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ABSTRACT 

A Pallet is a squared structure used for storage. As it has been produced over five million pallets a year, 

methodologies that reduce the storage cost are interesting. It is necessary to best allocate the items, which 

we‟ve used as boxes, to take the best advantage of the storage space. There are many possible allocations 

for a box on the pallet, and simply solve the problem can take a long time. The usage of Hybrid 

Methodology has proved that time of problem solving has significantly been reduced. This methodology 

consists on the reduction of the possible allocations for the boxes. It modifies the original problem, 

producing new and smaller problems which have a solving time smaller than the original one. The 

characteristics from the original problem are preserved and its solution is one feasible original problem‟s 

solution. Some of them can be the optimal solution for the trouble. Executing many instances these small 

problems, can be found the optimal solution of the main problem. 
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1. Introduction 

 A pallet is a plain structure used to facilitate the transportation of the most variables 

goods, since it can be loaded several objects at the same time. Typically, a pallet is made by 

wood. However, there are pallets made by other materials like plastic and metal, and each type of 

pallet has its owns advantages and disadvantages. Most of the pallets support a load of about 1ton 

of weight. As it has many advantages in the load transportation, nowadays, is a produced over 

five hundred million pallet a year. According to Kocjan and Holmström (2008), when the number 

of items to be loaded on the pallet increases, the cost of transportation decreases, turning the 

pallet loading problem an economical problem. The cost reduction is not the only thing that 

changes. The complexity of the problem increases when the number of items increases too.  

 As Kocjan and Holmström (2008) say, the items to be loaded on the pallet are stored in 

boxes that must be placed with its edges parallel with the pallet‟s edges. The vertical orientation 

of the boxes is fixed. In this paper, it will be discussed that the pallet loading problem is a 

particular case of the cutting & packing problem. Another point to observe is the stability of the 

pallet. We have assumed that pallet will always be in its maximum capacity, and then it will be 

stable and will not be needed to worry about stability in the mathematical model. The pallet 

loading problem consists of load the maximum number of boxes on a pallet. The pallet has a 

given length and width. The type of box has a given length and width either. And the boxes must 

be loaded orthogonally on the pallet. The box‟s position can be shifted on its length and width, 

but not on the height.  

 Hybrid Methodology consists of extract smaller problems that have the same 

characteristics and its solution is one feasible solution of the original problem. As the problems 

extracted are smaller, their solving time are smaller either, they can be executed in several sub-

problems and find a feasible solution in a time smaller than it would be if the original problem 

was executed. The Genetic Algorithm was used by this methodology to manage the sub-

problems.  

 It is impracticable to try to allocate the box on each single coordinate of the pallet, so, it 

was created a discretization matrix. This matrix has the coordinates where the boxes can be 

effectively allocated. For example: the pallet has its dimension L x W (length L, width W) and 

the boxes have its dimensions l x w (length l, width w). If a box is allocated at the coordinate (x, 

y) of the pallet, the next coordinates that a box could possibly be allocated are the ones that are 

not in a place that the previously allocated box is. Doing this, the numbers of coordinates to be 

tested decreases, decreasing the solving time either. Not just this, the discretization allows the 

extraction of the sub-problems. By eliminating some coordinates of the discretization matrix, we 

can obtain a sub-problem of the original one. Using Genetic Algorithm to control which 

coordinates will be eliminated, it can be obtained a sub-problem that can give a feasible solution 

in a small time. Such time can be so small, that many different instances of sub-problems can be 

executed without overcoming the solving time of the original problem.  

 As said before, the Pallet Problem is a particular case of the Cutting & Packing Problem, 

and the height of the boxes can be used to decompose the problem of a bi-dimensional and one-

dimensional. Consequently, the total height over the pallet can be despised either. The 

implementation of the model used is a bi-dimensional one. So it will be used a cutting and 

packing model for the pallet problem. 

 

2. The Constrained Two-Dimensional Non-Guillotine Cutting Problem 

 The Constrained Two-dimensional Non-guillotine Cutting Problem consists of cutting 

rectangular pieces from a single large rectangular object. Each piece is of fixed orientation and 

must be cut with its edges parallel to the edges of the object. The number of pieces of each type 

that are cut must lie within prescribed limits and, in addition, the cuts may not go from one end to 

another. Each piece has an associated value and the objective is to maximize the total value of the 

pieces cut. This problem has been shown to be NP-Complete Dowsland and Dowsland (1992), 

meaning that it is impossible to find their optimal solution by resorting to an enumerative, brute-

force approaches alone, except in trivial cases.  



 In Dowsland and Dowsland (1992), two combinatory methods that generate constrained 

cutting patterns by successive horizontal and vertical builds of ordered rectangles are investigated 

to tackle this problem. Each of the algorithms uses a parameter to bound the maximum waste 

they may create. Error bounds measure how close the pattern wastes are to the waste of the 

optimal solution. These algorithms are fast and can yield efficient solutions when applied to 

small problems. A tree search approach is presented based upon the lagrangean relaxation of a 0-

1 integer linear programming formulation of the problem to derive an upper bound on the optimal 

solution. The formulation makes use of variables that relate to whether or not a piece of a 

particular type is cut with its bottom-left hand corner at a certain position.  

 In Fekete and Schepers (1997), the authors combined the use of a data structure for 

characterizing feasible packing´s with new classes of lower bounds, as well as other heuristics, in 

order to develop a two-level tree search algorithm for solving high-dimensional packing 

problems to optimality. In that approach, projections of cut pieces are made onto both the 

horizontal and vertical edges of the stock rectangle. Each such projection is translated into a 

graph, where the nodes in the graph are the cut pieces and an edge joins two nodes if the 

projections of the corresponding cut pieces overlap. They show that a cutting pattern is feasible if 

and only if the projection graphs have certain properties. The authors have shown that problems 

of considerable size can be solved to optimality in reasonable time with this approach. 
 

3. Outline of Some Hybrid Methodology Approaches 

 Over the last years, interest in hybrid metaheuristics has risen considerably among 

researchers in combinatorial optimization. Combinations of methods such as simulated annealing, 

tabu search and evolutionary algorithms have yielded very powerful search methods Talbi 

(2002). This can be evidenced by the diversity of works about this topic found in the literature. In 

Martin et al.(1992), for instance, it is introduced a hybrid approach that combines simulated 

annealing with local search heuristics to solve the traveling salesman problem. In Mahfoud and 

Goldberg (1995), it is presented a hybrid method that applies simulated annealing to improve the 

population obtained by a genetic algorithm. In Chu (1997), a local search algorithm, which 

utilizes problem-specific knowledge, is incorporated into the genetic operators of a GA instance 

to solve the multi-constraint knapsack problem.  

 In this regard, it has become ever more evident that a skilled combination of concepts 

stemming from different metaheuristics can be a very promising strategy one should resort to 

when having to deal with complicated optimization tasks. The hybridization of metaheuristics 

with other operations research techniques has been shown great appeal as well, as they typically 

 

 
Figure 1: The hybrid framework under investigation 

represent complementary perspectives over the problem solving process as a whole. In general, 

combinations of components coming from different metaheuristics and/or from more 

conventional exact methods into a unique optimization framework have been referred to by the 

label of “hybrid metaheuristics” by Talbi (2002), Raidl (2006). 



     In this context, a hybrid methodology has been recently introduced in the literature by 

Nepomuceno et al. (2006), Nepomuceno et al. (2007a), Nepomuceno et al. (2007b) and  

Nepomuceno et al. (2008), trying to push forward the boundaries that limit the application of an 

exact method through the decomposition of the original problem into two conceptual levels. 
According to the framework underlying this approximative methodology (see Figure1) the exact 

method (encapsulated in the Solver of Reduced Instances (SRI) component) works no more with 

the original problem but with reduced instances (i.e. sub-problems) of it that still preserve its 

conceptual structure. By this means, an optimal solution to a given subproblem will also be a 

feasible solution to the original problem. On the other hand, the metaheuristics component of the 

framework works on a complementary optimization problem, that is, the design of reduced 

instances of the original problem formulated as mathematical programming (viz., integer linear 

programming (ILP) models. It is referred to as the Generator of Reduced Instances (GRI), whose 

goal is to determine the subset of points of the reducible structure that could derive the best 

subproblem instance; that is, the sub-problem which, when submitted to the SRI, would bring 

about the feasible solution with the highest possible objective function value. In this scenario, the 

objective function values of the solutions that could be realized by the solver are used as figure of 

merit (fitness) of their associated sub-problems, thus guiding the metaheuristic search process. 

The interaction between GRI and SRI is iterative and repeats until a given stopping condition is 

satisfied. 
 It is only rather recently that hybrid algorithms which take ideas from both exact and 

heuristic local search techniques have been proposed. These techniques are traditionally seen as 

pertaining to two distinct branches of research toward the effective solution of combinatorial 

optimization problems, each one having particular advantages and disadvantages. Therefore, it 

appears to be a straightforward idea to try to combine these two distinct techniques into more 

powerful algorithms Gehring et al.(1990). There have been very different attempts to combine 

strategies and methods from these two scientific streams. Some of these hybrids mainly aim at 

providing optimal solutions in shorter time, while others primarily focus on getting better 

heuristic solutions Puchinger and Raidl (2005). For instance, in order to reduce the search space, 

in Vasquez and Hao (2001), it is combined tabu search with an exact method for solving the 0-1 

multidimensional knapsack problem. By other means, in Cook and Seymour(2003), it is proposed 

a two-phase hybrid method where high quality tours for the traveling salesman problem are 

generated, and the sub-problem induced by the set of previous tours is solved exactly on the 

restricted graph.  

 In Talbi(2002), the author has recently presented a taxonomy of hybrid metaheuristic 

components, which distinguishes the hybridization into two levels. In the low-level scheme, the 

result is a functional composition of a single optimization method. In this hybrid class, a given 

function of a metaheuristic is replaced by another metaheuristic. Conversely, in the high-level 

scheme, the different metaheuristics are self contained, and there is no direct relationship to the 

internal workings of the others. By other means, in Puchinger and Raidl(2005), an alternative 

classification of existing approaches combining exact and metaheuristic algorithms for 

combinatorial optimization is presented, which distinguishing the following two main categories: 

(i) collaborative combinations; and (ii) integrative combinations. By collaboration, it means that 

the constituent algorithms exchange information to each other, but none is part of the other. The 

algorithms may be executed sequentially, intertwined, or in parallel. By integration, it means that 

one technique is a subordinate component of the other. Thus, there is the distinction between a 

master algorithm – which can be either an exact or a metaheuristic algorithm – and a slave 

algorithm. 
 

 

 

 

 

 

 



 

4. Parameters of Genetic Algorithm 

 

 4.1 Initial Population Generation  

 One of the aspects that asked for amelioration concerns the generation of the initial 

population and maintenance of diversity along the first generations. For instance, no care was 

taken in avoiding the creation of repeated individuals in the first rounds. Also, no control over the 

distribution of gene alleles was performed, in a manner as to avoid the possibility of genetic drift, 

i.e., the premature loss of some important gene values. The methodology relied exclusively on 

the mutation operator to grant the needed diversity of alleles.  

 To address these problems, the initial population generation is now based on a fixed 

uniform probability distribution over the gene alleles controlled by the IDD parameter. Such 

parameter determines the approximated mean density of alleles in the initial generation. We mean 

as “density of an individual” the ratio between the number of its genes having „1‟ as allele and 

the size of the chromosome. Equation 1 formally defines the density d(x) of an individual x that 

has n as total number of genes. This parameter is then calibrated manually (a not so hard task) 

before the framework execution. When the density rate is very low, it may happen that some 

individuals have an empty gene group associated to the x and y axis discretization sets, taking a 

pallet problem as reference. These individuals would then generate subproblems with infeasible 

solutions. When each individual is generated, a validity checking mechanism is in charge of 

detecting this kind of anomaly and then execute a fixing-up routine that sets the first allele of the 

empty discretization set as „1‟. At this point, the newly-created individual is ensured to be a valid 

one. Yet the phenomenon of allele extinction (genetic drift) can still occur, although this can be 

controlled by setting higher values to the initial density rate. 

 

 

 4.2 Density Control Operator 

 Another negative factor that has limited the effectiveness of the original methodology is 

the uncontrolled density explosion. The increase in density tends to generate subproblems closer 

to the original problem yielding better solutions. This aspect can be pictured as an attractor 

pushing the population density up as the GA evolves. Nevertheless, this behavior has an 

undesirable side effect. Usually, high densities imply higher complexity to be dealt with by the 

mixed integer-linear method, indirectly affecting the search process con- ducted by the 

metaheuristic. This trend leads the evolutionary process of the genetic algorithm to a progressive 

increase of the mean population density. Thus at each generation the evolutionary process 

becomes slower until its exhaustion. This causes a drastic limitation in the number of genetic 

algorithm generations and also reduces its effectiveness.  

 Another parameter incorporated into the methodology is the ideal density IDD, which is 

also implemented by a routine and calibrated beforehand. During the density control operation, 

the following scheme is conducted over each individual. If the individual density is lower than 

IDD, nothing is changed. On the other hand, if the density is higher than the ideal value, some of 

the individual‟s genes having null assigned values are randomly chosen to be deactivated (i.e., 

zeroed). The density that exceeds the threshold IDD triggers a density reduction algorithm. After 

this stage, if the current density value is still greater than the ideal density, the other genes with 

some associated credit will also suffer deactivation, those with smaller credits being deactivated 

first. This last procedure is optional and its execution in controlled by the parameter PNZCG. 
 

 4.3 Gene Rotation Rate 

 There is another characteristic that acts as a limiting factor. Many individuals may have a 

waste of volume in the range between the axis origin and the first gene that has its allele equals to 

(1) 



1. The chromosomes have groups of genes associated with the axis x and y For instance, let‟s 

consider a chromosome c. Its two gene groups are A and B associated to the x and y axis 

respectively. For each gene groups we may consider the first gene with its allele equals to 1. We 

can define these particular genes as: 

 

gx | x = min{i | Ai = 1} 

gy | y = min{j | Bj = 1} 

 

So the wasted volume w caused by this factor on the solution generated from c on a pallet with 

length l and width w is:  

 

w = lwh − (l − pos(gx))(w − pos(gy)) 

 

 where pos(g) returns the axis position associated to the gene g. This problem arises from the free 

genes allocation natures that have no direct and strict compromise with the allocation on the 

beginning of the axis on the coordinate (0, 0). The relation is indirect so after many GA 

generations some high fitness individuals may have learned that this position optimizes the total 

box allocation area but many others may not have acquired this behavior. It is better suited if all 

individuals have this waste eliminated during its entire lifetime. 

 

 4.4 Population Size – PS 

 Controls how many individuals the GA population will have since there is no population 

size variation mechanism in this implementation. This parameter is first used in the initial 

population generation. After that, all operators will be influenced because they have to deal with 

all individuals of the population. There is a tradeoff on this parameter. When the population size 

is increased there will be more diversity on the function landscape exploration. This maximizes 

the probability of finding good optimum points. The evil effect of this population size increase is 

that the evolution cycle will be slower. It means that in a fix space of time the larger is the 

population size the less is the number of generations evolved. This parameter has direct 

correlation with the parameter MNG since it affects the total generations on a given time period. 

Varying this parameter in the range between 10 and 150 in steps of 20 showed that the best 

results are found with the value 50. This parameter suits well to the whole set of problems and its 

variation on a narrow range in the pursuit of the best tuning presented no benefits. 

 

 4.5 Initial Density – IND 

 During the initial population generation the probability used to attribute a ”1” value to 

each gene is exactly the parameter IND. It influences the density of all individuals of the first 

population generation. However the density of each individual is not guaranteed to have the exact 

value of IND. The mean population density is expected to be probabilistically approximated to 

IND. This is not a relevant issue since small variations on the individual densities does not affect 

this initial phase significantly. The value itself is actually very important. If IND is too low the 

first generation evaluation is faster but the mean population fitness is low. On the opposite 

direction high values of IND tends to dispend more time on the evaluation phase of the first 

generation but leads to better mean population fitness. The tuning procedure consists in finding 

the ideal value of IND that balances efficiency and efficacy to each problem instance since they 

have a wide range of complexity. Each problem instance demands a particular value accordingly 

to its preliminary test execution times and fitness results. This parameter is closely related to IDD 

described right bellow. 

 

4.6 Solver Timeout – ST 

 We had a problem that happens eventually but used to affect adversely. Some individuals 

with high density could waste a much longer time to be solved (and thus evaluated) than the 

others. The cost-benefit of these individuals is prohibitive. To avoid this time waste a solver 

(2) 

(3) 

(4) 



timeout mechanism was implemented. The solver has an amount of ST seconds to finish its 

execution. If the execution time exceeds ST a timeout occurs and the solver execution is aborted. 

In this situation the individual has a „0‟ fitness value attributed because its computation is 

considered unfeasible in the tolerable time interval. Due to the implementation of the chosen 

solver product the precision of this control is low for small time intervals. The solver opens time 

windows to our implemented timeout evaluation based on its internal execution logic. This time 

windows are non deterministic and they vary widely. This behavior is not critical. The executions 

subject to intervention are exaggerated outliners. Its evolution times have often an order of 

magnitude above the normal ones. A mean delay of about 20 seconds is not significant compared 

to tens of minutes of these outliners. 

 

5. The Mathematical Model 

 To formulate the Constrained Two-dimensional Non-guillotine Cutting Problem, we 

resorted an Integer Linear Programming model proposed in Nepomuceno et. al. (2007). Consider 

a set of items grouped into m types. For each box type i, characterized by its length and width (li, 

wi), and value vi, there is an associated number of boxes bi. Consider also a large object, in this 

instance, a pallet, that has (L, W) as its length and width dimensions respectively. The items 

should be cut orthogonally from the pallet. Each 0-1 variable uide alludes to the decision of 

whether to cut or not an item of type i at the coordinate (d, e). ufdef = 1, if an item with type I is 

allocated on the position (d, e); 0 otherwise. The constants d and e belongs respectively to the 

followings discretization sets: 

  

 

 

 

  

  

 

 

 

To avoid box overlap, the incidence matrix gidepq is defined as: 

  

 

 

 

 

 

 The Constrained Two-dimensional Non-guillotine Cutting Problem can be formulated as: 

  

  
 

 

  

Subject to 

 

 

 

 

 

 

 

 

 

 

(5) 

(6) 

(7) 

(8) 

(10) 

(9) 



 

6. Computational Results 

 For computational tests, we used the data obtained from Farago and Morabito (2000) for 

table 1 and table 2. It was used just one type of box for each problem instance. The data has to 

kind of pallet problem. One kind are problems from the literature and the other one are problems 

obtained from a carrier company. It was executed ten instances of the literature problem and 

thirty instance of a carrier company. The model was implemented in Java language, using the 

library Concert22 to link it to the solver. The solver used was CPLEX10.0 developed by ILOG 

Company. The tests ran in an Intel Core 2 Quad, with 8 Gb of memory. 

 The table 1 shows the results of the literature problem. This table is composed by the 

number of the problem instance, the pallet‟s dimension (W, L) followed by the box‟s dimension 

(w, l), the optimal solution for the given instance, the solution found, and the time elapsed to 

solve the problem. 

 

Instance Pallet (L,W) Box (l, w) 
Optimal 

Solution 

Obtained 

Solution 

Time elapsed 

(seg) 

L1 22x16 5x3 23 21 5,755 

L2 86x82 15x11 42 39 14,443 

L3 43x26 7x3 53 48 11,108 

L4 87x47 7x6 97 84 31,598 

L5 42x39 9x4 45 40 17,664 

L6 124x81 21x10 47 43 11,548 

L7 40x25 7x3 47 46 22,698 

L8 52x33 9x4 47 45 17,373 

L9 57x44 12x5 41 37 10,673 

L10 56x52 12x5 48 40 17,166 

Average - - 49 44,3 16,0026 

Table 1. Computational results obtained from literature problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11) 



 

 The table 2 shows the results obtained from the Carrier Company instances. It is shown 

the number of the problem instance, the box‟s dimension (w, l), the optimal solution for the 

instance, the obtained solution using our approach, and the time elapsed while solving the 

problem. In this case, the pallet‟s dimension is fixed. 

 

 

Instance Box (l,w) Optimal Solution Obtained Solution Time elapsed(seg) 

R1 31x22 16 16 3,528 

R2 50x20 12 12 2,517 

R3 33x23 15 15 1,436 

R4 34x26 12 11 4,649 

R5 36x15 20 20 5,641 

R6 28x21 19 17 5,661 

R7 32x18 20 18 5,536 

R8 38x26 10 10 1,096 

R9 25x15 32 32 2,805 

R10 46x30 8 8 0,359 

R11 39x25 12 12 0,514 

R12 38x20 15 15 1,031 

R13 49x20 12 12 0,716 

R14 28x17 23 23 4,279 

R15 40x29 10 9 3,12 

R16 35x12 26 26 1,749 

R17 27x22 19 17 7,501 

R18 21x12 # 45 19,621 

R19 24x19 26 25 5,972 

R20 32x24 15 15 0,886 

R21 26x20 22 22 1,498 

R22 19x14 43 41 13,294 

R23 44x29 8 8 0,731 

R24 52x33 6 6 0,175 

R25 36x21 15 14 4,954 

R26 35x20 15 15 0,334 

R27 20x14 42 40 12,833 

R28 22x17 31 28 10,984 

R29 37x20 15 15 1,33 

R30 24x13 38 36 11,801 

Average - 19,20689655 19,43333333 4,5517 

Table 2. Computational results obtained from Carrier Company problems. 

 

 

 

 

 

 



7. Conclusions 

As it can be seen, the use of Hybrid Methodology showed significant results, near from 

optimal in a reasonable time. In some instances, there still some area of the total that should fit 

another box, but it does not happen due to the shape of the boxes on its width and/or length that 

does not actually fits on the pallet. As it was said before, the pallet is used in a large scale for 

storage, and it is produced over five million pallets a year. It is known that there is a cost for 

storage, so, the best the usage of the storage area, the less is the cost to maintain the items.  

The box‟s dimension is relevant to the problem. It is reasonable to have default patterns 

of boxes to fill the pallet on the best manner as possible. Accordingly to the obtained results, the 

more irregular is the shape box‟s shape, the less is the used area of the pallet. But it can have 

some bigger shapes that could fit better than the shape of the boxes used. There are many 

approaches to reduce storage cost, and the Hybrid Methodology proved useful for this kind of 

problem. 

For future works, it is intended to use new approaches in order to obtain better results 

and get even closer from the optimal solution. 
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