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ABSTRACT 

This work presents the application of a micro evolutionary algorithm to solve a bi-
objective scheduling problem in heterogeneous grid computing environments. A new formulation 
of the bi-objective scheduling problem is introduced, by considering the makespan and weighted 
response ratio metrics, which account for the total execution time and the waiting time 
respectively. The problem is NP-hard, and a parallel implementation of the proposed micro 
evolutionary algorithm is presented, in order to find accurate results in short execution times. The 
experimental analysis performed on both standard low-sized and large problem instances shows 
that efficient schedules are computed by the proposed method. 
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1. Introduction 

In the last decade, distributed computing platforms have been increasingly used to solve 
complex problems with large computing demands. Nowadays, the paradigm of grid computing is 
employed to work over a large distributed, heterogeneous, and loosely-coupled aggregation of 
processing elements that allow gathering the computing power required for complex applications 
(Foster, 1996). When using this kind of heterogeneous computing platforms, a capital problem 
consists in finding a tasks-to-machine assignment in order to fulfill specific requirements, usually 
related with the total time required to execute a bunch of tasks and/or with the quality of service 
provided by the computing infrastructure. The Heterogeneous Computing Scheduling Problem 
(HCSP) has emerged as an important optimization problem in the last decade, due to its ability to 
model the correct planning of distributed computing grid environments (Eshaghian 1996).  

The HCSP is NP-hard (Garey and Johnson, 1979), even in its classical formulation that 
proposes to minimize a unique objective function. So, classical methods such as dynamic 
programming, linear programming, etc. are only useful to solve low-dimension problem instances. 
When tackling large scheduling scenarios, heuristics and metaheuristic techniques are promising 
methods to solve the HCSP, since they are able to compute accurate sub-optimal schedules in 
reasonable times. Among a large set of modern metaheuristic techniques, evolutionary algorithms 
(EAs) emerged as accurate and efficient methods to solve scheduling problems, showing the high 
level of problem-solving accuracy they get in many other areas of application (Back et al. 1997). 

EAs have been applied to the single-objective HCSP that proposes to minimize the 
makespan metric in the last fifteen years (Wang 1997, Braun 2001, Zomaya 2001, Xhafa 2008). 
However, those HCSP variants that propose the simultaneous optimization of several scheduling 
efficiency metrics have been seldom tackled. In addition, problem instances that model realistic 
grid environments have rarely been faced, mainly due to the complexity of dealing with the 
underlying high-dimension optimization problem. Few works have studied parallel EAs in order 
to determine their ability to use the computing power of large clusters to improve the search 
efficacy and efficiency. Thus, there is still room to contribute in these lines of research by 
studying highly efficient parallel EA implementations, able to deal with large-size multiobjective 
HCSP instances by using the computational power of parallel and distributed environments. 

In this line of work, this article presents a parallel micro EA applied to the bi-objective 
HCSP that proposes to minimize the makespan and weighted response ratio metrics. The main 
contributions of the work are to introduce a new formulation of the bi-objective scheduling 
problem in heterogeneous grid computing systems; and to develop an accurate parallel micro EA 
to solve it. Efficient numerical results are reported for the experiments performed on realistic 
problem instances. The analysis shows that the proposed EA is able to achieve high problem 
solving efficacy, outperforming the results obtained with traditional deterministic heuristics, 
while also exhibiting a good scalability behavior when solving high dimension problem instances. 

The manuscript is structured as follows. Next section presents the HCSP, its 
mathematical formulation, and the deterministic heuristics used in the results comparison. Section 
3 introduces evolutionary computing techniques and describes the new parallel micro EA 
proposed in this work. The implementation details of the parallel micro EA applied to the bi-
objective HSCP are provided in Section 4. Section 5 presents and discusses the experimental 
analysis and results. The conclusions and possible lines for future work are formulated in Section 6. 

2. Scheduling in heterogeneous computing and grid environments 

This section introduces the bi-objective HCSP and its mathematical formulation, and 
describes the deterministic scheduling heuristics using in the comparative experimental analysis. 

2.1 Bi-objective HCSP in grid computing environments 

Most scheduling problems mainly concern about time, trying to minimize the time 
spent to execute a set of submitted tasks. The bi-objective version of the HCSP introduced in this 
work proposes to minimize two relevant metrics: the makespan and the weighted response ratio.  
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The makespan is defined as the time spent from the moment when the first task begins 
execution to the moment when the last task is completed (Leung 2004). It is the most usual 
metric to minimize in scheduling problems, since it evaluates the computing resources utilization. 

Many other performance metrics have been considered to optimize in scheduling 
problems. They are usually related to the economic cost of executing an application, or to the 
quality of service (QoS), which is especially pertinent in grid infrastructures. The response time 
of each task is an indicator of the QoS of the system and it is an important metric from the user 
point-of-view, since it reflects the response time of a computational system for a set of submitted 
tasks. The response ratio metric evaluates the sum of the response times of each submitted task, 
and it is inversely dependent on each task estimated completion time, thus favoring short tasks 
over long tasks (Stallings 2001). A common approach in modern computational grid systems is to 
group the tasks in different classes, according to their importance or priority (Buyya 2002, Dong 
2006). To model this scenario, the bi-objective HCSP tackled in this work uses the weighted 
response ratio (wrr) metric: each task is assigned a positive weight pi which represents the 
relative priority of the task in the system. The wrr metric is then defined as the total response 
ratio of each task multiplied by its priority weight in the system (pi), following a weighted 
approach that has been previously applied to the response time metric (Monte 2002). 

2.2 Mathematical formulation 

The following formulation presents the mathematical model for the MR-HCSP: 

• Let there be an heterogeneous grid computing system composed of a set of 
processors or machines M = {m1, m2, ..., mL} (dimension L), and a collection of 
tasks T = {t1, t2, ..., tN} (dimension N)  to be executed on the system, 

• let there be an execution time function ET : T × M → R+, where ET(ti,mj) is the 
time required to execute the task ti in the machine mj, 

• let there be a priority function  P : T → N+, where P(ti) is the priority of the task ti 
in the system, 

• let F(ti) be the finishing time of task ti in the system; 
• the goal of the bi-objective HCSP is to find an assignment of tasks to machines (a 

function  f : TN → ML ) which simultaneously minimizes the makespan, defined in 
Equation 1, and the weighted response ratio, defined in Equation 2. 
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Both objectives are in conflict, as minimizing the makespan metric implies to execute 
the tasks in the minimum possible time, and the weighted response ratio inversely depends on the 
expected execution time. 

In the previous HCSP formulation all tasks can be independently executed. This kind of 
applications frequently appears in many lines of scientific research, such as in Single-Program 
Multiple-Data applications used in multimedia processing, data mining, parallel domain 
decomposition of numerical models for physical phenomena, etc. Another scenario with 
independent tasks is when different users submit their (obviously independent) tasks to execute in 
grid and volunteer-based computing infrastructures -such as TeraGrid, WLCG, BOINC, Xgrid, 
etc.-, where non-dependent applications using domain decomposition are very often submitted for 
execution. Thus, the relevance of the bi-objective HCSP faced in this work is justified due to its 
importance in realistic distributed heterogeneous grid computing systems. 
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In this work, the bi-objective optimization problem is solved by applying an aggregate 
function approach that uses a weighted sum of makespan and weighted response ratio. Although 
the aggregation function approach is often outperformed by Pareto-based methods when solving 
multiobjective optimization problems, it is a common approach in the literature mainly due to 
two main advantages: it is computationally efficient, so it is recommended when the times 
available for search is short, and it is suitable for optimization problems with a convex Pareto 
front (Coello 2006). The aggregation function approach has been previously applied to other 
HCSP variants by Xhafa et al. (2007, 2008). In the bi-objective HCSP tackled in this work, since 
the makespan and weighted response ratio objectives are in different units, they have to be 
normalized considering a reference solution before the aggregation. 

2.3 Traditional heuristics for scheduling in heterogeneous computing systems 
Many deterministic heuristics have been proposed for scheduling in heterogeneous 

computing and grid systems (Kwok 1999). Most of them are based on simple iterative procedures 
that assign tasks to machines in a given order, trying to fulfill a specific criterion. Three 
deterministic heuristics have been used to provide a baseline for comparing the results achieved 
with the micro EA proposed in this work: 

Minimum Completion Time  (MCT) considers the set of tasks sorted in an arbitrary 
order. Then, it assigns each task to the machine with the minimum execution time for that task. 

Sufferage identifies the task that if it is not assigned to a certain host, will suffer the 
most. The sufferage value is computed as the difference between the best MCT of the task and its 
second-best MCT, and this method gives precedence to those tasks with high sufferage value. 

Min-Min  greedily picks the task that can be completed the soonest. The method starts 
with a set U of all unmapped tasks, calculates the MCT for each task in U for each machine, and 
assigns the task with the minimum overall MCT to the machine that executes it faster. The 
mapped task is removed from U, and the process is repeated until all tasks are mapped. Min-Min 
improves upon the MCT heuristic, since it considers all the unmapped tasks sorted by MCT, and 
the availability status of the machines is updated by the least possible amount of time for every 
assignment. Min-Min is one of the most effective deterministic scheduler for a wide range of 
heterogeneous computing scenarios. 

3.  Evolutionary computation 

This section presents evolutionary computation techniques, the CHC algorithm, and 
parallel EAs. After that, the new proposal of a parallel micro-CHC algorithm is introduced. 

3.1 Evolutionary algorithms 
EAs are randomized (i.e. non-deterministic) methods that emulate the evolutionary 

process of species in nature, in order to solve optimization, search, and other related problems 
(Back et al. 1997). In the last twenty-five years, EAs have been successfully applied for solving 
optimization problems underlying many real applications of high complexity.  

An EA is an iterative method (each iteration is called a generation) that applies stochastic 
operators on a pool of individuals (the population) in order to improve their fitness, a measure 
related to the objective function of the optimization problem. Every individual in the population 
is the encoded version of a tentative solution of the problem. The population is initialized by either 
using a random method or a specific heuristic for the problem. The evaluation associates a fitness 
value to every individual, indicating its suitability to the problem. The probabilistic application of 
evolutionary operators like the recombination of parts of two individuals and mutation in their 
contents are guided by a selection-of-the-best technique to tentative solutions of higher quality. 

The stopping criterion usually considers a fixed number of generations or execution 
time, a quality threshold on the best fitness value, or the detection of a stagnation situation. 
Specific policies are used in the selection of individuals to recombine and to determine which 
new individuals replace the old ones in each new generation. The EA returns the best solution 
ever found in the iterative process, taking into account the fitness function values. 
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3.2 The CHC algorithm 
“Cross generational elitist selection, Heterogeneous recombination, and Cataclysmic 

mutation” (CHC) (Eshelman 1991) is a variant of EA that uses an elitist selection strategy that 
tends to perpetuate the best individuals in the population. CHC uses a special mating: only those 
parents which differ from each other by some number of bits are allowed to reproduce. The initial 
threshold for allowing mating is often set to 1/4 of the chromosome length. If no offspring is 
inserted into the new population, this threshold is reduced by 1. The recombination operator in 
CHC is Half Uniform Crossover (HUX), which randomly swaps exactly half of the bits that 
differ between the two parent strings. CHC does not apply mutation; diversity is provided by 
applying a re-initialization procedure, using the best individual found so far as a template for 
partially creating a new population after convergence is detected. 

The pseudo-code of CHC presented in Algorithm 2 shows those features that make it 
different from classical EAs: the elitist selection strategy, the use of the HUX recombination 
operator, the absence of mutation, which is substituted by a re-initialization operator, and the 
mating restriction policy, that does not allow to recombine a pair of “too similar” individuals. 

 initialize (P(0)) 
 generation ← 0;  distance ← 1/4 * chromosomeLength 
 while (not stopcriteria) do 
 evaluate(P(generation)) 
 parents ← elitist_selection(P(generation)) 
 if  (distance(parents) ≤ distance) then 
  offspring ← HUX (parents) 
  evaluate(offspring) 
   newpop ← replace(offspring, P(generation)) 
 end 
 if  (newpop = P(generation)) then 
  distance – – 
 end 
 generation ++ 
 P(generation) ← newpop 
 if  (distance = 0) then 
  reinitialization (P(0)) 
  distance ← 1/4 * chromosomeLength 
 end 
 end 
 return  best solution ever found 

Algorithm 2: Schema of the CHC algorithm 

3.3 Parallel evolutionary algorithms 
Parallel implementations became popular in the last decade as an effort to improve the 

efficiency of EAs. By splitting the population into several computing elements, parallel EAs allow 
reaching high quality results in a reasonable execution time even for hard-to-solve optimization 
problems (Alba 2005). The parallel EA proposed in this work is categorized within the 
distributed subpopulations model according the classification by Alba and Tomassini (2002): the 
original population is divided into several subpopulations, separated geographically from each 
other. Each subpopulation runs a sequential EA, so individuals are able to interact only with other 
individuals in the subpopulation. An additional migration operator is defined: within a given 
frequency some selected individuals are exchanged among subpopulations, introducing a new 
source of diversity in the EA.  
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initialize (P(0)) 
 generation ← 0 
 while (not stopcriteria) do 
 evaluate(P(generation)) 
  parents ← selection(P(generation)) 
 offspring ← variation operators(parents) 
 newpop ← replace(offspring, P(generation)) 
 generation ++ 
 P(generation) ← newpop 
 if  (sendmigrants) 
  migrants ← selection for migration(P(generation) 
  sendmigration(migrants) 
 end 
 if  (recvmigrants) 

inmigrants ← recvmigration() 
P(generation) ← insert(immigrants, P(generation)) 

 end 
 end 
 return  best solution ever found 

      Algorithm 3: Schema of a parallel evolutionary algorithm. 

Algorithm 3 shows the generic schema for a distributed subpopulation parallel EA. It 
follows the generic schema of an EA, but including the new migration operator. Two conditions 
control the migration procedure: sendmigrants determines when the exchange of individuals 
takes place, and recvmigrants establishes whether a foreign set of individuals has to be received 
or not. Migrants denotes the set of individuals to exchange with some other subpopulation, 
selected according to a given policy. The schema explicitly distinguishes between selection for 
reproduction and selection for migration; they both return a selected group of individuals to 
perform the operation, but following potentially different policies. The sendmigration and 
recvmigration operators carry out the exchange of individuals among subpopulations according 
to a connectivity graph defined over them, most usually a unidirectional ring.  

3.4 The parallel micro-CHC evolutionary algorithm 
By splitting the global population into several subpopulations, PEAs significantly 

increase the computational efficiency of the search due to the limited interactions and the reduced 
population size within each subpopulation. However, EAs quickly lose diversity in the solutions 
when using small populations: the search suffers a premature convergence, and the quality of 
solutions stagnates. In CHC, the mating restriction policy and the reinitialization operator are 
usually not powerful enough to provide the required diversity to avoid premature convergence 
when using very small populations (i.e. less than 10 individuals). Many alternatives have been 
proposed in the related literature to overcome the loss of diversity on EAs. In the quest for 
designing a fast and accurate version of the CHC algorithm for solving scheduling problems, a 
parallel micro-CHC algorithm has been developed in our research group. 

The proposed parallel micro-CHC algorithm combines a distributed subpopulation 
parallel model of the original CHC structure (using HUX and mating restriction) with two key 
concepts from the micro-genetic algorithm by Coello and Pulido (2001): an external population 
of elite solutions stored during the search, and an accelerated reinitialization using a specific 
randomized version of a well-known local search method to provide diversity within each 
subpopulation. A micro-population of eight individuals is used in each subpopulation of the 
parallel micro-CHC algorithm. The size of the external population is three individuals, and a 
simple remove-of-the-worst strategy is used each time a new individual is inserted in the elite set.  
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4. A parallel micro-CHC applied to the bi-objective HCSP 

This section introduces the software library used to implement the parallel micro-CHC 
algorithm, and it also presents the implementation details to solve the HCSP.  

4.1 The MALLBA library 
MALLBA (Alba et al., 2006) is a library of algorithms for optimization that can deal 

with parallelism in a user-friendly and at the same time, efficient manner. The library implements 
several EAs as generic templates in software skeletons to be instantiated by the user with the 
specific features when solving a given problem. These templates incorporate the knowledge 
related to the resolution method, its interactions with the problem, and the parallel considerations. 
Skeletons are implemented by a set of required and provided classes implemented in C++ that 
represent an abstraction of the entities participating in the resolution method: 

• The provided classes implement internal aspects of the skeleton in a problem-
independent way. The most important provided classes are Solver (the algorithm) and 
SetUpParams (for setting the parameters of the implemented algorithms). 

• The required classes specify information related to the problem. The Problem and 
Solution required classes encapsulate the problem-dependent entities needed by the 
resolution method. Depending on the skeleton, other classes may be required. 

The MALLBA library is publicly available to download at the University of Málaga 
website http://neo.lcc.uma.es/mallba/easy-mallba.  

The implementation of parallel micro-CHC is based on the CHC skeleton provided by 
MALLBA. Additional code was incorporated into the CHC skeleton to define and manage the 
elite population, to implement the special reinitialization and local search operators, and to 
include other features related to the bi-objective HCSP resolution. The details about the problem 
encoding, the evolutionary operators, and specific features are provided in the next subsections. 

4.2 Problem encoding 
A machine-based encoding was used to represent candidate solutions for the bi-

objective HSCP in parallel micro-CHC. The machine-based encoding is a bidimensional structure 
that stores for each machine the list of tasks assigned to it, ordered regarding their execution 
precedence. This encoding simplifies the calculation of the fitness function for solutions after 
applying the variation operators. Figure 1 presents an example of the machine-oriented encoding. 

 
Figure 1: Machine oriented encoding. 

4.3 Initialization 
Several methods have been proposed to initialize the population when applying EAs to 

the single objective HCSP (Braun, 2001; Xhafa, 2008). Traditional deterministic scheduling 
heuristics have been used to start the evolutionary search from a set of useful suboptimal 
schedules. In the parallel micro-CHC algorithm applied to the bi-objective HCSP, one individual 
in the whole population is initialized using Min-Min and other using Sufferage, and one 
individual in each subpopulation is initialized using MCT. As for the rest of the population, 60% 
is initialized using a randomized version of MCT, and the remaining 40% is initialized at random.  
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4.3 Recombination 
The parallel micro-CHC algorithm uses HUX to recombine characteristics of two 

solutions. In the HUX implementation for the bi-objective HCSP, a group of tasks to be 
recombined is chosen with uniform probability (0.5). When a chosen task is assigned to different 
machines in the selected parents, the machine to place that task in each offspring is chosen to 
optimize either the makespan or the wrr objectives with uniform probability (0.5). 

4.4 Reinitialization 
The reinitialization operator performs small perturbations in a given schedule, aimed at 

providing diversity to the population, in order to avoid the search from getting stuck in local 
optima. When a stagnation situation is detected two actions are performed: the local search 
operator is applied to the best solution in the population to further improve it, and after that, 
simple moves and swaps of tasks are randomly applied to the rest of the population to restart the 
search process from a hopefully unexplored location in the solution space. 

4.5 Local search 

Many approaches have been proposed to provide diversity and improve the efficacy of 
the search in EAs to solve the single objective HCSP. Most of the previous works concluded that 
local search methods are needed to find accurate schedules in short times. The works of Xhafa et 
al. (2007; 2008) explored several local search operators for solving low-dimension HCSP 
instances, but many of the proposals become ineffective when the problem instances grow. 

In order to improve the population diversity, the parallel micro-CHC algorithm 
incorporates a randomized version of Problem Aware Local Search (PALS) (Alba and Luque 
2007). Algorithm 4 presents the pseudo-code of the randomized PALS operator applied in the 
parallel micro-CHC algorithm for the bi-objective HCSP.  

 M ← Select a list of #MAX_MACH machines 
 end_search ← false 
 while ((count(M) > 0) and not end_search) do 
  m = pop(M) 
 trials ← 0 
 while (trials < MAX_TRIALS) and (not end_search)) do  
  ∆BEST ← 0 
  for  (tM = startM to TOPM) do 
   {Iterate on tasks of machine m} 
   for  (tT = startT to TOPT) 
     {Iterate on tasks of other machines} 
    ∆CURRENT ← SwapFitnessImprovement (tM,tT) 
    if  ( ∆CURRENT >  ∆BEST ) then 
      best_swap ← (tM,tT) 
     ∆BEST ← ∆CURRENT 
    end 
   end 
  end 
  trials++ 
  if  ( ∆BEST > 0 ) then 
   s ← DoSwap(best_swap) 
   end_search ← true 
  end 
 end 
 end 

    Algorithm 4: Schema of the randomized PALS for the bi-objective HCSP. 
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Working on a given schedule s, the randomized PALS for the bi-objective HCSP 
selects a collection of machines M to perform the search. With high probability the search 
focuses on the machines with the largest fitness contribution, but it also introduces a chance of 
improving the fitness for other machines. Then, for each machine, the outer cycle iterates on 
TOPM tasks assigned to machine m (randomly starting in task startM), while the inner cycle 
iterates on TOPT tasks assigned to other machines (randomly starting in task startT). For each pair 
(tM, tT), the fitness improvement when swapping tasks tM and tT is computed, storing the best 
improvement found for the whole schedule on the TOPM×TOPT swaps evaluated. After the 
double cycle ends, the best move found is applied only if it improves the current solution fitness. 
For each machine, the process is applied until finding a schedule which improves the original 
fitness or after performing MAX_TRIALS attempts. If a better schedule is not found for the 
current machine, then the swap-search is performed on the next machine in M. 

5. Experimental analysis 

This section describes the computational platform used to develop and evaluate the 
proposed parallel micro-CHC algorithm and introduces the set of HCSP instances used to 
evaluate the efficacy of the proposed method. After that, the parameter settings experiments are 
presented. Last, the experimental results when solving realistic MR-HCSP instances are 
analyzed, by presenting a comparison with the results obtained using deterministic techniques. 

5.1 Development and execution platform 
The proposed parallel micro-CHC algorithm was implemented in C++, using the 

MALLBA library with the version 1.2.7p1 of MPICH, a well-known implementation of MPI 
(Gropp 1994). The experimental analysis was performed using a cluster with four Dell 
PowerEdge servers (QuadCore Xeon E5430 at 2.66 GHz, 8 GB RAM), CentOS Linux 5.2 
operating system and Gigabit Ethernet LAN (cluster website: http://www.fing.edu.uy/cluster).  

5.2 Test instances 
A specific set of 60 HCSP instances was used to evaluate the proposed parallel micro-

CHC algorithm: 12 standard instances from Braun et al. (2001) with dimension (tasks×machines) 
512×16, and 48 large dimension instances (24 with dimension 1024×32 and 24 with dimension 
2048×64). These large dimension instances were generated following the methodology by Ali et 
al. (2000) and using the two parametrization values proposed by Ali et al. (2000) and Braun et al. 
(2001). The new instances model realistic scheduling scenarios on small and medium-sized 
heterogeneous computing and grid infrastructures.  

5.3 Parameter settings 
A stopping criterion fixed at 90 s. of execution time is used for the parallel micro-CHC 

algorithm, following several works proposing efficient parallel EAs applied to the single-
objective HCSP by Xhafa (2007; 2008) and the previous work (Nesmachnow et al. 2011). This is 
an efficient time limit for scheduling in realistic distributed HC and grid infrastructures such as 
volunteer-computing platforms, distributed databases, etc., where large tasks -with execution 
times in the order of minutes, hours and even days- are submitted to execution.  

Instead of fixing an arbitrary set of parameter values for the parallel micro-CHC, a 
configuration analysis was performed to determine the best values for the crossover (pC) and 
reinitialization (pR) probabilities, the number of subpopulations (#I) and their size (#pop). The 
parameter setting experiments were performed over a subset of six HCSP instances with 
dimension 512×16. The candidate values for the studied parameters were: pC: 0.8, 0.9, 1.0; pR: 
0.7, 0.9, 1.0; #I: 4, 8, 16; #pop: 10, 20, 40. The parameter configuration that obtained the best 
results in the experiments was: pC = 1.0, pR = 0.9, #I =16, #pop =10. 
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5.2 Results and discussion 
This subsection reports the experimental results when solving the MR-HCSP. The 

results for the problem instances by Braun et al. are presented separately, since these benchmark 
instances have been very often solved by the research community. In addition, since a large set of 
high dimension MR-HCSP instances were solved (48), a graphic summary and the average 
improvements over the Min-Min results for these instances are reported. 

Table 1 presents the results computed by parallel micro-CHC for the standard problem 
instances by Braun et al. The best, average, and standard deviation on the two metric results 
obtained in the 30 independent executions performed for each problem instance are reported. The 
best improvements achieved by parallel micro-CHC over the best deterministic heuristic results 
(computed by Min-Min) are also shown. 

Instance 
Min-Min EA (avg. ± std. dev) EA (best) Improvement 

Makespan WRR makespan wrr makespan wrr makespan wrr 

u_c_hihi.0 8460680.0 46084.6 7899879.3±33641.3 38151.0±578.9 7869300.0 38516.8 7.0 % 16.5 %

u_c_hilo.0 161805.0 36170.9 157442.5±640.9 28027.1±660.9 157081.0 28158.9 2.9 % 22.2 %

u_c_lohi.0 275837.0 48269.5 259246.8±1672.3 39137.8±809.8 258165.0 39084.0 6.4 % 19.0 %

u_c_lolo.0 5441.4 36057.9 5352.5±21.1 27352.8±784.1 5328.8 27156.8 2.1 % 24.7 %

u_i_hihi.0 3513920.0 17862.1 3087658.6±23247.9 16639.7±533.8 3046180.0 16502.5 13.3 % 7.6 %

u_i_hilo.0 80755.7 23502.6 76100.3±669.1 20710.6±113.0 75691.3 20664.5 6.3 % 12.1 %

u_i_lohi.0 120518.0 17630.7 107372.7±586.7 16318.4±101.8 106358.0 16286.5 11.8 % 7.6 %

u_i_lolo.0 2785.6 24238.9 2624.0±16.0 21588.9±114.3 2608.8 21744.2 6.4 % 10.3 %

u_s_hihi.0 5160340.0 25884.0 4473874.7±43251.8 21739.5±365.2 4441760.0 21554.3 13.9 % 16.7 %

u_s_hilo.0 104375.0 27566.5 99679.6±521.9 23536.8±222.0 99639.8 23475.9 4.5 % 14.8 %

u_s_lohi.0 140284.0 26006.6 130829.4±1060.0 21817.1±410.4 129560.0 21791.8 7.7 % 16.2 %

u_s_lolo.0 3806.8 27608.1 3601.1±18.6 23347.4±159.6 3578.5 23341.5 6.0 % 15.5 %

Table 1: Bi-objective HCSP results for the instances from Braun et al. 

The results in Table 1 indicate that accurate schedules are computed when using the 
parallel micro-CHC algorithm. When compared with the deterministic Min-Min results, 
significant improvements on the makespan and wrr metrics are obtained (up to 13.9% in the 
makespan, and up to 22.2% in the wrr). The proposed EA showed a robust behavior, indicated 
by the very small standard deviation values in both metrics (below 1.6%) obtained in the 30 
executions performed. 

Figure 1 reports the best improvements obtained by the parallel micro-CHC over the 
Min-Min results when solving the 48 large dimension MR-HCSP instances (24 with dimension 
1024×32 and 24 instances with dimension 2048×64). 

 
Figure 2: Improvements over Min-Min for instances with dimension 1024×32 and 2048×64. 

1627



The improvements reported in Figure 2 demonstrate that the proposed parallel micro-
CHC algorithm has a good scalability behavior when solving large dimension MR-HCSP 
instances. Improvements up to 20.36% in the makespan values and up to 18.75% in the wrr 
values (with respect to the Min-Min solution) were obtained. 

Table 2 summarizes the average improvements over the Min-Min results (averaged for 
the 24 MR-HCSP instances for each dimension), obtained when solving the MR-HCSP for the 
three problem dimensions studied. 

dimension 
avg. makespan  

improvement 

avg. wrr 

improvement 

512×16 7.35 % 15.26 % 

1024×32 10.35 % 12.70 % 

2048×64 9.33 % 9.56 % 

Table 2: Overall average improvements for the bi-objective HCSP for all dimensions. 

The results in Table 2 indicate that acceptable accurate are computed by the proposed 
EA, even when solving high-dimension HCSP scenarios. The average improvements over the 
Min-Min solution were up to 10.35% in the makespan values and up to 15.26 in the wrr values. 
The improvements in the wrr metric slightly decreased when solving the largest problem 
instances, suggesting that there is still room to further improve the proposed evolutionary search. 

6. Conclusions and future work 

This work has presented a parallel micro-CHC evolutionary algorithm to solve a bi-
objective version of the scheduling problem in heterogeneous grid computing environments. The 
problem formulation considers two metrics that account for the resource utilization time 
(makespan) and the user point-of-view (the new weighted response ratio metric). 

The proposed evolutionary algorithm combines the original structure of CHC with a 
distributed subpopulation parallel model using micro populations and other specific features 
inspired from multiobjective optimization. A specific local search operator was designed to 
compute accurate schedules in reduced execution times. 

The experimental analysis performed on both standard and new problem instances 
showed that the parallel micro-CHC evolutionary algorithm is able to obtain accurate results 
when using a fixed time stopping criterion of 60 s. Improvements up to 10.35% in the makespan 
metric and up to 15.26% in the weighted response ratio metric were obtained when comparing 
with the best results computed using well-known deterministic scheduling algorithms. In 
addition, the parallel micro-CHC evolutionary algorithm showed a good scalability behavior 
when solving the new large-sized problem instances. 

Two main lines have been identified for future work: to further improve the results, and 
to tackle even larger problem scenarios. Regarding the first line, new operators should be devised 
in order to compute more accurate values of the makespan and weighted response ratio metrics 
by performing a more intelligent neighborhood search in the randomized PALS operator. On the 
other hand, advanced parallel computing techniques (such as multithreading implementations of 
the evolutionary operators) should be applied to the current implementation of the parallel micro-
CHC EA in order to improve the computational efficiency, allowing to face even larger instances 
of the scheduling problem that model nowadays heterogeneous and grid computing systems. 
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