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Resumo

Apresentamos um método de estimação de matrizes origem–destino (OD) para redes viárias
urbanas congestionadas. Assume-se que os dados disponíveis incluem estimações incompletas e
imprecisas de: contagens de tráfego, entradas OD, partidas em origens e chegadas em destinos.
O método consiste de uma sequência de programas lineares fuzzy e foi projetado especialmente
para atender à realidade de cidades brasileiras de médio a grande porte. Quando não há uma
alocação de tráfego de equilíbrio que corresponda aos dados de entrada disponíveis, o método
produz um conjunto de alocações de tráfego – e matrizes OD correspondentes – dentro de
um espectro que abrange (i) das soluções que satisfaçam as estimações de entrada até (ii) as
soluções que satisfaçam uma alocação de equilíbrio. Testou-se o método com dois exemplos
numéricos, um deles proposto pelos autores e outro um teste clássico disponível na literatura.
Palavras-Chave: Matriz OD, Rede de tráfego, Fuzzy sets.
Área principal: L&T – Logística e Transportes.

Abstract

In this paper we describe a new method for estimating origin–destination (OD) matrices for
congested urban traffic networks. It is assumed that the input data includes incomplete, im-
precise estimates of: link counts, trip table entries, numbers of departures from origins and
numbers of arrivals at destinations. The method is based on a sequence of fuzzy linear pro-
grams and is designed especially for the particular characteristics of medium-to-large Brazilian
cities. When there doesn’t exist a user–equilibrium traffic assignment that corresponds to the
input data, the method provides a range of traffic assignments and their related OD matrices,
within the spectrum of (i) satisfaction of the inputted estimates and (ii) a user–equilibrium
assignment. The method has been tested on two numerical examples, one proposed by the
authors and the other a classic one from the literature.
Keywords: OD matrix, Traffic network, Fuzzy sets.
Main area: L&T – Logistics and Transportation.
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1 Introduction

As urban populations expand and streets become increasingly congested, city planners
need comprehensive transport plans for appropriate user service while supporting economic
development and reducing vehicle pollution. Reliable estimation of origin–destination (OD)
travel demands is often a crucial first step in achieving these objectives. Over the last
35 years, various methods based on relatively inexpensive link (network arc) counts have
been developed for estimating OD matrices. A key issue in the estimation of a trip matrix
based on link counts is the identification of the origin–destination pairs whose trips use a
particular network arc. The estimation of OD matrices and link counts are connected by the
assignment of traffic to the various routes between each OD pair. Two types of assignments
have been traditionally proposed to model user behaviour, proportional and equilibrium
assignment.

With proportional assignment, the proportion of travel demand between an OD–pair
does not depend on the OD matrix. Over the years, this line of research has been extensively
examined and improved. See for example, Van Zuylen and Willumsen (1980), Nguyen (1984)
and Brenninger-Göthe et al. (1989).

User–equilibrium assignment was first enunciated by Wardrop (1952). With equilibrium
assignment based on Wardrop’s Principles, the travel demand is distributed such that each
route cost (of all used routes) between any OD pair is equal and no greater than that of any
unused route. User–equilibrium assignment is assumed throughout this article because it
more accurately models congestion effects than proportional assignment. Gur et al. (1980)
developed an iterative technique based on equilibrium assignment that employs the Frank–
Wolfe algorithm as a subroutine with their respected LINKOD system. Also, Sherali et al.
(2003) have presented a user–equilibrium based heuristic that employs linear programming
(LP) iteratively. Further, these authors have presented evidence that their heuristic outper-
forms the maximum entropy approach of Van Zuylen and Willumsen (1980), as implemented
by Bromage (1991). Finally, the various main types of OD matrix estimation methods have
been surveyed by Viti (2008).

There have been numerous reports of OD estimation methods based on relatively in-
expensive traffic link counts. However, many of the reported methods are designed for
Northern Hemisphere situations that differ significantly from most medium-to-large Brazil-
ian urban traffic networks. Furthermore, many of the methods rely on comprehensive, exact
input data and assume that users have perfect knowledge of their traffic environment. We
describe a fuzzy linear programming-based OD matrix estimation method that deals with
input data that is both imprecise and incomplete. The method has been developed to over-
come the deficiencies mentioned above and is designed especially for congested Brazilian
urban traffic networks.

We are concerned with simulating a given congested urban traffic network, rather than
organizing its daily operations. We therefore focus on networks that are static, that is,
they are studied for one time period only. An origin–destination (OD) matrix has rows and
columns that represent the origins and destinations of users of the traffic network and each
entry represents the corresponding OD travel demand. We wish to estimate the entries in
this matrix from input data obtained from observations of the actual traffic flows.

2 Developing an OD Estimation Model

In order to develop and compare network models that attempt to predict the OD matrix,
we adopt the notation introduced by Sherali et al. (2003). Let G = (N,A) be a given traffic
network with node set N of n nodes and arc set A. The nodes in N may represent either
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actual intersections of roads/streets or more general zones. In either case, they are the
origins and/or the destinations of trips by the users of G. Let O be the set of given origin
nodes in N and D be the set of given destination nodes in N . Usually sets O and D have
many nodes in common. Let OD be the set of origin–destination pairs for all possible OD
paths that could be reasonably used in any rational, final traffic assignment. Let Tij be the
i–j entry in the target origin–destination matrix. That is, the number of users with origin
node i and destination node j. We wish to estimate the matrix T = (Tij)n×n. Let Qij
be a working estimate of Tij . The values Qij will vary during the use of the method as it
progressively assigns users to OD paths, and the final value of Qij will be our estimate of
Tij .

Suppose that initial travel demands are given for some of the origin–destination pairs
in OD. These values are estimates of some of the entries of the final, target OD matrix T .
Note that this is the matrix that we are trying to find, not a seed matrix that may represent
inaccurate or outdated data. It is assumed that the Qij values are not known precisely but
are “triangulated” by estimates Q′ij (> 0) and by deviations bLij and bUij , that are all given
constants. For some pairs (i, j) ∈ OD we are given Q′ij as the best known estimate of Tij
and it is desirable to find a final value of Qij that is as close as possible to Q′ij . So,

Q′ij − bLij ≤ Qij ≤ Q′ij + bUij , for (i, j) ∈ OD, where Q′ij > 0. (2.1)

Of course, in each case, Q′ij−bLij ≥ 0. It may well be that no such estimates are available
for certain i–j pairs in OD. In these cases the corresponding travel demands are termed
“unspecified” and the Qij values are not constrained as in (2.1) above.

It is our experience in modelling Brazilian urban traffic networks that it is often difficult
to obtain reliable estimates of the origin–destination travel demands Q′ij for a significant
number of i–j pairs. We have found it far easier to obtain reliable estimates of both the
total number of users that depart from various origins and the total number of users that
arrive at various destinations. Along with the Q′ij estimates that can be identified, the
origin departure and destination totals are also useful in estimating the matrix T .

To incorporate these latter estimates, let QV be the set of OD paths (i, j) ∈ OD′ where
Q′ij is given; OV be the set of nodes i ∈ O, where O′i is given; DV be the set of nodes j ∈ D
where D′j is given; Oi be the total number of users that depart from origin i, where i ∈ OV ;
and Dj be the total number of users that arrive at destination j, where j ∈ DV .

Similar to the discussion above for the Q′ij estimates, suppose that initial values of the
total number of departures (arrivals) are given for some nodes i ∈ O(j ∈ D). It is assumed
that the Oi (Dj) values are not known precisely but are “triangulated” by positive best
estimates O′i (D

′
j), respectively, and by deviations dLi and dUi (eLj and eUj ), respectively, that

are all given constants. Thus,

O′i − dLi ≤ Oi ≤ O′i + dUi for i ∈ OV , and (2.2)

D′j − eLj ≤ Dj ≤ D′j + eUj for j ∈ DV . (2.3)

Of course, in each case, O′i−dLi ≥ 0. It may well be that no such estimates are available
for certain nodes i ∈ O (j ∈ D). In these cases the corresponding departures (arrivals) are
termed “unspecified” and the Oi (Dj) values are not constrained as in (2.2) and (2.3) above.

Let A be the directed arcs of G that represent the roads and streets of interest. That
is, the arcs (roads/streets) in A directly connect certain adjacent pairs of nodes (intersec-
tions/zones) in N . Let AV be the subset of A for which link counts are known and AM
be the subset of A for which link counts are unknown. Thus A = AV ∪ AM . Let fα be a
working estimate of the arc flow in arc α, for all arcs α ∈ A. The arcs in AV will have flows
reflecting the given link counts. And it may well be that many of the arcs in AM will also
have positive flows. The fα values corresponding to all the arcs in A do not have a precise
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value, but an average value. The arcs in AV can be “triangulated” ’ by estimates f ′α(> 0)
and by deviations aLα and aUα , that are given constants. For each arc α ∈ AV we are given
f ′α as the best known estimate of fα and it is desirable to find a final value of fα that is as
close as possible to f ′α. So,

f ′α − aLα ≤ fα ≤ f ′α + aUα , for all arcs α ∈ AV . (2.4)

As before, in each case, f ′α − aLα ≥ 0. No link count estimates are available for the arcs
in AM . In these cases the flows are termed “unspecified” and the corresponding fα values
are not constrained as in (2.4).

We now begin constructing models with the aim of estimating the matrix T . The follow-
ing notation is defined for each origin–destination pair i–j ∈ OD. Let: nij be the number
of distinct possible paths from origin node i to destination node j that are considered of
potential use by users; pkij denote the k

th least–costly path from origin node i to destination
node j; (pkij)α = 1, if the kth path from origin node i to destination node j contains arc α,
and = 0 otherwise; and xkij be the number of users using the kth path from origin node i
to destination node j. In order to understand how the users behave we must find values for
all of the xkij decision variables. They are constrained as follows:∑

k

xkij ≥ Q′ij − bLij , ∀ (i, j) ∈ QV , (2.5)∑
k

xkij ≤ Q′ij + bUij , ∀ (i, j) ∈ QV , (2.6)∑
j∈D

∑
k

xkij ≥ O′i − dLi , ∀ i ∈ OV , (2.7)∑
j∈D

∑
k

xkij ≤ O′i + dLi , ∀ i ∈ OV , (2.8)∑
i∈O

∑
k

xkij ≥ D′j − eLj , ∀ j ∈ DV , (2.9)∑
i∈O

∑
k

xkij ≤ D′j + eUj , ∀ j ∈ DV , (2.10)∑
(i,j)∈OD

∑
k

(pkij)α.x
k
ij ≥ f ′α − aLα, ∀ α ∈ AV , (2.11)∑

(i,j)∈OD

∑
k

(pkij)α.x
k
ij ≤ f ′α + aUα , ∀ α ∈ AV , and (2.12)

xkij ≥ 0, ∀(i, j) ∈ OD and k = 1, 2, . . . , nij . (2.13)

We can regard the set of constraints (2.5)–(2.13) as a set of linear equations with un-
knowns X = {xkij | (i, j) ∈ OD and k = 1, 2, . . . , nij}. X is called a traffic assignment for
G. The number of solutions in X may be none, exactly one, many or infinite. For most
practical situations, in order to find the most appropriate assignment X, we usually need
some additional information about the way in which users choose their individual OD paths.
As is well known, users often choose their OD paths according to their perceived cost of
the various paths that are available. Usually, the cost of each path can be obtained as the
sum the costs of its constituent arcs. And it is commonly assumed that each individual arc
α, has a unit traversal cost cα(fα), that depends upon the number of users fα, of the arc.
The fα values may be calculated using software that produces traffic assignments or which
simply attributes a certain cost to each arc as a function of its flows and the characteristics
of the arc. As an example, PET-Gyn (Jradi et al. (2009)) is a software that models traffic
in Brazil, taking into account the differences in the common urban traffic structure existing
in Brazil and many other developing countries. The cost function for each arc depends on
the flow in the arc itself, on its traffic lights and also on flow in other arcs that dominate
(preferential flow) the arc, such as traffic that is opposed to flow in the arc, for example,
two-way streets or intersections. In any case we have cα(f) as a cost (time) function of flow
in the arc α. A function that is in common use was devised by the Bureau of Public Roads
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(USA) in 1964:
cα(fα) = cFα [1 + 0.15(fα/uα)4], (2.14)

where cFα is the congestion–free travel cost in arc α and uα is the effective capacity of arc α.
If a reliable traffic assignment X has been found by some process, such as the traffic as-

signment program PETGyn (Jradi et al. (2009)), its xkij values can be used to find estimates
of the arc flows fα, as,

fα =
∑

(i,j)∈OD

∑
k

(pkij)α.(x
k
ij), α ∈ A. (2.15)

However, in the present situation of OD matrix estimation it is unlikely that suitable
xkij values will be available to enable expression (2.15) to be used. Instead, what is assumed
throughout the rest of this article is that link counts are pre-specified for the subset AV
and are unavailable for AM , the rest of the arcs in A. When all possible estimated arc flow
values fα have been identified, estimates of the relevant average OD path traversal costs
must be calculated as exact values. Let Ckij be the unit traversal cost of the kth path from
any origin node i to any destination node j for each user, under current conditions for the
present time period. Then

Ckij =
∑
α∈A

(pkij)α.cα(fα), ∀ (i, j) ∈ OD and k = 1, 2, . . . , nij . (2.16)

In the execution of the method discussed later in this article, it is productive to improve
periodically the estimates of the Ckij ’s to be used. This is because, for each combination of
(i, j) ∈ OD and k = 1, 2, . . . , nij , it is essential to identify an estimate of Ckij that reflects the
expected number of users of path pkij in the final assignment of flow to be constructed. This
necessitates the use of a “bi–level” process that iterates between a method that identifies
Qij values and some simulation process (such as PETGyn). Such accurate Ckij estimates
may enhance the accuracy of the assignment X and ultimately the final OD matrix T .

We now make some assumptions. All of the least–cost paths belonging to the set
{pkij | k = 1, 2, . . . , nij} are known and the cost of each of them is known as a non–negative
number C, say. Consider the costs of some of the other (greater–cost) paths belonging
to the set {pkij | k = 1, 2, . . . , nij}, that may possibly used. The actual costs of these paths
need not be known. Their costs are known only to be greater than C.

The method to be presented in this article does not require any information about arc
costs. If we have only the arc costs and not the OD path costs given as input data, we
must pre–process by summing the arc costs to find the necessary OD path costs as exact
numbers.

We now construct models that aim to produce final values of the xkij variables, that
is, the final traffic assignment, X. Incidentally, once values for these variables have been
identified, the estimates of T can be calculated as:

Tij =
∑
k

xkij , ∀ (i, j) ∈ OD. (2.17)

We begin by modifying the OD path costs in order to attempt to assign each user
to one of his least–cost OD paths. If this can be achieved, the result will be a user–
equilibrium assignment. Without loss of generality, we assume from now on that, for each
(i, j) ∈ OD, the costs Ckij , k = 1, 2, . . . , nij , are ordered in non–decreasing order, that is:
C1
ij ≤ C2

ij ≤ · · · ≤ Cnij . Let: C∗ij = min{Ckij | k = 1, 2, . . . , nij}; Kij = {k | k = 1, 2, . . . , nij ;
Ckij = C∗ij}; and K ′ij = {1, 2, . . . , nij}\Kij .

We now modify the Ckij ’s as follows. Let

Ckij = C∗ij , for k ∈ Kij ,

= (k − 1).M.C∗ij , for k ∈ K ′ij , (2.18)
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where M is a suitably large real number.
In the numerical examples solved by the method developed in the article, M is set to 10.

Note also, because of the order of the Ckij ’s, that ∀k ∈ K ′ij , k > 1. We now construct models
that attempt, where it exists, to identify a user–equilibrium assignment that is subject to
the constraints on the OD travel demands, total departures, total arrivals and on the link
counts. It can be seen from (2.5) to (2.12) that the variables Qij , Oi, Dj and fα are not
known precisely but are triangulated. At this point we could construct solution models
based on standard LP, such as the model M0 given below:

Minimize
∑

(i,j)∈OD

∑
k

Ckij .x
k
ij ,

subject to the relationships: (2.5), (2.6),. . . , (2.13).

Suppose that the original OD path costs, and not the revised costs defined in (2.18),
are used in M0. Then M0 will identify a system optimal assignment. Although not realistic
for modelling practical, congested traffic networks, a system optimal assignment is useful
in the attempt to establish bounds on user costs and on exhaust gas emissions. Solution
approaches similar to model M0 accept that imprecision is equivalent to randomness. Here,
randomness in concerned with the uncertainty of the membership of an exact set. That is,
it is equally likely and acceptable that any variable can be set to any value within its range.

3 OD Matrix Estimation in a Fuzzy Environment

Recall that it is desirable to find values of Qij , Oi, Dj and fα that are as close as possible
to Q′ij , O

′
i, D

′
j and f ′α, respectively. Because of this, we reject the uniform distribution

approach (randomness) of standard LP. Instead, we choose a fuzzy set approach to OD
matrix estimation. The basic elements of the theory of fuzzy sets were introduced by
Zadeh (1965) and their application to linear programming in a fuzzy environment has been
popularized by Zimmermann (1983).

We shall create linear programming models that have fuzzy variables as input data. The
authors are aware of only two relevant articles on the application of fuzzy sets to OD matrix
estimation. Liao and Wang (1996) have addressed the fuzzy resolution of the infeasibility of
user equilibrium in traffic assignment problems. These authors have developed some math-
ematical results for the case where the relative values of the link counts and the structure
of the network mean that a feasible user–equilibrium assignment does not exist. They use
fuzzy set theory to identify which link counts must be relaxed to enable user equilibrium
to be achieved within the relaxed link count limits. And Biletska et al. (2009) developed
a dynamic two–step method for short–time OD matrix estimation at a complex signalized
junction for one traffic light cycle using fuzzy–timed high–level Petri nets. Since the data
used to estimate the matrix are imprecise, the authors represent them as fuzzy numbers.

To indicate the fuzzy nature of the Qij ’s, Oi’s, Dj ’s and fα’s values we substitute fuzzy
versions of them in the relationships (2.1)–(2.4). The fuzzy versions are denoted by: Q̃ij ,
Õi, D̃j and f̃α. We then have the following fuzzy linear model M1:

Minimize
∑

(i,j)∈OD

∑
k

Ckij .x
k
ij (= z) (3.1)

subject to: ∑
k

xkij = Q̃ij , ∀ (i, j) ∈ QV , (3.2)∑
j∈D

∑
k

xkij = Õi, ∀ i ∈ OV , (3.3)
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∑
i∈O

∑
k

xkij = D̃j ,∀ j ∈ DV , (3.4)∑
(i,j)∈OD

∑
k

(pkij)α.x
k
ij = f̃α, ∀ α ∈ AV , (3.5)

xkij ≥ 0, ∀ (i, j) ∈ OD and k = 1, 2, . . . , nij . (3.6)
It is proposed to solve modelM1 by following the fuzzy linear programming approach of Zimmer-

mann (1983). First, we calculate upper and lower bounds on the set of all possible optimal solution
values that z can take on while the variables Q̃ij , Õi, D̃j and f̃α vary between their upper and lower
limits. The bounds are obtained by solving the crisp linear programming models M0 stated before
and M2 that is given below. We can calculate a lower bound zL say, on z as the optimal solution to
model M0. We can calculate an upper bound zU say, on z by solving the following LP (model M2):

Minimize
∑

(i,j)∈OD
∑
k C

k
ij .x

k
ij (= zU )

subject to: ∑
k

xkij ≥ Q′ij , ∀ (i, j) ∈ QV ,∑
j∈D

∑
k

xkij ≥ O′i, ∀ i ∈ OV ,∑
i∈O

∑
k

xkij ≥ D′j , ∀ j ∈ DV ,∑
(i,j)∈OD

∑
k

(pkij)α.x
k
ij ≥ f ′α, ∀ α ∈ AV , and condition (3.6).

It is assumed that zL and zU are both finite. According to the theory of fuzzy sets as applied
to linear programming, the following problem is equivalent to model M1:

Find X = {xkij | (i, j) ∈ OD, k = 1, 2, . . . , nij}, such that:∑
(i,j)∈OD

∑
k

Ckijx
k
ij ≤ zU and the constraints (3.2)–(3.6) hold.

(3.7)

A fuzzy set is a function that maps a potential member of the set to a number between zero
and one, indicating its actual degree of membership. For an optimization problem with fuzzy
features Bellman and Zadeh (1970) proposed optimizing its objective function and all its constraints
simultaneously. In order to determine the optimal solution point, both the objective function and
all the constraints must be characterized by membership functions and they must be linked by the
linguistic conjunctions “or” (for maximization) and “and” (for minimization). The aim is to satisfy
a fuzzy objective function and fuzzy constraints that all receive the same treatment. When there is
no such difference, the fuzzy optimization problem is termed symmetric.

We seek to transform a symmetric fuzzy model into a crisp, deterministic model by defining
appropriate membership functions. Fuzzy goals and fuzzy constraints can be defined precisely as
fuzzy sets in the space of alternatives. A fuzzy decision then may be viewed as an intersection of
the given goals and constraints. We now define membership functions for (3.1) to (3.5), where z(x)
is the optimal solution value to Model M1. We assume that the objective function z(x) must be
essentially less than or equal to a given aspiration level zL say, a given finite real number. However
z(x) is fuzzy in the sense that the values of z(x) can be as high as zU say, another given finite
real number such that zL < zU . As shown by Klir and Yuan (1995), in this case the membership
function of the fuzzy set of optimal solutions for this objective is:

µz(x) =


1, if z(x) < zL,

(zU − z(x))/(zU − zL), if zL ≤ z(x) ≤ zU ,
0, if zU < z(x);

(3.8)

∀ (i, j) ∈ OD where Q′ij > 0 and k = 1, 2, . . . , nij , let,

µij(x) =


(
∑
k

xkij − (Q′ij − bLij))/bLij , if Q′ij − bLij ≤
∑
k

xkij ≤ Q′ij ,

(Q′ij + bUij −
∑
k

xkij)/b
U
ij , if Q′ij ≤

∑
k

xkij ≤ Q′ij + bUij ,

0, otherwise;

(3.9)
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∀ i ∈ O where O′i > 0, let,

µOi (x) =


(
∑
j∈D

∑
k

xkij − (O′i − dLi ))/dLi , if O′i − dLi ≤
∑
j∈D

∑
k

xkij ≤ O′i,

(O′i + dUi −
∑
j∈D

∑
k

xkij)/d
U
i , if O′i ≤

∑
j∈D

∑
k

xkij ≤ O′i + dUi ,

0, otherwise;

(3.10)

∀ j ∈ D where D′j > 0, let,

µDj (x) =


(
∑
i∈O

∑
k

xkij − (D′j − eLj ))/eLj , if D′j − eLj ≤
∑
i∈O

∑
k

xkij ≤ D′j ,

(D′i + eUj −
∑
i∈O

∑
k

xkij)/e
U
j , if D′j ≤

∑
i∈O

∑
k

xkij ≤ D′j + eUj ,

0, otherwise;

(3.11)

∀ α ∈ AV where f ′α > 0, let,

µα(x) =


(

∑
(i,j)∈OD

∑
k

(pkij)α − (f ′α − aα))/aα, if f ′α − aα ≤
∑

(i,j)∈OD

∑
k

(pkij)α.x
k
ij ≤ f ′α,

(f ′α + aα −
∑

(i,j)∈OD

∑
k

(pkij)α.x
k
ij)/aα, if f ′α ≤

∑
(i,j)∈OD

∑
k

(pkij)α.x
k
ij ≤ f ′α + aα,

0, otherwise.

(3.12)

We now use these membership functions to define a fuzzy optimization problem that is equivalent
to model M1. Bellman and Zadeh (1970) highlighted the main pillar of decision making in a fuzzy
environment as S = Z ∩C, where Z is the fuzzy objective function, C is the set of fuzzy constraints
and S = the set of decisions that can be taken in the fuzzy environment represented by Z and
C combined. From the theory of fuzzy sets, the membership grade of any element in the set
comprising the intersection of any two fuzzy sets A and B can be defined as the minimum of
the membership functions of A and B. Let S be the set of decisions that can be taken in the
fuzzy environment represented by (3.8)–(3.12). Because Z and C must be satisfied simultaneously,
then, as demonstrated by Lai and Hwang (1992), we can define the membership function of S as:
µS(x) = min{µz(x), µC(x)}. Then we can construct the following decision model for M1:

µS(x) = min{µz(x), µij(x), µi(x), µj(x), µα(x) | (i, j) ∈ OD, i ∈ OV , j ∈ DV , α ∈ AV }. (3.13)

We now create an equivalent model for µS(x) by defining its maximizing decision as:

x∗ = max
x∈X

µS(x) = max
x∈X

[min{µz(x), µC(x)}],

where x∗ is the optimal solution to the fuzzy model in the original scale. In order to find x∗, we
introduce an auxiliary variable λ, thus allowing the model to be aggregated into an equivalent, crisp
LP by using the max–min operator as (model M3):

x∗ = max
x∈X

[min{µz(x), µij(x), µi(x), µj(x), µα(x) | (i, j) ∈ OD, i ∈ OV , j ∈ DV , α ∈ AV }]. (3.14)

In order to solve model M3 we introduce an auxiliary variable λ. This allows the model to be
aggregated into the following, equivalent crisp LP (model M4):

Maximize λ,

subject to: λ ≤ µz(x),
λ ≤ µij(x), ∀ (i, j) ∈ QV ,
λ ≤ µOi (x), ∀ i ∈ OV ,
λ ≤ µDj (x), ∀ j ∈ DV ,

λ ≤ µα(x), ∀ α ∈ AV ,
x ≥ 0 and
0 ≤ λ ≤ 1.

(3.15)
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Substituting the relationships (3.8)–(3.12) we have the following crisp model (M5 – FLIP-
SOD1)

Maximize λ

subject to:∑
(i,j)∈OD

∑
k

Ckijx
k
ij + (zU − zL)λ ≤ zU ,∑

k

xkij − bLijλ ≥ Q′ij − bLij , ∀ (i, j) ∈ QV ,∑
k

xkij + bUijλ ≤ Q′ij + bUij , ∀ (i, j) ∈ QV∑
j∈D

∑
k

xkij − dLi λ ≥ O′i − dLi , ∀ i ∈ OV ,∑
j∈D

∑
k

xkij + dUi λ ≤ O′i + dUi , ∀ i ∈ OV∑
i∈O

∑
k

xkij − eLj λ ≥ D′j − eLj , ∀ j ∈ DV ,∑
i∈O

∑
k

xkij + eUj λ ≤ D′j + eUj , ∀ j ∈ DV ,∑
(i,j)∈OD

∑
k

(pkij)α.x
k
ij − aLαλ ≥ f ′α − aLα, ∀ α ∈ AV ,∑

(i,j)∈OD

∑
k

(pkij)α.x
k
ij + aUαλ ≤ f ′α + aUα , ∀ α ∈ AV ,

xkij ≥ 0 ∀ (i, j) ∈ OD, k = 1, 2, . . . , nij and
0 ≤ λ ≤ 1.

(3.16)

Model M5 is to be used iteratively to gradually improve the estimates of the Ckij ’s that are
used. This is achieved by progressively reducing the value of zU in each cycle and thus forcing the
assignment to approach user–equilibrium. For each path pkij , it is essential to identify an estimate
of Ckij that reflects the expected number of users of the path in the final assignment of OD travel
demand to be constructed. This is achieved by inputting the current iteration’s estimated link
counts fα — found as a by–product of the OD matrix estimation — into a relation of the form
of (2.14) to update the next iteration’s arc costs and OD path costs. This implies that initial
estimates of all the needed Ckij ’s are available. Estimates of all necessary OD path costs must be
provided. For the initial iteration of the method, costs for arcs in AV are calculated by using the
given link counts in expression (2.14) and for arcs in AM by initially setting the flows to zero. The
new Ckij values are then used iteratively in Model M5. Recall that once values for an assignment
X = {xkij | (i, j) ∈ OD, k = 1, 2, . . . , nij} have been identified, the estimates of T can be calculated
as: Tij =

∑
k x

k
ij , ∀ (i, j) ∈ OD. The process is repeated until there is no significant change in the

entries of T .
It is important to state that the chosen solution at the end of a given cycle used as reference

to update the arc costs in the next cycle is always an assignment that is either a user–equilibrium
assignment or one that is as close as possible to one. If there are multiple assignments, the one with
the lowest total user cost amongst those will be chosen.

4 Computational experience with FLIPSOD
We now illustrate FLIPSOD by using it to solve a simple numerical problem that does not

possess congestion affects.The problem has 8 nodes, N = {A,B,C,D,E, F,X, Y } and 13 arcs, A =
{AX1(10), BX2(12), XC3(15), XD4(11), Y E5(10), Y F6(16), DC7(9), CE8(19), XY9(25), CY10(12),
DY11(13)}. The (constant) arc costs are given in parentheses and their labelling numbers are given as
subscripts. The remaining input data is: AV = {1, 2, 3, 4, 5, 6, 7, 8}, OD = {AC,AD,AE,AF,BC,
BD,BE,BF,CE,CF,DC, DE,DF}, (Q′AC , Q

′
AD, Q

′
AE , Q

′
AF , Q

′
BC , Q

′
BD, Q

′
BE , Q

′
BF , Q

′
CE ,

Q′CF , Q
′
DE , Q

′
DF , Q

′
DC) = (53, 47, 30, 30, 63, 48, 27, 32, 129, 24, 134, 24, U) where ‘U’ denotes

‘unspecified’, (bAC , bAD, bAE , bAF , bBC , bBD, bBE , bBF , bCE , bCF , bDE , bDF , bDC) = (11, 9, 6, 6,
13, 10, 5, 6, 26, 5, 27, 5, U), (O′A, O

′
B , O

′
C , O

′
D) = (160, 170, 153, U), (dA, dB , dC , dD) = (32, 34,

31, U), (D′C , D
′
D, D

′
E , D

′
F ) = (U, 95, 320, 110), (eC , eD, eE , eF ) = (U, 19, 64, 22), (f ′1, f ′2, f ′3, f ′4,

1Fuzzy Linear Integer Programming for Static Origin-Destination matrix estimation.
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f ′5, f ′6, f ′7, f ′8, f ′9, f ′10, f ′11) = (160, 170, 170, 144, 178, 110, 130, 141, U, U, U), (a1, a2, a3, a4, a5,
a6, a7, a8 , a9, a10, a11)= (16, 17, 17, 14, 18, 11, 13, 14, U, U, U).

There are 33 OD paths, the first 13 of which are least–cost paths, one for each OD pair. When
Models M0 and M2 are used with the OD path costs defined as in (2.18), they produce a lower
bound zL = 17562 and an upper bound of zU = 34325. FLIPSOD produces an initial assignment
with total user cost z = 34325 with λ = 1. The OD matrix estimates are identical to the original
Q′ij estimates above, except that Q′DC was originally unspecified and has been assigned the value
TDC = 130. The link counts are also identical to the original f ′α estimates above except that f ′9, f ′10
and f ′11 were originally unspecified and have been assigned the values 16, 66 and 207, respectively.
However, the corresponding assignment is not a user–equilibrium assignment in the sense that some
users are assigned paths that exceed their individual least cost. Due to the structure of the network
and the relative values of the input data, there does not exist a user–equilibrium assignment that
corresponds to the given best estimates.

As the upper bound zU is progressively reduced from the value 34325, FLIPSOD produces a series
of assignments. The corresponding Qij , Oi, Dj and fα values move progressively away from the given
best estimates and towards either the given upper or lower limits of the best estimates. At zU = zL =
17562, FLIPSOD produces a user–equilibrium assignment with total user cost z = 17562 and λ = 0.
The corresponding OD matrix estimates are (TAC , TAD, TAE , TAF , TBC , TBD, TBE , TBF , TCE , TCF ,
TDE , TDF , TDC) = (57, 38, 24, 25, 50, 55, 22, 26, 103, 29, 160, 19, 117) and the link counts are (f1, f2,
f3, f4, f5, f6, f7, f8, f9, f10, f11) = (144, 153, 153, 144, 160, 99, 117, 149, 0, 29, 230) which are
somewhat different from the original ones.

FLIPSOD has also been compared with the well–respected LP–based, iterative OD matrix
estimation heuristic of Sherali et al. (2003). Both methods were applied to the well-known “Corri-
dor Problem” of Gur et al. (1980) that does possess congestion affects.The Corridor Problem has
12 nodes, eight arcs, multiple paths between certain OD pairs and multiple user–equilibrium as-
signments. For each arc, constant capacity and congestion-free travel cost parameters are given.
Preliminary link counts are also provided and these enable preliminary arc costs and consequently,
OD path costs to be calculated using (2.14). These costs are calculated in subsequent iterations of
the methods by inputting resulting arc flow counts into expression (2.14).

Sherali et al. (2003) tested their method, denoted by SA (TT), on 12 input datasets that arise
from all combinations of three different sets of available link counts and four different trip tables.
In our case, only three of these trip tables are of interest, since one of them (the “no information
trip table”) contains data that is not within the given, fuzzy ranges of the best available estimates
— an assumption of FLIPSOD.

The three trip tables that were used as parts of separate input datasets are: (i) the “correct
trip table” (CTT), which produces a user–equilibrium traffic assignment; (ii) the “alternative user–
equilibrium trip table” (ATT), which leads to a different user–equilibrium traffic assignment; and
(iii) the “small error trip table” (SETT), which was constructed from small variations to the entries
of CTT, in other words, a “noisy” version of CTT. The numerical instance of the Corridor Problem
has counts available for all of its arcs. For the purposes of testing, following Sherali et al. (2003),
we used three different versions of the availability of link counts: (i) link counts in all the 18 arcs
of the network, (ii) link counts in 67% of the arcs of the network and (iii) link counts in 50% of the
arcs of the network.

For the use of FLIPSOD, it is assumed that the entries in the three given OD target matrices
and for the link counts were inexact and could vary by up to ±20% from the given entries as
fuzzy numbers. However, the given entries are still considered to be the best available estimates.
FLIPSOD is designed to produce for each given OD matrix entry or arc count, an outputted value
that is as close as possible to the given central estimate. When applying FLIPSOD to ATT with
50% of the link counts, we obtained 11 different traffic assignments. Their corresponding OD matrix
estimates are shown in Figure 1 and they are numbered 1, 2, . . . , 11. As we move from output 1
to output 2, . . . , and progressively to output 11, the corresponding values of λ decrease and their
assignments progress from reflecting the given link counts to approaching user equilibrium. As the
upper bound zU on the total user cost is progressively reduced from an initial value of 817005.8
to a final value of 675677.2, the value of λ diminishes from 1.0000 to a final value of 0.0009. The
latter value corresponds to a user equilibrium assignment with the given link counts and OD matrix
inputs matched exactly.
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Figure 1: The FLIPSOD solution pool for ATT.

At the end of every cycle, FLIPSOD outputs an OD matrix and an assignment that reflects
the travel demand of the matrix. In the course of its operation, FLIPSOD produces a spectrum
of matrices and their related assignments. The spectrum has one extreme that is a matrix and an
assignment that has flows that are as close as possible to the central estimates of link counts, etc.
The other extreme of the spectrum is a matrix and an assignment that is as close as possible to user
equilibrium. For all the three trip tables evaluated (CTT, ATT and SETT), FLIPSOD produced
matrices within the spectrum just mentioned above. The OD matrix found for CTT and one of the
matrices found for SETT are the same as the ones found by the SA (TT) method. Like SA (TT),
FLIPSOD found all the matrices in reasonable computational time.

In order to compare the outputs of the two methods, two statistical measures, the percentage
root mean square error and the percentage mean absolute error were used. For CTT, FLIPSOD
reproduced the same results as those achieved by the SA (TT) method.That is, FLIPSOD matches
the given link counts and identifies CTT for all three levels of link count availability. FLIPSOD also
found the matrix that corresponds to a user equilibrium assignment for ATT. Outcomes for ATT
with SA (TT) were not reported by Sherali et al. (2003). The results of FLIPSOD and SA (TT) for
the SETT trip table can be seen in the Table 1.

Table 1: Results obtained by SA (TT) and FLIPSOD with SETT .
SA (TT) FLIPSOD

TCA1 %RMSE %MAE %RMSE %MAE %RMSE %MAE %RMSE %MAE
(fα) (fα) (OD) (OD) (fα) (fα) (OD) (OD)

50% 0 0 13.77 8.7 0.54 0.42 13.91 8.29
67% 0 0 13.42 8.18 0.32 0.25 13.82 8.15
100% 0 0 0 0 0.33 0.25 13.81 8.14

1 Traffic counts availability.

The main difference between the two methods occurs when there are 100% of link counts avail-
able. In that situation, SA (TT) finds the matrix that corresponds to a user equilibrium assignment
and FLIPSOD produces a matrix with results close to those obtained with the 50% and 67% of link
counts available. In the cases of 50% and 67% of link count availability the results found by both
methods are very close to each other. However, the results obtained by SA (TT) are slightly better.
The difference between the results found by the two methods is at most 0.4% (%MAE(OD) with
50% of link counts available). For the other statistical measure, the differences are even smaller.

5 Conclusions and Summary
We have reviewed issues concerned with the estimation of OD matrices in congested urban traffic

networks when the input data is incomplete and imprecise. We have presented an iterative linear
estimation approach, called FLIPSOD, that utilizes the theory of fuzzy sets in order to deal with
the imprecision and incompleteness of the given input estimates. Sometimes a user–equilibrium
assignment that reflects the given input data does not exist. In this case FLIPSOD has the useful
feature that it provides a range of traffic assignments and their corresponding OD matrix estimates,
reflecting the spectrum within the range between insistence on the best estimates within fuzzy limits
and a user–equilibrium assignment. Computational experience with the model compares favourably
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with that of a well–respected method. We believe that it will become a useful tool for traffic planners.
The authors are currently testing FLIPSOD on large scale Brazilian city networks and comparing
the results with those produced by existing methods.
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