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ABSTRACT

Given an undirected biconnected gragh= (V, F) and an edget € FE, anst-numbering is a
numbering of the vertices @F such thats is numbered, ¢ is numberedh, and every vertex differ-
ent froms andt is adjacent both to a lower-numbered and to a higher-nurdbemgex. Algorithms
for determining arst-numbering, in general, run in tim@(|V'| + |E|) and are restricted to bicon-
nected graphs. Therefore, for general graphs, applicatitat needt-numberings for its maximal
biconnected subgraphs have to preprocess the input gragérniify those subgraphs. We present
an algorithm that provides a numbering of the vertice&pfvhich is trivially transformed into an
st-numbering for every maximal biconnected subgraplizpthat also runs in tmé&(|V| + |E|),
but it provides the numbering of the vertices without a ppepssing step. We show an application
for graph drawing in a linear layout.

KEYWORDS. st-numbering, graph drawing, crossing number

Main area: Theory and Algorithms in Graphs

1. Introduction

Let G = (V, E) be an undirected graph with vertices andn edges. Anumbering of V' is an
assignment of a unique number in the ramge . , n to every vertex ofy. A graphd is biconnected

if there is no vertex whose removal disconnegtsf there existsv € V' such that its removal from
G disconnects the graph, théhis non-biconnected. Given an edget of GG, anst-numbering (also
known asbipolar orientation or st-orientation [Papamanthou and Tollis 2008]) is a numbering of
the vertices ofG such thats receives numbet, ¢ receives numben, and every vertex different
from s andt is adjacent both to a lower-numbered and to a higher-nurdbamgex (see an example
in Figure 1 (c)).

There are a variety of applications @f-numbering in graph drawing, such as orthogonal
drawings, hierarchical drawings, visibility represeimtas, planarity-testing, and graph planariza-
tion. Also, the length of the longest-path (an st-path is a directed path fromto t) has been
studied [Papamanthou and Tollis 2008, Sadasivam and ZH0®] 2or applications such as net-
work routing and area-bound graph drawing algorithms.

The st-numbering concept was introduced in [Lempel et al. 1967pas of an efficient
planarity-testing algorithm. The authors proved that&numbering exists if and only if the graph
is biconnected. Theist-numbering algorithm had a time complexity @{nm). A more efficient
O(n + m) time algorithm for finding arst-numbering was devised in [Even and Tarjan 1976].
Later, a simplified version of the algorithm was proposed ImerE [Ebert 1983]. The methods
in [Even and Tarjan 1976, Ebert 1983] decompésinto a collection of edge-disjoint paths and
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then process the paths to producesasamumbering. Tarjan [Tarjan 1986] proposed a simpler algo-
rithm that bypasses the path decomposition phase. Addltjora parallel algorithm is described
in [Maon et al. 1986] and another linear-time algorithm imgBdes 2002].

Even and Tarjan [Even and Tarjan 1976] had suggested a catidrinof a block-
finding algorithm and arst-numbering algorithm but they have not given any details ton i
Since then, for applications in general graphs that usetamumbering, researchers have run
the first algorithm followed by the second one. For instanseme methods of orthogo-
nal graph drawing [Biedl and Kant 1998, Calamoneri et al.913Balamoneri and Petreschi 1995,
Di Battista et al. 1997] divide the graph in blocks, which are defined as its maximal biconnected
subgraphs’y, Cs, . .., Ci, and then find art-numbering for each block. Each block is drawn and
the whole drawing of7 is obtained by properly connecting the drawings of all défa blocks. An-
other approach is to add dummy edges:tantil G is biconnected, and then apply amnumbering
method.

In this work, we present an algorithm that provides a nunmggedf the vertices of a con-
nected grapldr that can be straightforwardly transformed intosgmumbering for every maximal
biconnected subgraph 6&f. Thisgeneralized st-numbering of G is returned without the additional
phase to divide the graph into blocks. Moreover, the numiggprovided by the algorithm has the
property that every vertex in more than one block, which ésdhse of cut-vertices, is numbered in
such a way that it can be properly put into tttenumberings of its blocks.

The notion of a generalized-numbering is not completely new. Indeed, for planar graphs
[Didimo and Pizzonia 2003] presented @rn3/?) algorithm that computes an upward orientation
with the minimum number of sources and sinks. This kind ofmtiéation is equivalent to a gen-
eralization of anst-orientation to simply connected graphs. We extend theonatf generalized
st-orientations to non-planar graphs and provide a lingae-talgorithm that finds such an orienta-
tion.

Our work is organized as follows. In Section 2. we presentespraliminary definitions. In
Section 3. we discuss the algorithm and Section 4. contaime £xperimental results. Concluding
remarks are presented in Section 5.

2. Preliminaries

In this section, we introduce some notation that will be usedonstruct a generalizesi-
numbering algorithm. For basic concepts such as graph, patle, etc., we borrow the definitions
from [Even and Tarjan 1976].

Let G = (V, E) be an undirected graph with'| = n and|E| = m. A graph is said to be
connected if there is a path between any pair of verticesv i a vertex ofG whose removal dis-
connectg5, we callv a cut-vertex. Similarly, if there is an edge € E whose removal disconnects
G, we calle acut-edge. Notice that a cut-edge does not belong to any cycl€ .of

A connected graph that has no cut-vertex is calléttannected graph. A maximal bicon-
nected subgraph @ is called alock of G. Notice that a vertex may belong to more than one block
of G, but every edge belongs to exactly one block.

In order to develop the algorithm, we need to review some @fitoperties of both depth-
first search algorithm and Tarjani$-numberig algorithm [Tarjan 1986]. Assunigis connected.
Suppose we carry out a depth-first searclGinstarting at vertex and traversing first the edge
st. The search traverses every edge-pforienting them in the direction along which the search
advances. The resulting directed edges belong to two typasedges, which define a spanning
tree rooted at and having paths from to every vertex, anttack edges, which lead from a vertex
to one of its proper ancestors in the spanning tree.
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(a) A graphG (b) A spanning tree of7 (c) An st-numbering ofG

Figure 1: In (b) the vertices of a graph G (a) are numbered in preorder. The low values are
denoted by letters. Tree edges are solid, back edges are dash ed. An st-numbering of
G is shown in (c).

Table 1: List L generated by the second phase of Tarjan’s st-numbering algo-
rithm [Tarjan 1986] for the graph G (Figure 1 (a)). The st-numbering is depicted in
Figure 1 (c).

Vertex Added| List L

s—,t
s—,a,t+
s—,c,a+,t+

s—,c—,b,a+,t+
s—,d,c+,b,a+,t+

QU 0

Suppose we number the vertices fraro n in the order they are visited during the depth-
first search. This numbering is a preorder numbering of t@sipg tree [Knuth 1974]. We shall
denote the preorder number of a vertely pre(v). For each vertex, letlow(v) be the vertex of
smallest number reachable framby a path consisting of zero or more tree edges followed by at
most one back edge. The vertexw(v) is guaranteed to be an ancestorvdh the spanning tree
(see an example in Figure 1). The preorder humber antbthealues can be computed in linear
time by a single depth-first search [Tarjan 1986].

Tarjan’s st-numbering algorithm [Tarjan 1986] finds af-numbering of a graph in time
O(n + m) and consists of two phases. First, a depth-first search isutee and the preorder
numbering andlow values are computed, as well as the papénj of each vertex in the spanning
tree. In the second phase, a lisbf the vertices is constructed such that the vertices arédopran
in the order they occur i resulting in anst-numbering. This is achieved by performing a preorder
traversal of the spanning tree, attributing a minus sigvémyeancestor: of a vertexv if u precedes
v in L, or a plus sign ifu succedes in L. Initially L = [s,t] and sign(s) = minus. Each
vertexv ¢ {s,t} is inserted intoL following the preorder previously obtained, as per procedu

| NSERT VERTEX (see an example in Figure 1 and Table 1).
1 procedure | NSERT_VERTEX(L, v)

2 if sign(low(v))=mnus then

3 insert v in L before p(v);
4 sign(p(v)) := plus;

5 else if sign(low(v))=plus then
6 insert vin L after p(v);

7 sign(p(v)) := mnus;

s end.

3. A Generalizedst-Numbering Algorithm

Since anst-numbering exists if and only if the graph is biconnectednfipel et al. 1967], we
propose an algorithm that returns atnumbering for a biconnected gragh and, if G is non-
biconnected, the algorithm returns a generalizethumbering. By a generalizeg-numbering,
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(@) A non-biconnected grapi (b) A spanning tree off

Figure 2: The first phase of GEN.ST_NUMBER: finding blocks. In (b) a spanning tree of the
graph H where vertices are numbered in preorder. The letters labell ing vertices are
the low values. Tree edges are solid, back edges are dashed.

we mean that an edggt; is selected for each bloak; such that every other vertex+# s;,t; is
adjacent both to a lower-numbered and to a higher-numbesddéxy For instance, Figure 3 (b)
illustrates arst-numbering of the blocks of the gragh in Figure 2 (a). Notice that the properties
of the st-numbering are valid for each block, although some cutisestexist and belong to several
blocks.

Our GEN_ST_NUMBER algorithm constructs a generalized-numbering for connected
graphs by replacing the depth-first search step in Tarj@nisumbering algorithm [Tarjan 1986]
by a block-finding algorithm, done i®(n + m) time as well [Tarjan 1972]. The block-finding
algorithm in [Tarjan 1972] is a variation of the depth-fireasch and returns not only the blocks of
the graph but also the valugse(v), low(v) andp(v) needed in thet-numbering phase. Then we
modify the second phase of Tarjassnumbering algorithm such that the algorithm returns@an
numbering of the whole grap® if GG is biconnected. Otherwise, the algorithm returns a numperi
such that all blocks of7 are locally st-numbered and each vertex has only one number, even for
cut-vertices that are in more than one block.

The algorithmGEN_ST_NUMBERworks by attributing an edge€t; to every blockC; such
that the position of each vertex e C; in the list L. depends on the position of verticesandi;
in L. The idea is similar to the one used in Tarjastsnumbering algorithm: each vertexe C;
must be placed betweerfv) andlow(v) so thatv is adjacent both to a lower-numbered and to a
higher-numbered vertex in the numbering.

Since an edge;t; in a blockC; cannot be in another block, for each vertex C; to be
added in the list, if s;t; was already defined, then part of the bldackis already in the listl as
well. Thus,v can be simply added té in its correct position among the vertices@f. On the
other hand, ifs;¢; was not defined yet, then there are two possibilities:

1. If v = low(v), thenC; is a cut-edge. Add in L afterp(v) and set the edget; of C; as

s; = p(v) andt; = v;

2. If v # low(v), then addv after low(v) and set the edge;t; of C; ass; = low(v) and

t; = v. Add all the other vertices af’; betweens; = low(v) andt; = v according to the
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(a) Blocks of H (b) An st-numbering ofH

Figure 3: In (a) the blocks C4,...,C7 of H obtained by the first phase of GEN_ST_NUMBER for
the graph H (Figure 2). Cut-points are gray. In (b) the  st-numbering obtained from
List L (Table 2).

rule in Tarjan’sst-numbering algorithm given in the procedurBISERT _VERTEX.

The insertion ofv after low(v) into L joins the vertices in two blocks. Clearly, any two
blocks do not share more than one cut-vertex, therefore ter no edge-crossings between any
blocks. The procedur€EN_ST_NUMBER implements the algorithm. The routiié ND_BLOCK
returns the block containing an edge

1 procedure GEN_ST NUMBER( V)

2 L:=[s,t];

3 current := FIND BLOCK(s,t);

4 current(s,t) :=s,t;

5 sign(s) := mnus;

6 for each v in preorder do

7 if vis in the block current then

8 | NSERT_VERTEX(L, V) ;

9 el se

10 if visinahblock i that has s,t already defined then
11 current :=1i;

12 sign(s) := mnus;

13 | NSERT_VERTEX(L, v);

14 else if v <> 1low(v) then

15 insert v to the right lowv);
16 current := FIND_BLOCK(v, | owmV));
17 current(s,t) := lowmv),v;

18 sign(s) := mnus;

19 el se

20 insert v to the right p(v);

21 current := FIND_BLOCK(v, p(V));
22 current(s,t) := p(v),v;
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Table 2: List L generated by the second phase of
The most recently inserted vertex is underlined. Vertices

bold. Irrelevant signs are omitted.

GENLST_NUMBER for the graph  H (Figure 2).
sit; in each block C; are in

Vertex Current
Added | List L Block

k—,i 4
h k—,i,h Cy
a k—,i,h—, a Cs
b k—,i,h—, b a+ Cs
c k—,i,h—,b—,c,a+ Cy
d k—,i,h—,b—,d,c+,a+ Cy
e k—,i,h— b—, e, d+,c+,a+ Cy
I k—,i,h—,b— e, d—, f,c+,a+ Cy
g k—,i,h—,b—,e,d—, f,g,c+,a+ Cy
T k—,i,h—,b—,r,e,d—, f,g,c+,a+ Cy
q k—,i,h—,b—,q,v+,e,d—, f,g,c+,a+ Cy
S k—,i,h—,b—,s,q+,r+,e,d—, f,g,c+,a+ Cr
t k—,i,h—,b—,t,s+,q+,r+,e,d—, f,g,c+,a+ Cy
U k—,i,h—, b—,u,t+,s+,q+,r+,e,d—, f, g,c+,a+ Cy
m k—,i,h—,b,u,t,s,q,1,e,d, f,g,c,a—, m Cs
n k—,i,h—,b,u,t,s,q,7,e,d, f,g,c,a—,n, m+ Cs
0 k—,i,h—,b,u,t,s,q,r,e,d, f,g,c,a—,n,0, m+ Cs
P k—,i,h—,b,u,t,s,q,7,¢,d, f,g,c,a—,p,n,0,m+ Cs
j k—,j,i+,h—,b,u,t,s,q,7,¢e,d, f,g,c,a,p,n,0,m Ch
l k—,j—,L,i+,h—,b,u,t,s,q,7,¢,d, f,g,¢,a,p,n,o,m Ch
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23 end.
The algorithmGEN_ST_NUMBER determines art-numbering of the blocks and properly

inserts them in the sequence, resulting in a generalizedimbering. IfG is biconnected, then the
block reorganization operation returns gmumbering of the entire graph.

If the graph is a tree, the obtained numbering is not samumbering as defined
in [Lempel et al. 1967] nor an generalizettnumbering, because each block is only an edge. Even
though, the algorithm returns a numbering, this numberingot very much useful; however, for
most applications oft-numberings it does not matter; for instance, it does notarsaase to test
the planarity of a tree since trees are planarstMumbering has been used in graphs more dense
than trees since it requires biconnected graphs. Thus, erajaredst-numbering is particularly
useful for those graphs that can contains some bridges anerdices.

Since we replaced the depth-first search by the finding-Bladgorithm in [Tarjan 1972],
which is a variation of the depth-first search, the compyesdtGEN_ST_NUMBER:Is still O(n+m).
The second phase to organize the verticed irequires a structure to keep the edgeésn each
block. In the worst case, whef is a tree and all edges are cut-edges, the structure has e spac
complexity ofn — 1 = O(n). The listL must be doubly linked to facilite insertions and, finally,
a pointer to the position of each vertex incan be stored in the same structure that contains the
preorder numbers, the low values and the parent of eachxvertbe spanning tree. Therefore, as
in Tarjan’s algorithm, the second phase@N_ST_NUMBER has time complexity o (n). The
space complexity i€)(n) as well.

4. Experimental Results

A drawing D of a graph(G is optimumiif no other drawing of= has less edge-crossings thanThe
edge-crossing number of an optimum drawing is callecctbssing number of G and it is denoted
by cr(G). A graphdG is planar if ¢r(G) = 0. The decision problem associated to determining
the crossing number of a graph is NP-Complete [Garey andséoht©83]. The crossing number
problem has many applications in VLSI and printed-circuiaitd designs.

In alinear layout of GG, the vertices of7 are distributed in a spine (a straight line), the edges
are drawn as semicircles in one of the two sides (we call thages); where every edge is com-
pletely contained in one of the two pages (see Figure 4). &lixxg to Nicholson [Nicholson 1968],
the edge-crossing number in a linear layout is exactly etu#he edge-crossing number of the
grapher(G). Thus, the simplified structure of a linear layout of a graph belp to determine the
crossing number of graphs. However, the crossing numbdgoin a linear layout is still NP-
Complete [Chung et al. 1987] even if the order of verticetadpine is given [Masuda et al. 1990].

In a linear layout, there is an exponential number of sohgito check. If the position of
the vertices in the spine is given, and one has to just deaidehich page to draw every edge,
there are2™~! possible solutions. Since there gre — 1)!/2 possible orders for the vertices
along the spine, the total number of possible solutiongis- 1)! 2"~2. Since determining the
crossing numberr(G) of a graphG in a linear layout is a combination of a suitable order of
the vertices in the spine and a suitable configuration of tyee on the two pages, some strate-
gies have been studied to determine the order of the verdiles the spine. We developed a
heuristic algorithm based on Asynchronous Teams [de Sautdaukdar 1993, Talukdar 1998]
to minimize the number of edge-crossings of graphs in a tifegpout. We empirically show a
correlation between finding an generalizgehumbering of a graph and minimizing the number of
edge-crossings in a linear layout. Three strategies wax@ tasdetermine the order of the vertices
along the spine: an generalizetdnumbering, a preorder numbering and a random order. Figyure
and Figure 6 display the number of edge-crossings obtamresbfne random graphs related in the
literature [Goldschmidt and Takvorian 1994, CimikowskBB® Notice that, in all cases, when an
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generalizedst-numbering is used to determine the order of the verticesetlye-crossing number

is smaller than in the other strategies.

In applications to minimize the crossing number of grapha limear layout, a generalized
st-numbering can be particularly useful. For instance, edtie graphd drawn in a linear layout
(see Figures 3 (b) and 4). The generalizeehumbering naturally gives an order of the blocks

of the graph so that the edges between vertices in the sarole ¢tdm be drawn without crossing

edges between vertices in other blocks. Therefore, we cariatethe work of minimizing the

edge-crossings to the edges within each block.

H. Vertices in the spine are positioned according to

Figure 4: Linear layout of the graph
the generalized st-numbering in Figure 3 (b).
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Figure 5: Number of crossings to different ways of positioni

5. Conclusions
In this paper, we presented an algorithm to determine a gkred st-numbering for simply
connected graphs. The algorithm returnss&émumbering for biconnected graphs and, for non-

biconnected graphs, it returns a numbering such that atkblarest-numbered.
The algorithm can be immediately used by applications teatlst-numberings of graphs
2555
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Figure 6: Number of the crossings to different ways of positi oning of the vertices.

Calamoneri and Petreschi 1995, Calamoneri et al. 1999, DisBaet al. 1997] and planarity test-
ing algorithms [Lempel et al. 1967]. The generalizednumbering used to determine the or-
der of vertices in the spine of a linear layout showed to be @slgas an order determined
by a hamiltonian cycle. However, since determining if a grdgas a hamiltonian cycle is an
NP-Complete problem [Karp 1972], even when a hamiltoniath g given as part of the in-
stance [Papadimitriou and Steiglitz 1976], ttenumbering is a superior strategy.

It is simple and straightforward to get afrnumbering of only one block in a generalized
st-numbering. It can be obtained by numbering the verticeh@btock in the order they appear in
the list L, ignoring every other vertices.
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