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ABSTRACT

Given an undirected biconnected graphG = (V,E) and an edgest ∈ E, an st-numbering is a
numbering of the vertices ofG such thats is numbered1, t is numberedn, and every vertex differ-
ent froms andt is adjacent both to a lower-numbered and to a higher-numbered vertex. Algorithms
for determining anst-numbering, in general, run in timeO(|V |+ |E|) and are restricted to bicon-
nected graphs. Therefore, for general graphs, applications that needst-numberings for its maximal
biconnected subgraphs have to preprocess the input graph toidentify those subgraphs. We present
an algorithm that provides a numbering of the vertices ofG, which is trivially transformed into an
st-numbering for every maximal biconnected subgraph ofG, that also runs in timeO(|V | + |E|),
but it provides the numbering of the vertices without a preprocessing step. We show an application
for graph drawing in a linear layout.

KEYWORDS. st-numbering, graph drawing, crossing number

Main area: Theory and Algorithms in Graphs

1. Introduction

Let G = (V,E) be an undirected graph withn vertices andm edges. Anumbering of V is an
assignment of a unique number in the range1, . . . , n to every vertex ofG. A graphG is biconnected
if there is no vertex whose removal disconnectsG; if there existsv ∈ V such that its removal from
G disconnects the graph, thenG is non-biconnected. Given an edgest of G, anst-numbering (also
known asbipolar orientation or st-orientation [Papamanthou and Tollis 2008]) is a numbering of
the vertices ofG such thats receives number1, t receives numbern, and every vertex different
from s andt is adjacent both to a lower-numbered and to a higher-numbered vertex (see an example
in Figure 1 (c)).

There are a variety of applications ofst-numbering in graph drawing, such as orthogonal
drawings, hierarchical drawings, visibility representations, planarity-testing, and graph planariza-
tion. Also, the length of the longestst-path (an st-path is a directed path froms to t) has been
studied [Papamanthou and Tollis 2008, Sadasivam and Zhang 2009] for applications such as net-
work routing and area-bound graph drawing algorithms.

The st-numbering concept was introduced in [Lempel et al. 1967] aspart of an efficient
planarity-testing algorithm. The authors proved that anst-numbering exists if and only if the graph
is biconnected. Theirst-numbering algorithm had a time complexity ofO(nm). A more efficient
O(n + m) time algorithm for finding anst-numbering was devised in [Even and Tarjan 1976].
Later, a simplified version of the algorithm was proposed by Ebert [Ebert 1983]. The methods
in [Even and Tarjan 1976, Ebert 1983] decomposeG into a collection of edge-disjoint paths and
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then process the paths to produce anst-numbering. Tarjan [Tarjan 1986] proposed a simpler algo-
rithm that bypasses the path decomposition phase. Additionally, a parallel algorithm is described
in [Maon et al. 1986] and another linear-time algorithm in [Brandes 2002].

Even and Tarjan [Even and Tarjan 1976] had suggested a combination of a block-
finding algorithm and anst-numbering algorithm but they have not given any details on it.
Since then, for applications in general graphs that use anst-numbering, researchers have run
the first algorithm followed by the second one. For instance,some methods of orthogo-
nal graph drawing [Biedl and Kant 1998, Calamoneri et al. 1999, Calamoneri and Petreschi 1995,
Di Battista et al. 1997] divide the graphG in blocks, which are defined as its maximal biconnected
subgraphsC1, C2, . . . , Ck, and then find anst-numbering for each block. Each block is drawn and
the whole drawing ofG is obtained by properly connecting the drawings of all different blocks. An-
other approach is to add dummy edges toG until G is biconnected, and then apply anst-numbering
method.

In this work, we present an algorithm that provides a numbering of the vertices of a con-
nected graphG that can be straightforwardly transformed into anst-numbering for every maximal
biconnected subgraph ofG. Thisgeneralized st-numbering of G is returned without the additional
phase to divide the graph into blocks. Moreover, the numbering provided by the algorithm has the
property that every vertex in more than one block, which is the case of cut-vertices, is numbered in
such a way that it can be properly put into thest-numberings of its blocks.

The notion of a generalizedst-numbering is not completely new. Indeed, for planar graphs,
[Didimo and Pizzonia 2003] presented anO(n3/2) algorithm that computes an upward orientation
with the minimum number of sources and sinks. This kind of orientation is equivalent to a gen-
eralization of anst-orientation to simply connected graphs. We extend the notion of generalized
st-orientations to non-planar graphs and provide a linear-time algorithm that finds such an orienta-
tion.

Our work is organized as follows. In Section 2. we present some preliminary definitions. In
Section 3. we discuss the algorithm and Section 4. contains some experimental results. Concluding
remarks are presented in Section 5.

2. Preliminaries

In this section, we introduce some notation that will be usedto construct a generalizedst-
numbering algorithm. For basic concepts such as graph, path, cycle, etc., we borrow the definitions
from [Even and Tarjan 1976].

Let G = (V,E) be an undirected graph with|V | = n and|E| = m. A graph is said to be
connected if there is a path between any pair of vertices. Ifv is a vertex ofG whose removal dis-
connectsG, we callv a cut-vertex. Similarly, if there is an edgee ∈ E whose removal disconnects
G, we calle a cut-edge. Notice that a cut-edge does not belong to any cycle ofG.

A connected graph that has no cut-vertex is called abiconnected graph. A maximal bicon-
nected subgraph ofG is called ablock of G. Notice that a vertex may belong to more than one block
of G, but every edge belongs to exactly one block.

In order to develop the algorithm, we need to review some of the properties of both depth-
first search algorithm and Tarjan’sst-numberig algorithm [Tarjan 1986]. AssumeG is connected.
Suppose we carry out a depth-first search inG, starting at vertexs and traversing first the edge
st. The search traverses every edge ofG, orienting them in the direction along which the search
advances. The resulting directed edges belong to two types:tree edges, which define a spanning
tree rooted ats and having paths froms to every vertex, andback edges, which lead from a vertex
to one of its proper ancestors in the spanning tree.
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Figure 1: In (b) the vertices of a graph G (a) are numbered in preorder. The low values are
denoted by letters. Tree edges are solid, back edges are dash ed. An st-numbering of
G is shown in (c).

Table 1: List L generated by the second phase of Tarjan’s st-numbering algo-
rithm [Tarjan 1986] for the graph G (Figure 1 (a)). The st-numbering is depicted in
Figure 1 (c).

Vertex Added List L
s−, t

a s−, a, t+

c s−, c, a+, t+

b s−, c−, b, a+, t+

d s−, d, c+, b, a+, t+

Suppose we number the vertices from1 to n in the order they are visited during the depth-
first search. This numbering is a preorder numbering of the spanning tree [Knuth 1974]. We shall
denote the preorder number of a vertexv by pre(v). For each vertexv, let low(v) be the vertex of
smallest number reachable fromv by a path consisting of zero or more tree edges followed by at
most one back edge. The vertexlow(v) is guaranteed to be an ancestor ofv in the spanning tree
(see an example in Figure 1). The preorder number and thelow values can be computed in linear
time by a single depth-first search [Tarjan 1986].

Tarjan’sst-numbering algorithm [Tarjan 1986] finds anst-numbering of a graph in time
O(n + m) and consists of two phases. First, a depth-first search is executed and the preorder
numbering andlow values are computed, as well as the parentp(v) of each vertexv in the spanning
tree. In the second phase, a listL of the vertices is constructed such that the vertices are numbered
in the order they occur inL resulting in anst-numbering. This is achieved by performing a preorder
traversal of the spanning tree, attributing a minus sign to every ancestoru of a vertexv if u precedes
v in L, or a plus sign ifu succedesv in L. Initially L = [s, t] and sign(s) = minus. Each
vertexv /∈ {s, t} is inserted intoL following the preorder previously obtained, as per procedure
INSERT_VERTEX (see an example in Figure 1 and Table 1).

1 procedure INSERT_VERTEX(L,v)

2 if sign(low(v))=minus then
3 insert v in L before p(v);

4 sign(p(v)) := plus;
5 else if sign(low(v))=plus then

6 insert v in L after p(v);
7 sign(p(v)) := minus;

8 end.

3. A Generalizedst-Numbering Algorithm
Since anst-numbering exists if and only if the graph is biconnected [Lempel et al. 1967], we
propose an algorithm that returns anst-numbering for a biconnected graphG and, if G is non-
biconnected, the algorithm returns a generalizedst-numbering. By a generalizedst-numbering,
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Figure 2: The first phase of GEN ST NUMBER: finding blocks. In (b) a spanning tree of the
graph H where vertices are numbered in preorder. The letters labell ing vertices are
the low values. Tree edges are solid, back edges are dashed.

we mean that an edgesiti is selected for each blockCi such that every other vertexv 6= si, ti is
adjacent both to a lower-numbered and to a higher-numbered vertex. For instance, Figure 3 (b)
illustrates anst-numbering of the blocks of the graphH in Figure 2 (a). Notice that the properties
of thest-numbering are valid for each block, although some cut-vertices exist and belong to several
blocks.

Our GEN_ST_NUMBER algorithm constructs a generalizedst-numbering for connected
graphs by replacing the depth-first search step in Tarjan’sst-numbering algorithm [Tarjan 1986]
by a block-finding algorithm, done inO(n + m) time as well [Tarjan 1972]. The block-finding
algorithm in [Tarjan 1972] is a variation of the depth-first search and returns not only the blocks of
the graph but also the valuespre(v), low(v) andp(v) needed in thest-numbering phase. Then we
modify the second phase of Tarjan’sst-numbering algorithm such that the algorithm returns anst-
numbering of the whole graphG if G is biconnected. Otherwise, the algorithm returns a numbering
such that all blocks ofG are locallyst-numbered and each vertex has only one number, even for
cut-vertices that are in more than one block.

The algorithmGEN_ST_NUMBERworks by attributing an edgesiti to every blockCi such
that the position of each vertexv ∈ Ci in the listL depends on the position of verticessi andti
in L. The idea is similar to the one used in Tarjan’sst-numbering algorithm: each vertexv ∈ Ci

must be placed betweenp(v) and low(v) so thatv is adjacent both to a lower-numbered and to a
higher-numbered vertex in the numbering.

Since an edgesiti in a blockCi cannot be in another block, for each vertexv ∈ Ci to be
added in the listL, if siti was already defined, then part of the blockCi is already in the listL as
well. Thus,v can be simply added toL in its correct position among the vertices ofCi. On the
other hand, ifsiti was not defined yet, then there are two possibilities:

1. If v = low(v), thenCi is a cut-edge. Addv in L afterp(v) and set the edgesiti of Ci as
si = p(v) andti = v;

2. If v 6= low(v), then addv after low(v) and set the edgesiti of Ci assi = low(v) and
ti = v. Add all the other vertices ofCi betweensi = low(v) andti = v according to the
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Figure 3: In (a) the blocks C1, . . . , C7 of H obtained by the first phase of GEN ST NUMBER for
the graph H (Figure 2). Cut-points are gray. In (b) the st-numbering obtained from
List L (Table 2).

rule in Tarjan’sst-numbering algorithm given in the procedureINSERT_VERTEX.
The insertion ofv after low(v) into L joins the vertices in two blocks. Clearly, any two

blocks do not share more than one cut-vertex, therefore there are no edge-crossings between any
blocks. The procedureGEN_ST_NUMBER implements the algorithm. The routineFIND_BLOCK
returns the block containing an edgest.

1 procedure GEN_ST_NUMBER(v)
2 L := [s,t];

3 current := FIND_BLOCK(s,t);
4 current(s,t) := s,t;

5 sign(s) := minus;
6 for each v in preorder do

7 if v is in the block current then
8 INSERT_VERTEX(L,v);

9 else

10 if v is in a block i that has s,t already defined then
11 current := i;

12 sign(s) := minus;
13 INSERT_VERTEX(L,v);

14 else if v <> low(v) then
15 insert v to the right low(v);

16 current := FIND_BLOCK(v,low(v));
17 current(s,t) := low(v),v;

18 sign(s) := minus;

19 else
20 insert v to the right p(v);

21 current := FIND_BLOCK(v,p(v));
22 current(s,t) := p(v),v;
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Table 2: List L generated by the second phase of GEN ST NUMBER for the graph H (Figure 2).
The most recently inserted vertex is underlined. Vertices siti in each block Ci are in
bold. Irrelevant signs are omitted.

Vertex Current
Added List L Block

k−, i C1

h k−, i,h C2

a k−, i,h−,a C3

b k−, i,h−, b,a+ C3

c k−, i, h−,b−, c, a+ C4

d k−, i, h−,b−, d, c+, a+ C4

e k−, i, h−,b−, e, d+, c+, a+ C4

f k−, i, h−,b−, e, d−, f , c+, a+ C4

g k−, i, h−,b−, e, d−, f, g, c+, a+ C4

r k−, i, h−,b−, r, e, d−, f, g, c+, a+ C7

q k−, i, h−,b−, q, r+, e, d−, f, g, c+, a+ C7

s k−, i, h−,b−, s, q+, r+, e, d−, f, g, c+, a+ C7

t k−, i, h−,b−, t, s+, q+, r+, e, d−, f, g, c+, a+ C7

u k−, i, h−,b−, u, t+, s+, q+, r+, e, d−, f, g, c+, a+ C7

m k−, i, h−, b, u, t, s, q, r, e, d, f, g, c, a−,m C5

n k−, i, h−, b, u, t, s, q, r, e, d, f, g, c, a−, n,m+ C5

o k−, i, h−, b, u, t, s, q, r, e, d, f, g, c, a−, n,o,m+ C6

p k−, i, h−, b, u, t, s, q, r, e, d, f, g, c, a−, p, n, o,m+ C5

j k−, j, i+, h−, b, u, t, s, q, r, e, d, f, g, c, a, p, n, o,m C1

l k−, j−, l, i+, h−, b, u, t, s, q, r, e, d, f, g, c, a, p, n, o,m C1
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23 end.
The algorithmGEN_ST_NUMBER determines anst-numbering of the blocks and properly

inserts them in the sequence, resulting in a generalizedst-numbering. IfG is biconnected, then the
block reorganization operation returns anst-numbering of the entire graph.

If the graph is a tree, the obtained numbering is not anst-numbering as defined
in [Lempel et al. 1967] nor an generalizedst-numbering, because each block is only an edge. Even
though, the algorithm returns a numbering, this numbering is not very much useful; however, for
most applications ofst-numberings it does not matter; for instance, it does not make sense to test
the planarity of a tree since trees are planar. Ast-numbering has been used in graphs more dense
than trees since it requires biconnected graphs. Thus, a generalizedst-numbering is particularly
useful for those graphs that can contains some bridges and cut-vertices.

Since we replaced the depth-first search by the finding-blocks algorithm in [Tarjan 1972],
which is a variation of the depth-first search, the complexity of GEN_ST_NUMBER is still O(n+m).
The second phase to organize the vertices inL requires a structure to keep the edgesst in each
block. In the worst case, whenG is a tree and all edges are cut-edges, the structure has a space
complexity ofn − 1 = O(n). The listL must be doubly linked to facilite insertions and, finally,
a pointer to the position of each vertex inL can be stored in the same structure that contains the
preorder numbers, the low values and the parent of each vertex in the spanning tree. Therefore, as
in Tarjan’s algorithm, the second phase ofGEN_ST_NUMBER has time complexity ofO(n). The
space complexity isO(n) as well.

4. Experimental Results
A drawingD of a graphG is optimum if no other drawing ofG has less edge-crossings thanD. The
edge-crossing number of an optimum drawing is called thecrossing number of G and it is denoted
by cr(G). A graphG is planar if cr(G) = 0. The decision problem associated to determining
the crossing number of a graph is NP-Complete [Garey and Johnson 1983]. The crossing number
problem has many applications in VLSI and printed-circuit board designs.

In a linear layout of G, the vertices ofG are distributed in a spine (a straight line), the edges
are drawn as semicircles in one of the two sides (we call thempages); where every edge is com-
pletely contained in one of the two pages (see Figure 4). According to Nicholson [Nicholson 1968],
the edge-crossing number in a linear layout is exactly equalto the edge-crossing number of the
graphcr(G). Thus, the simplified structure of a linear layout of a graph can help to determine the
crossing number of graphs. However, the crossing number problem in a linear layout is still NP-
Complete [Chung et al. 1987] even if the order of vertices in the spine is given [Masuda et al. 1990].

In a linear layout, there is an exponential number of solutions to check. If the position of
the vertices in the spine is given, and one has to just decide on which page to draw every edge,
there are2m−1 possible solutions. Since there are(n − 1)!/2 possible orders for the vertices
along the spine, the total number of possible solutions is(n − 1)! 2m−2. Since determining the
crossing numbercr(G) of a graphG in a linear layout is a combination of a suitable order of
the vertices in the spine and a suitable configuration of the edges on the two pages, some strate-
gies have been studied to determine the order of the verticesalong the spine. We developed a
heuristic algorithm based on Asynchronous Teams [de Souza and Talukdar 1993, Talukdar 1998]
to minimize the number of edge-crossings of graphs in a linear layout. We empirically show a
correlation between finding an generalizedst-numbering of a graph and minimizing the number of
edge-crossings in a linear layout. Three strategies were used to determine the order of the vertices
along the spine: an generalizedst-numbering, a preorder numbering and a random order. Figure5
and Figure 6 display the number of edge-crossings obtained for some random graphs related in the
literature [Goldschmidt and Takvorian 1994, Cimikowski 1995]. Notice that, in all cases, when an
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generalizedst-numbering is used to determine the order of the vertices, the edge-crossing number
is smaller than in the other strategies.

In applications to minimize the crossing number of graphs ina linear layout, a generalized
st-numbering can be particularly useful. For instance, notice the graphH drawn in a linear layout
(see Figures 3 (b) and 4). The generalizedst-numbering naturally gives an order of the blocks
of the graph so that the edges between vertices in the same block can be drawn without crossing
edges between vertices in other blocks. Therefore, we can restrict the work of minimizing the
edge-crossings to the edges within each block.

k j l rqst g cde p mou fbhi a n

Figure 4: Linear layout of the graph H . Vertices in the spine are positioned according to
the generalized st-numbering in Figure 3 (b).
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5. Conclusions

In this paper, we presented an algorithm to determine a generalized st-numbering for simply
connected graphs. The algorithm returns anst-numbering for biconnected graphs and, for non-
biconnected graphs, it returns a numbering such that all blocks arest-numbered.

The algorithm can be immediately used by applications that needst-numberings of graphs
such as crossing number minimization, algorithms for orthogonal drawing [Biedl and Kant 1998,
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Calamoneri and Petreschi 1995, Calamoneri et al. 1999, Di Battista et al. 1997] and planarity test-
ing algorithms [Lempel et al. 1967]. The generalizedst-numbering used to determine the or-
der of vertices in the spine of a linear layout showed to be as good as an order determined
by a hamiltonian cycle. However, since determining if a graph has a hamiltonian cycle is an
NP-Complete problem [Karp 1972], even when a hamiltonian path is given as part of the in-
stance [Papadimitriou and Steiglitz 1976], thest-numbering is a superior strategy.

It is simple and straightforward to get anst-numbering of only one block in a generalized
st-numbering. It can be obtained by numbering the vertices of the block in the order they appear in
the listL, ignoring every other vertices.
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