussed here as a continuous methodological 
evolution. 
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 1  The wireless sensor network 

 
A Wireless Sensor network typically consist of a large number of small, low-power, and 

limited-bandwidth computational devices, named sensor nodes. These nodes can frequently 
interact with each other, in a wireless manner, in order to relay the sensed data towards one or 
more processing machines (a.k.a. sinks) residing outside the network. For such a purpose, special 
devices, called gateways, are also employed, in order to interface the WSN with a wired, 
transport network. To avoid bottleneck and reliability problems, it is pertinent to make one or 
more of these gateways available in the same network setting, a strategy that can also reduce the 
length of the traffic routes across the network and consequently lower the overall current 
consumption. A typical sensor node is composed of four modules, namely the processing module, 
the battery, the transceiver module and the sensor module as described in Loureiro (2002). 
Besides the packet building processing, a dynamic routing algorithm runs over the sensor nodes, 
in order to discover and configure in runtime the “best”' network topology in terms of number of 
retransmissions and waste of current. Due to the limited resources available to the 
microprocessor, most devices make use of a small operating system that supplies basic features to 
the application program. To supply the power necessary to the whole unit, there is a battery, 
whose lifetime duration depends on several aspects, among which, its storage capacity and the 
levels of electrical current employed in the device. The transceiver module, conversely, is a 
device that transmits and receives data using radio-frequency propagation as media, and typically 
involves two circuits, viz. the transmitter and the receiver. Due to the use of public-frequency 
bands, other devices in the neighborhood can cause interference during sensor communication. 
Likewise, the operation/interaction among other sensor nodes of the same network can cause this 
sort of interference. So, the lower is the number of active sensors in the network, the more 
reliable tends to be the radio-frequency communication among these sensors. The last 
component, the sensor module, is responsible to gauge the phenomena of interest; the ability of 
concurrently collecting data pertaining to different phenomena is a property already available in 
some models of sensor nodes. 

For each application scenario, the network designer has to consider the rate of variation for 
each sensed phenomenon in order to choose the best sampling rate of each sensor device. Such 
decision is very important to be pursued with precision as it surely has a great impact on the 
amount of data to be sensed and delivered, and, consequently, on the levels of current consumed 
prematurely by the sensor nodes. This is the temporal aspect to be considered in the network 
design. 

Another aspect to be considered is the spatial one. Megerian et al. (2002) define coverage as 
a measure of the ability to detect objects within a sensor field. The lower the variation of the 
physical variable being measured across the area, the shorter has to be the radius of coverage for 
each sensor while measuring the phenomenon. This will have an influence in the number of 
active sensors to be employed to cover all demand points related to the given phenomenon. The 
fact is: the more sensors are active in a given moment, the bigger is the overall current consumed 
across the net. WSNs are usually deployed in hostile environments, with many restrictions of 
access. In such cases, the network would be very unreliable and unstable if the minimum number 
of sensor nodes was effectively used to cover the whole area of observation. If some sensor node 
fails to operate, its area of coverage would be out of monitoring, preventing the correlation of 
data coming from this area with others coming from other areas. 

Another worst-case scenario occurs when we have sensor nodes as network bottlenecks, 
being responsible for routing all data coming from the sensor nodes in the neighborhood. In this 
case, a failure in such nodes could jeopardize the whole network deployment. To avoid these 
problems and make a robust design of the WSN, extra sensor nodes are usually employed in 
order to introduce some sort of redundancy. By this means, the routing topology needs to be 
dynamic and adaptive: When a sensor node that is routing data from other nodes fails, the routing 
algorithm discovers all its neighbor nodes and then the network reconfigures its own topology 



dynamically. One problem with this approach is that it entails unnecessary current consumption. 
This is because the coverage areas of the redundant sensor nodes overlap too much, giving birth 
to redundant data. And these redundant data bring about extra current consumption in 
retransmission nodes. The radio-frequency interference is also stronger, which can cause 
unnecessary retransmissions of data, increasing the levels of current expenditure. Megerian and 
Potkonjak (2003) present many integer linear programming models to minimize current 
consumption but not consider the dynamic time scheduling. 

 
 

 2  Model 
 

The solution proposed by Nakamura et al. (2004) is to create different schedules, each one 
associated with a given time interval, that activate only the minimum set of sensor nodes 
necessary to satisfy the coverage and connectivity constraints. The employment of different 
schedules prevents the premature starvation from some of the nodes, bringing about a more 
homogeneous level of consumption of battery across the whole network. This is because the 
alternation of active nodes among the schedules is often an outcome of the model, as it optimizes 
the current consumption of the whole network taking into account all time intervals and coverage 
and connectivity constraints. 

In order to properly model the WSN setting, some previous remarks are necessary: 
1. A demand point is a geographical point in the region of monitoring where one or more 

phenomena are sensed. The distribution of such points across the area of monitoring can be 
regular, like a grid, but can also be random in nature. The density of such points varies according 
to the spatial variation of the phenomenon under observation. At least one sensor must be active 
in a given moment to sense each demand point. Such constraint is implemented in the model; 

2. Usually, the sensors are associated with coverage areas that cannot be estimated with 
accuracy. To simplify the modeling, we assume plain areas without obstacles. Moreover, we 
assume a circular coverage area with a radius determined by the spatial variation of the sensed 
phenomenon. Within this area, it is assumed that all demand points can be sensed. The radio-
frequency propagation in real WSNs is also irregular in nature. In the same way, we can assume a 
circular communication area. The radius of this circle is the maximum distance at which two 
sensor nodes can interact; 

3. A route is a path from one sensor node to a sink possibly passing through one or more 
other sensor nodes by retransmission. Gateways are regarded as special sensor nodes whose role 
is only to interface with the sinks. Each phenomenon sensed in a node has its data associated with 
a route leading to a given sink, which is independent from the routes followed by the data related 
to other phenomena sensed in the same sensor node; 

4. The electric charge consumption is actually the electric current drawn by a circuit in a 
given time period. 

 
S Set of sensors 
D Set of demand points 
M Set of sinks 

T={1..N} Set of n scheduling periods 
ADij Set of arcs  that link sensors to demand points 
Aij Set of arcs  that interconnects sensors 
EBi Accumulated battery charge for sensor   
EAi Electrical charge dissipated while activating sensor   
EMi Electrical charge dissipated while sensor   is activated (effectively 

sensing) 
ETij Electrical charge dissipated when transmitting data from sensor  to sensor 

. Such values can be different for each arc   if a sensor can have its 



transmitter power adjusted based on the distance to the destination sensor  
ERI Electrical charge expended in the reception of data for sensor    
EH Penalty applied when a demand point in any time interval is not covered by any 

sensor 
xt

ij If sensor  covers demand point  in period   
zt

lij If arc   belongs to the route from sensor  to a sink in period  
wt

l If sensor  was activated in period  for at least on phenomenon 
yt

i If sensor  is activated in period  
ht

j If demand point  is not covered by any sensor in period  
ei Electrical charge consumed by sensor  considering all time periods 

 
The objective function (1) minimizes the total electrical charge consumption through all time 

periods. The second term penalizes the existence some not-covered demand points, but the 
solution continues feasible. It penalizes unnecessary activation for phenomenon too. 

 

 

(1)

  
These are the constraints adopted: 
 

 

(2)

  
 
Constraint (2) enforces the activation of at least one sensor node  to cover the demand point 

 in period t. Otherwise, the penalty variable  is set to one. This last condition will occur only in 
those cases when no sensor node can cover the demand point. 

 
 (3)

 
Constraint (3) turns on variable  (which means that a sensor node is actively sensing in 

period ) if its associated sensor node is indeed allocated to cover any demand point. 
 

 

(4)

  
 
Constraint (4) relates to the connectivity issue using the flow conservation principle. This 

constraint enforces that an outgoing route exists from sensor node  to sensor node  if there is 
already an incoming route from sensor node  to sensor node . 

 

 
(5) 

 



Constraint (5) enforces that a route is created if a sensor node is already active. 
 

 

(6) 

 
Constraint (6) is necessary to create a route that reaches a sink if a sensor is active. 
 

 
(7) 

 

In Constraint (7), if there is an outgoing route passing through sensor node , then this sensor 
node has to be necessarily active. 

 

 
(8) 

 
In the same way, with Constraint (8) if there is an incoming route passing through sensor , then 

this sensor has to be active. 
 

 

(9) 

 
The total electrical charge consumed by a sensor node is the sum of the parcels given in 

Constraint (9). 
 

 (10)
 
Constraint (10) enforces that each sensor node should consume at most the capacity limit of 

its battery. 
 

 (11)
 
Constraint (11) determines when the sensor node should start to sense (parameter w). If a 

sensor is active in the first period, its corresponding w should be set to 1. 
 

 (12)
 
In Constraint (12), the past and current activation states of a sensor node are compared. If the 

sensor node was active from period t − 1 to period t, then w is set to 1. 
 

  
 
 

 3  The base hybrid methodology 
 
Although distinct, both the exact and metaheuristic approaches have pros and cons when 

dealing with hard combinatorial optimization problems. But their hybridization, when properly 
done, may allow the merging of their strong points in a complementary manner. For instance, it is 
well-known that the direct application of exact methods is only possible for limited-sized 
instances. However, the size and complexity of the optimization problems faced nowadays have 
increased a lot, demanding for the development of new methods and solutions that can find 
acceptable results within a reasonable amount of time.  



In Aguiar et al. (2007, 2008) WSN problems were explored regarding the heterogeneity of 
the phenomena. This model however suffers a shortage of variables due to the increase of 
complexity as many matrices had gained one more dimension. 

In this regard, it has become ever more evident that a skilled combination of concepts 
stemming from different metaheuristics can be a very promising strategy one should resort to 
when having to deal with complicated optimization tasks. The hybridization of metaheuristics 
with other operations research techniques has been shown great appeal as well, as they typically 
 

 
Figure 1: The hybrid framework under investigation 

 
 represent complementary perspectives over the problem solving process as a whole. In general, 
combinations of components coming from different metaheuristics and/or from more 
conventional exact methods into a unique optimization framework have been referred to by the 
label of “hybrid metaheuristics” by Blum e Roli (2003), Dumitrescu e Stützle (2003), Talbi 
(2002), Raidl (2006). 

In this context, a hybrid methodology has been recently introduced in the literature by 
Nepomuceno et al. (2006, 2007a, 2007b, 2008), trying to push forward the boundaries that limit 
the application of an exact method through the decomposition of the original problem into two 
conceptual levels. According to the framework underlying this approximative methodology (see 
Figure1) the exact method (encapsulated in the Solver of Reduced Instances (SRI) component) 
works no more with the original problem but with reduced instances (i.e. subproblems) of it that 
still preserve its conceptual structure. By this means, an optimal solution to a given subproblem 
will also be a feasible solution to the original problem. On the other hand, the metaheuristic 
component of the framework works on a complementary optimization problem, that is, the design 
of reduced instances of the original problem formulated as mathematical programming (viz., 
integer linear programming (ILP) models. It is referred to as the Generator of Reduced Instances 
(GRI), whose goal is to determine the subset of points of the reducible structure that could derive 
the best subproblem instance; that is, the subproblem which, when submitted to the SRI, would 
bring about the feasible solution with the highest possible objective function value. In this 
scenario, the objective function values of the solutions that could be realized by the solver are 
used as figure of merit (fitness) of their associated subproblems, thus guiding the metaheuristic 
search process. The interaction between GRI and SRI is iterative and repeats until a given 
stopping condition is satisfied. 

So far, the metaheuristic chosen to implement the generator of reduced instances has been a 
Genetic Algorithm as explained by Eiben and Smith (2003). This option is due mainly to the 
good levels of flexibility and adaptability exhibited by the class of evolutionary algorithms when 
dealing with a wide range of optimization problems as presented by Back et at. (1997). The 
genetic representation of the individuals (chromosomes) follows a binary encoding that indicates 
which decision variables belonging to the reducible structure will be kept in the new subproblem 
to be generated. That is, those genes having ‘1’ as alleles define the subset of variables that 
generates the reduced instance. Conversely, the exact method is assumed to be any state-of-the-



art algorithm used to solve mixed integer-linear problems, such as Branch-and-bound or Branch-
and-cut described in Wolsey (1998). Usually, the solver libraries available incorporate sets of 
strategies, heuristics, and problem reduction techniques that complement the main exact method 
and enhance its performance. 

According to the classification proposed in Puchinger e Raidl (2005), the methodology falls 
into the category of integrative combinations. The quality of the solutions to the instances 
generated by the metaheuristic is determined when the sub-problems are solved by the exact 
method, and the best solution obtained throughout the whole metaheuristic process is deemed to 
be the final solution to the original problem. 

Although showing remarkable levels of performance for some case problems studied in the 
realm of cutting & packing problems in Nepomuceno (2006, 2007a, 2007b, 2008), the original 
version of the aforementioned hybrid methodology has drawbacks, some of which are 
circumvented with the adoption of the mechanisms discussed here. Other impacting factor that 
must be noticed is that the original version addressed only the cutting and packing problem class. 
One consequence of this particularity is that it requires some changes in order to be adapted to 
new optimization problem classes, described as follows in section 4. 

 
 

 4  Improvements for the dynamic coverage and connectivity in wireless sensor network 
problem 
 
Adapting the base hybrid methodology to be suitable for a totally different class of problem 

is a challenge. Even the direction of optimization is opposite and requires changing since genetic 
algorithms natively maximizes, while this problem is a minimization one. Although this issue is 
easy to solve it shows how distinct problem classes can be even right in the beginning. 

A drawback that has limited the effectiveness of the base hybrid methodology as presented in 
Section 3 relates to its propensity for bringing about an uncontrolled density explosion over the 
individuals (i.e. reduced instances of the original problem) produced by the GRI. We define 
“density of an individual” as the ratio between the number of genes having ‘1’ as allele (referred 
to as activated) and its total length. The fact is that an increase in density tends to generate 
subproblems more closer to the original problem, thus possibly yielding better solutions. This 
situation can be better pictured as if having some sort of an “attractor” pushing the overall 
population density up as the GRI (GA) evolves. Although expected, this phenomenon may have 
an undesirable side-effect if it occurs prematurely. This is because, usually, high densities imply 
higher complexity to be dealt with by the SRI, which indirectly affects the search process 
conducted by the GRI as the time spent in each generation tends to become progressively higher. 
This may cause a drastic limitation over the number of search iterations performed by the SRI, 
hindering both the effectiveness and efficiency of the whole optimization. 

Other undesirable characteristic of the original version of this methodology is that its binary 
chromosome encoding can be prohibitively long, depending on the chosen reducible matrix. 
Long chromosomes can lead to problems. 
 
 

 4.1  Compact  chromosome encoding 
 
According to Eiben and Smith (2003), the right representation of the individuals is one of the 

most difficult parts of designing a good evolutionary algorithm. 
 The binary chromosome encoding was used in the original version of the hybrid 

methodology. Each gene represents the inclusion of the equivalent element of the reducible 
structure that will be considered in the generation of the new subproblem. It is well suited for the 
cutting and packing problem class for which the methodology was designed. This type of 
chromosome encoding however is not appropriated for other problem domains like the one 



treated in this work. It would generate too large chromosomes (i.e. 10 time intervals  36 
sensors). Table 1 shows a possible chromosome with the binary encoding. Each color represents 
a set of 16 genes associated to its respective sensors of the each time interval. 

The proposed new encoding (table 2) represents the integer indexes of the sensors that must 
be taken in the subproblem generation. So there is no need of representing all sensors. Only a 
small amount of sensors has to be considered and the length of this chromosome can be down to 
17% of the binary encoding one. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 … 
0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 … 

Table 1: Part of a chromosome with binary encoding 
 

3 5 11 16 2 5 10 13 4 8 9 15 1 7 … 
Table 2: Part of a chromosome with the new compact encoding 

 
In the original version of the hybrid methodology, the density rise was a problem as 

described in section 4. The first resource created to avoid this undesirable effect was the density 
control operator that effectively accomplished its goal and is expected to be published soon. Here 
the issue is solved with a much more controlled expedient: Constant density. 

This new compact chromosome encoding has a side effect of turning the density constant, 
since the ratio of sensors considered in the subproblem and the total number of sensors is always 
fixed. Now the solver can work in its best range of operation, balancing efficiency and 
effectiveness. 
 
 

 5  Computational results 
 

Experiments were made for the dynamic coverage and connectivity in wireless sensor 
networks problem using the mentioned hybrid methodology.  

It follows most premises of section 2. The grid sensor placement was used for simplicity sake 
because the random scenario did not present significant variation of the problem complexity 
which is the main concern of these experiments. The machine used on this test was an Intel Core 
2 Quad 64 bits with 8 GB of RAM machine with OpenSuse Linux 11.0 64 bits. As Linear Integer 
Programming (LIP) solver, the Ilog Cplex 10.1 dynamic library (ILOG 2006) was used attached 
to the Java program implementation of the methodology. The pure LIP approach is a particular 
case of the methodology and is obtained by a proper parameter set in a XML script. 

Table 3 presents the comparison of Hybrid Methodology (HM) and LIP approaches. On these 
experiments, the demand points are disposed in a grid. Due to the stochastically nature of the 
HM, it is presented the average and standard deviation of results found in a batch of 10 problem 
instances. The notation used here is the average value followed by the ± sign and the standard 
deviation value. 

The objective function is composed of two parts: The summation of electrical charge 
consumption in all sensor nodes and the penalties. The penalties are an artifact that allow 
uncovered demand points giving flexibility to the model, but at the same time, avoid the 
unnecessary use of this resource. Thus, the real objective is calculated by subtracting the artificial 
coverage penalties of the objective function or just calculating the first part (summation) of the 
objective expression.  

Table 4 shows the results of similar experiments. However, this time the demand points are 
spread randomly through the sensed area.  
 
 
 



 HM HM LIP 
Time intervals 6 10 10 
Demand points 400 400 400 
Sensor nodes 36 36 16 

Sinks 1 1 1 
Time (minutes) 151.78 ± 14.61 189.80 ± 61.01 298.55 

Time for first final 
solution 

79.84 ± 54.65 104.14 ± 75.06 298.55 

Uncovered demand 
points (%) 

0.93 ± 0.39 2.35 ± 0.54 0.33 

Real Objective 22,223.27 ± 2,614.63 33,374.04 ± 2,389.76 26,665.91 
Table 3:  Simulation results for demand point in grid. 

 
 

 HM HM 
Time intervals 6 10 
Demand points 400 400 
Sensor nodes 36 36 

Sinks 1 1 
Time (minutes) 146.77 ± 32.45 366.28 ± 13.54 

Time for first final 
solution 

91.55 ± 47.14 196.05 ± 78.30 

Uncovered demand 
points (%) 

1.56 ± 0.61 2.10 ± 0.53 

Real Objective 20,472.51 ± 4,135.35 32,522.51 ± 2,628.33 
Table 4:  Simulation results for demand point in aleatory positions. 

 
 

The real purpose of this model is to extend the WSN lifetime as far as possible, preserving 
the WSN cost. So, lower electrical charge consumption is not necessarily an important issue if it 
does not reflect in more time slots. The number of time slots multiplied by the duration of each 
time slot represents this WSN lifetime. 

Given this explanation is reasonable to say that both solutions found by HM and LIP are 
equivalent in effectiveness. However, the HM approach can handle an amount of sensors 325% 
times larger, extending the working range of this application. 

The only drawback here is the uncovered demand point rate which is worse than LIP value. 
Despite this small imperfection of 2.35% many real applications tolerates some lack of coverage 
by the nature of the observed phenomenon and other aspects. Even though this uncovered 
demand points are often situated at the periphery of the observed area. The coverage radius does 
not reflect necessarily a sharp threshold of sensing. 

Figure 1 shows the evolution of the best individual fitness in plain line and population fitness 
average in line with points as well. 

Figures 2 to 11 are graphical representations of 10 time slots of an solution example. It shows 
the active sensor nodes, its coverage radios, the covered and uncovered demand points and the 
routes from sensor nodes to the sink in the center. 

 
 

 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Best individual and population average evolution. 
 
 
 
 

 

Figure 2: Solution in time slot 1 Figure 3: Solution in time slot 2 Figure 4: Solution in time slot 3 

Figure 5: Solution in time slot 4 Figure 6: Solution in time slot 5 Figure 7: Solution in time slot 6 

Figure 8: Solution in time slot 7 Figure 9: Solution in time slot 8 Figure 10: Solution in time slot 9 



Figure 11: Solution in time slot 10 
 

  

 
 

 6  Conclusion 
 

 This hybrid methodology is not only suitable for solving complex instances in the 
domain of cutting and packing problems. It can be adapted to tackle other problem classes like 
WSN as shown here. 
 The key point in this adaptation is finding the best or at least a good reducible structure. 
This analysis is very linked to the chromosome encoding choice as it represents a trade of 
between subproblem complexity range width and chromosome size. A good reducible structure 
allows a wide range of subproblem complexity from very light and fast subproblems to the actual 
real problem. On the other hand the reducible matrix size affects the chromosome size and a large 
chromosome size reduces the GA effectiveness. 
 In this problem a good reducible structure was found but it is much larger than the ones 
found in the cutting and packing problem instance. That is the reason why a new chromosome 
encoding was developed. This new encoding makes the matrix choice viable. 
 The result found are far better than reference literature and leaves opportunities of future 
enhancements as new supplementary algorithms and heuristics are aggregated to this 
methodology. 
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