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ABSTRACT

This work presents the application of a micro etiohary algorithm to solve a bi-
objective scheduling problem in heterogeneous ggidputing environments. A new formulation
of the bi-objective scheduling problem is introddicby considering thenakesparandweighted
response ratiometrics, which account for the total execution eiirand the waiting time
respectively. The problem is NP-hard, and a pdraiglementation of the proposed micro
evolutionary algorithm is presented, in order talfaccurate results in short execution times. The
experimental analysis performed on both standasdsiaed and large problem instances shows
that efficient schedules are computed by the pregpasethod.
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1. Introduction

In the last decade, distributed computing platfohage been increasingly used to solve
complex problems with large computing demands. Ntaya, the paradigm of grid computing is
employed to work over a large distributed, hetenegeis, and loosely-coupled aggregation of
processing elements that allow gathering the comgytower required for complex applications
(Foster, 1996). When using this kind of heterogesemomputing platforms, a capital problem
consists in finding a tasks-to-machine assignmeotder to fulfill specific requirements, usually
related with the total time required to executeundh of tasks and/or with the quality of service
provided by the computing infrastructure. The Hageneous Computing Scheduling Problem
(HCSP) has emerged as an important optimizatioblgno in the last decade, due to its ability to
model the correct planning of distributed compuftinigl environments (Eshaghid®96).

The HCSP is NP-hard (Garey and Johnson, 1979), ievies classical formulation that
proposes to minimize a unique objective functiow, $lassical methods such as dynamic
programming, linegprogramming, et@reonly useful to solve low-dimension problem instasice
When tackling large scheduling scenarios, heusstitd metaheuristic techniques are promising
methods to solve the HCSP, since they are able@rmgpute accurate sub-optimal schedules in
reasonable times. Among a large set of modern reetatic techniques, evolutionary algorithms
(EAs) emerged as accurate and efficient methodslt@ scheduling problems, showing the high
level of problem-solving accuracy they get in matiyer areas of application (Back et al. 1997).

EAs have been applied to the single-objective H&&R proposes to minimize the
makespammetric in the last fifteen years (Wang 1997, Br&i01, Zomaya 2001, Xhafa 2008).
However, those HCSP variants that propose the simedus optimization of several scheduling
efficiency metrics have been seldom tackled. Initamd problem instances that model realistic
grid environments have rarely been faced, mainlg thu the complexity of dealing with the
underlying high-dimension optimization problem. Fesmrks have studied parallel EAs in order
to determine their ability to use the computing powf large clusters to improve the search
efficacy and efficiency. Thus, there is still rodim contribute in these lines of research by
studying highly efficient parallel EA implementat®, able to deal with large-size multiobjective
HCSP instances by using the computational powpatdllel and distributed environments.

In this line of work, this article presents a pkalainicro EA applied to the bi-objective
HCSP that proposes to minimize thmkesparandweighted response ratimetrics. The main
contributions of the work are to introduce a newnfolation of the bi-objective scheduling
problem in heterogeneous grid computing systend;t@amlevelop an accurate parallel micro EA
to solve it. Efficient numerical results are repdrifor the experiments performed on realistic
problem instances. The analysis shows that theogesp EA is able to achieve high problem
solving efficacy, outperforming the results obtaineith traditional deterministic heuristics,
while alsoexhibiting a good scalability behavior when solvligh dimension problem instances.

The manuscript is structured as follows. Next sectpresents the HCSP, its
mathematical formulation, and the deterministicrigtics used in the results comparison. Section
3 introduces evolutionary computing techniques aledcribes the new parallel micro EA
proposed in this work. The implementation detafishe parallel micro EA applied to the bi-
objective HSCP are provided in Section 4. Sectioprésents and discusses the experimental
analysisandresults. Theconclusionandpossibldinesfor futurework are formulated in Section 6.

2. Scheduling in heterogeneous computing and gricheironments

This section introduces the bi-objective HCSP d@rdriathematical formulation, and
describes the deterministic scheduling heuristisglin the comparative experimental analysis.

2.1 Bi-objective HCSP in grid computing environmens

Most scheduling problems mainly concern about titnging to minimize the time
spent to execute a set of submitted tasks. Théjbictive version of the HCSP introduced in this
work proposes to minimize two relevant metrics: ekesparand thewveighted response ratio
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The makespan is defined as the time spent frormthraent when the first task begins
execution to the moment when the last task is cetegl (Leung 2004). It is the most usual
metric to minimize in scheduling problems, sincevidluates the computing resources utilization.

Many other performance metrics have been considéredptimize in scheduling
problems. They are usually related to the econarogt of executing an application, or to the
quality of service (QoS), which is especially peetit in grid infrastructures. Thresponse time
of each task is an indicator of the QoS of theesysand it is an important metric from the user
point-of-view, since it reflects the response tiofie@ computational system for a set of submitted
tasks. Theesponse ratianetric evaluates the sum of the response timesadf submitted task,
and it is inversely dependent on each task estanadenpletion time, thus favoring short tasks
over long tasks (Stallings 2001). A common appraaghodern computational grid systems is to
group the tasks in different classes, accordintpédr importance or priority (Buyya 2002, Dong
2006). To model this scenario, the bi-objective IPCQ&ckled in this work uses theeighted
response ratio(wrr) metric: each task is assigned a positive weghtvhich represents the
relative priority of the task in the system. Ther metric is then defined as the total response
ratio of each task multiplied by its priority weigin the systemp), following a weighted
approach that has been previously applied to tgorese time metric (Monte 2002).

2.2 Mathematical formulation
The following formulation presents the mathematioalel for the MR-HCSP:

» Let there be an heterogeneous grid computing systemposed of a set of
processors or machines M mf, m, ..., m_} (dimension L), and a collection of
tasks T = {;, t,, ...,t5} (dimension N) to be executed on the system,

 let there be amxecution time functiokBT : T x M - R’, whereET(t,m) is the
time required to execute the task the machinen,

» let there be @riority function P : T - N*, whereP(t) is the priority of the task ti
in the system,

* let F() be the finishing time of tagkin the system;

» the goal of the bi-objective HCSP is to find anigesient of tasks to machines (a
function f: TV - M") which simultaneously minimizes tmeakespandefined in
Equation 1, and theeighted response ratidefined in Equation 2.

max » ET(t,m)
(T

moM - 4
f(t)=m

1)

« F@)
; P) ET(t,m,) @

H(H)=m,

Both objectives are in conflict, as minimizing thrakespan metric implies to execute
the tasks in the minimum possible time, and theghted response ratio inversely depends on the
expected execution time.

In the previous HCSP formulation all tasks canrimiependently executed. This kind of
applications frequently appears in many lines oérddic research, such as in Single-Program
Multiple-Data applications used in multimedia presiag, data mining, parallel domain
decomposition of numerical models for physical mivmena, etc. Another scenario with
independent tasks is when different users submit {bbviously independent) tasks to execute in
grid and volunteer-based computing infrastructusesch as TeraGrid, WLCG, BOINC, Xgrid,
etc.-, where non-dependent applications using doeh@composition are very often submitted for
execution. Thus, the relevance of the bi-objedt#¢SP faced in this work is justified due to its
importance in realistic distributed heterogeneait gpmputing systems.
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In this work, the bi-objective optimization problemsolved by applying an aggregate
function approach that uses a weighted sum of npakeand weighted response ratio. Although
the aggregation function approach is often outperéal by Pareto-based methods when solving
multiobjective optimization problems, it is a commapproach in the literature mainly due to
two main advantages: it is computationally effitieso it is recommended when the times
available for search is short, and it is suitalde dptimization problems with a convex Pareto
front (Coello 2006). The aggregation function agmto has been previously applied to other
HCSP variants by Xhafa et al. (2007, 2008). Inlihebjective HCSP tackled in this work, since
the makespan and weighted response ratio objectikeesn different units, they have to be
normalized considering a reference solution betfloeeaggregation.

2.3 Traditional heuristics for scheduling in hetergieneous computing systems

Many deterministic heuristics have been proposedsfineduling in heterogeneous
computing and grid systems (Kwok 1999). Most ofilere based on simple iterative procedures
that assign tasks to machines in a given ordemgdryo fulfill a specific criterion. Three
deterministic heuristics have been used to prosid@seline for comparing the results achieved
with the micro EA proposed in this work:

Minimum Completion Time (MCT) considers the set of tasks sorted in antranyi
order. Then, it assigns each task to the machittethe minimum execution time for that task.

Sufferage identifies the task that if it is not assignedat@ertain host, wilsuffer the
most. Thesufferage valués computed as the difference between the best BIGfe task and its
second-best MCT, and this method gives precedenitmse tasks with high sufferage value.

Min-Min greedily picks the task that can be completedstiamest. The method starts
with a set U of all unmapped tasks, calculatedM@T for each task in U for each machine, and
assigns the task with the minimum overall MCT te timachine that executes it faster. The
mapped task is removed from U, and the procespisated until all tasks are mapped. Min-Min
improves upon the MCT heuristic, since it considakshe unmapped tasks sorted by MCT, and
the availability status of the machines is upddtgdhe least possible amount of time for every
assignment. Min-Min is one of the most effectivaetiministic scheduler for a wide range of
heterogeneous computing scenarios.

3. Evolutionary computation

This section presents evolutionary computation riegres, the CHC algorithm, and
parallel EAs. After that, the new proposal of agtlai micro-CHC algorithm is introduced.

3.1 Evolutionary algorithms

EAs are randomized (i.e. non-deterministic) methtu® emulate the evolutionary
process of species in nature, in order to solvemipdtion, search, and other related problems
(Back et al. 1997). In the last twenty-five yedf#s have been successfully applied for solving
optimization problems underlying many real applmas$ of high complexity.

An EAis aniterative methodeachiterationis calleda generation) that applies stochastic
operators on a pool of individuals (the populationprder to improve theifitness a measure
related to the objective function of the optimiratiproblem. Every individual in the population
is theencodedrersion of gentativesolution ofthe problem. The population is initialized by eithe
using a random method or a specific heuristictiergroblem. Thevaluationassociates a fithess
value to every individual, indicating its suitabylto the problem. The probabilistic application of
evolutionary operators like theecombinationof parts of two individuals andhutationin their
contents are guided by a selection-of-the-besnigale to tentative solutions of higher quality.

The stopping criterion usually considers a fixeanber of generations or execution
time, a quality threshold on the best fithess valurethe detection of a stagnation situation.
Specific policies are used in tiselectionof individuals to recombine and to determine which
new individualsreplacethe old ones in each new generation. The EA rstthia best solution
ever found in the iterative process, taking intocamt the fitness function values.
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3.2 The CHC algorithm

“Cross generational elitist selection, Heterogesemecombination, and Cataclysmic
mutation” (CHC) (Eshelman 1991) is a variant of Bt uses an elitist selection strategy that
tends to perpetuate the best individuals in theufadipn. CHC uses a special mating: only those
parents which differ from each other by some nunalbdits are allowed to reproduce. The initial
threshold for allowing mating is often set to 1Mtlee chromosome length. If no offspring is
inserted into the new population, this thresholdeiduced by 1. The recombination operator in
CHC is Half Uniform Crossover (HUX), which randoméyvaps exactly half of the bits that
differ between the two parent strings. CHC does apyly mutation; diversity is provided by
applying a re-initialization procedure, using thesbindividual found so far as a template for
partially creating a new population after convexgeis detected.

The pseudo-code of CHC presented in Algorithm 2nshthose features that make it
different from classical EAs: the elitist selectistrategy, the use of the HUX recombination
operator, the absence of mutation, which is sulistit by a re-initialization operator, and the
mating restriction policy, that does not allow ézombine a pair of “too similar” individuals.

initialize (P(0))
generation— 0; distance— 1/4 * chromosomeLength
while (not stopcriteriaylo
evaluatgP(generation))
parents— elitist_selection(P(generation))
if (distance(parents) distance}Yhen
offspring « HUX (parents)
evaluatdgoffspring)
newpop— replace(offspring, P(generation))

end

if (newpop = P(generationthen
distance — —

end

generation ++
P(generation)}- newpop
if (distance = O)hen
reinitialization (P(0))
distance~ 1/4 * chromosomeLength
end
end
return best solution ever found

Algorithm 2: Schema of the CHC algorithm

3.3 Parallel evolutionary algorithms

Parallel implementations became popular in thedastde as an effort to improve the
efficiencyof EAs. Bysplitting the population into several computglgments, parallel EAs allow
reaching high quality results in a reasonable ettuime even for hard-to-solve optimization
problems (Alba 2005). The parallel EA proposed s twork is categorized within the
distributed subpopulationsodel according the classification by Alba and &ssini (2002): the
original population is divided into several subplapions, separated geographically from each
other. Each subpopulation runs a sequential EAndigiduals are able to interact only with other
individuals in the subpopulation. An additiomaigration operator is defined: within a given
frequency some selected individuals are exchangezhg@ subpopulations, introducing a new
source of diversity in the EA.
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initialize (P(0))
generation— 0
while (not stopcriteriafio
evaluatgP(generation))
parents— selection(P(generation))
offspring — variation operators(parents)
newpop- replacgoffspring, P(generation))
generation ++
P(generation)- newpop
if (sendmigrants)
migrants— selection for migration(P(generation)
sendmigration(migrants)
end
if (recvmigrants)
inmigrants— recvmigration()
P(generation)- insert(immigrants, P(generation))
end
end
return best solution ever found

Algorithm 3: Schema of a parallel evolutiopaigorithm.

Algorithm 3 shows the generic schema for a distatdusubpopulation parallel EA. It
follows the generic schema of an EA, but includihg new migration operator. Two conditions
control the migration procedursendmigrantsdetermines when the exchange of individuals
takes place, antecvmigrantsestablishes whether a foreign set of individuals to be received
or not. Migrants denotes the set of individuals to exchange witmesather subpopulation,
selected according to a given policy. The schenmdicitky distinguishes betweeselection for
reproductionand selection for migrationthey both return a selected group of individuals
perform the operation, but following potentiallyffdrent policies. Thesendmigrationand
recvmigrationoperators carry out the exchange of individual®m@gnsubpopulations according
to a connectivity graph defined over them, mosailgwa unidirectional ring.

3.4 The parallel micro-CHC evolutionary algorithm

By splitting the global population into several papulations, PEAs significantly
increase the computational efficiency of the sedtghto the limited interactions and the reduced
population size within each subpopulation. Howe¥#s quickly lose diversity in the solutions
when using small populations: the search suffepseanature convergence, and the quality of
solutions stagnates. In CHC, the mating restricfiolicy and the reinitialization operator are
usually not powerful enough to provide the requidaeersity to avoid premature convergence
when using very small populations (i.e. less th@rintividuals). Many alternatives have been
proposed in the related literature to overcomeltiss of diversity on EAs. In the quest for
designing a fast and accurate version of the CH©rdélhm for solving scheduling problems, a
parallel micro-CHC algorithm has been developedunresearch group.

The proposed parallel micro-CHC algorithm combirseglistributed subpopulation
parallel model of the original CHC structure (usidg/X and mating restriction) with two key
concepts from the micro-genetic algorithm by Coelfm Pulido (2001): an external population
of elite solutions stored during the search, andhecelerated reinitialization using a specific
randomized version of a well-known local search hodtto provide diversity within each
subpopulation. A micro-population of eight indivads is used in each subpopulation of the
parallel micro-CHC algorithm. The size of the ersdrpopulation is three individuals, and a
simple remove-of-the-worst strategy is used eank & new individual is inserted in the elite set.
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4. A parallel micro-CHC applied to the bi-objectiveHCSP

This section introduces the software library usedrplement the parallel micro-CHC
algorithm, and it also presents the implementadieiails to solve the HCSP.

4.1 The MALLBA library

MALLBA (Alba et al., 2006) is a library of algoriths for optimization that can deal
with parallelism in a user-friendly and at the saimee, efficient manner. The library implements
several EAs as generic templatessoftware skeletont be instantiated by the user with the
specific features when solving a given problem. sehéemplates incorporate the knowledge
related to the resolution method, its interactiith the problem, and the parallel considerations.
Skeletons are implemented by a setaxfuired and provided classes implemented in C++ that
represent an abstraction of the entities partigigah the resolution method:

e« The provided classesimplement internal aspects of the skeleton in abigm-
independent way. The most important provided classeSolver (the algorithm) and
SetUpParamgfor setting the parameters of the implementedrétgms).

« The required classesspecify information related to the problem. TReoblem and
Solution required classes encapsulate the problem-deperetgities needed by the
resolution method. Depending on the skeleton, atlesses may be required.

The MALLBA library is publicly available to downlabat the University of Malaga
websitehttp://neo.lcc.uma.es/mallba/easy-mallba

The implementation of parallel micro-CHC is basedtive CHC skeleton provided by
MALLBA. Additional code was incorporated into theHC skeleton to define and manage the
elite population, to implement the special reitiz@tion and local search operators, and to
include other features related to the bi-objecN&SP resolution. The details about the problem
encoding, the evolutionary operators, and spefgfitures are provided in the next subsections.

4.2 Problem encoding

A machine-based encoding was used to representided@dsolutions for the bi-
objective HSCP in parallel micro-CHC. The machirsdd encoding is a bidimensional structure
that stores for each machine the list of tasksgassi to it, ordered regarding their execution
precedence. This encoding simplifies the calcutatib the fithess function for solutions after
applying the variation operators. Figure 1 presantexample of the machine-oriented encoding.

Figure 1: Machine oriented encoding.

4.3 Initialization

Several methods have been proposed to initialiegotpulation when applying EAs to
the single objective HCSP (Braun, 2001; Xhafa, 2008aditional deterministic scheduling
heuristics have been used to start the evolutiosagrch from a set of useful suboptimal
schedules. In the parallel micro-CHC algorithm &apto the bi-objective HCSP, one individual
in the whole population is initialized using Min-Miand other using Sufferage, and one
individual in each subpopulation is initialized ngiMCT. As for the rest of the population, 60%
is initialized using a randomized version of MChdahe remaining 40% is initialized at random.
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4.3 Recombination

The parallel micro-CHC algorithm uses HUX to recameb characteristics of two
solutions. In the HUX implementation for the bi-ebijive HCSP, a group of tasks to be
recombined is chosen with uniform probability (0Jhen a chosen task is assigned to different
machines in the selected parents, the machineate ghat task in each offspring is chosen to
optimize either thenakesparor thewrr objectives with uniform probability (0.5).

4.4 Reinitialization

The reinitialization operator performs small pelbations in a given schedule, aimed at
providing diversity to the population, in order &void the search from getting stuck in local
optima. When a stagnation situation is detected &estions are performed: the local search
operator is applied to the best solution in theytation to further improve it, and after that,
simple moves and swaps of tasks are randomly aptdi¢he rest of the population to restart the
search process from a hopefully unexplored locdtighe solution space.

4.5 Local search

Many approaches have been proposed to providesitivemnd improve the efficacy of
the search in EAs to solve the single objective ARQ@ost of the previous works concluded that
local search methods are needed to find accurheglates in short times. The works of Xhafa et
al. (2007; 2008) explored several local search aipes for solving low-dimension HCSP
instances, but many of the proposals become inteféeswhen the problem instances grow.

In order to improve the population diversity, tharallel micro-CHC algorithm
incorporates a randomized version of Problem Awareal Search (PALS) (Alba and Luque
2007). Algorithm 4 presents the pseudo-code ofrémelomized PALS operator applied in the
parallel micro-CHC algorithm for the bi-objectivedSP.

M — Select a list of #MAX_MACH machines
end_search- false
while ((count(M) > 0) and not end_searci
m = pop(M)
trials « 0
while (trials < MAX_TRIALS) and (not end_searcliy
Dgest < 0
for (ty = start, to TOR,) do
{lterate on tasks of machine m}
for (tr = start to TOR)
{lterate on tasks of other machines}
Acurrent « SwapFitnessimprovement,(tr)
if (Acurrent> Dgest) then
best_swap- (tw,t7)
Dgest « AcurreNnT
end
end
end
trials++
if (ABEST> 0 ) then
s — DoSwap(best_swap)
end_search- true
end
end

end

Algorithm 4: Schema of the randomized PALSHemi-objective HCSP.
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Working on a given schedulg the randomized PALS for the bi-objective HCSP
selects a collection of machin®é$ to perform the search. With high probability theach
focuses on the machines with the largest fitnesgribmition, but it also introduces a chance of
improving the fithess for other machines. Then, dach machine, the outer cycle iterates on
TOPRy tasks assigned to machine (randomly starting in task stg)t while the inner cycle
iterates on TOPtasks assigned to other machines (randomly sgariitask star). For each pair
(tw, tr), the fitness improvement when swapping tagkand § is computed, storing the best
improvement found for the whole schedule on the JOROP; swaps evaluated. After the
double cycle ends, the best move found is appligg ibit improves the current solution fitness.
For each machine, the process is applied untilifiné schedule which improves the original
fitness or after performing MAX_TRIALS attempts. df better schedule is not found for the
current machine, then the swap-search is perfoondtie next machine in M.

5. Experimental analysis

This section describes the computational platfosaduto develop and evaluate the
proposed parallel micro-CHC algorithm and introdudhe set of HCSP instances used to
evaluate the efficacy of the proposed method. Atftat, the parameter settings experiments are
presented. Last, the experimental results wheningplvealistic MR-HCSP instances are
analyzed, by presenting a comparison with the tesbitained using deterministic techniques.

5.1 Development and execution platform

The proposed parallel micro-CHC algorithm was impated in C++, using the
MALLBA library with the version 1.2.7p1 of MPICH, well-known implementation of MPI
(Gropp 1994). The experimental analysis was perfornusing a cluster with four Dell
PowerEdge servers (QuadCore Xeon E5430 at 2.66 @H2B RAM), CentOS Linux 5.2
operating system and Gigabit Ethernet LAN (clustebsite:http://www.fing.edu.uy/clustér

5.2 Test instances

A specific set of 60 HCSP instances was used tueteathe proposed parallel micro-
CHC algorithm: 12 standard instances from Braual.g2001) with dimension (tasksiachines)
512x16, and 48 large dimension instances (24 with dgilen102432 and 24 with dimension
2048x64). These large dimension instances were genei@itediing the methodology by Ali et
al. (2000) and using the two parametrization vapureposed by Ali et al. (2000) and Braun et al.
(2001). The new instances model realistic schedusinpenarios on small and medium-sized
heterogeneous computing and grid infrastructures.

5.3 Parameter settings

A stopping criterion fixed at 90 s. of executioméi is used for the parallel micro-CHC
algorithm, following several works proposing eféini parallel EAs applied to the single-
objective HCSP by Xhafa (2007; 2008) and the previwork (Nesmachnow et al. 2011). This is
an efficient time limit for scheduling in realistdistributed HC and grid infrastructures such as
volunteer-computing platforms, distributed datalsassic., where large tasks -with execution
times in the order of minutes, hours and even daessubmitted to execution.

Instead of fixing an arbitrary set of parameterueal for the parallel micro-CHC, a
configuration analysis was performed to determime lbest values for the crossoveg)(and
reinitialization pg) probabilities, the number of subpopulations @ty their size (#pop). The
parameter setting experiments were performed ovaulset of six HCSP instances with
dimension 51216. The candidate values for the studied parameters:pc: 0.8, 0.9, 1.0pg:

0.7, 0.9, 1.0; #I: 4, 8, 16; #pop: 10, 20, 40. Paeameter configuration that obtained the best
results in the experiments was:= 1.0,pr = 0.9, #1 =16, #pop =10.
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5.2 Results and discussion

This subsection reports the experimental resulterwkolving the MR-HCSP. The
results for the problem instances by Braun etral.presented separately, since these benchmark
instances have been very often solved by the r@seammunity. In addition, since a large set of
high dimension MR-HCSP instances were solved (48praphic summary and the average
improvements over the Min-Min results for thesdanses are reported.

Table 1 presents the results computed by paralfglorCHC for the standard problem
instances by Braun et al. The best, average, amdiatd deviation on the two metric results
obtained in the 30 independent executions perforimedach problem instance are reported. The
best improvements achieved by parallel micro-CHE@rdtie best deterministic heuristic results
(computed by Min-Min) are also shown.

Min-Min EA (avg. * std. dev) EA (best) Improvement
Instance
Makespan, WRR makespan wrr makespan| wrr |makespan| wrr
u_c_hihi.0|8460680.0, 46084.6]7899879.3+33641.3|38151.0+578.9]7869300.0| 38516.8 7.0% 16.5 %
u_c_hilo.0] 161805.0{ 36170.9 157442.5+640.9/28027.1+660.9] 157081.0| 28158.9 29%|22.2%
u_c_lohi.0| 275837.0/ 48269.5] 259246.8+1672.3|39137.84809.8] 258165.0| 39084.0 6.4 % 19.0 %
u_c_lolo.0 5441.4, 36057.9 5352.5+21.1{27352.81784.1 5328.8| 27156.8 2.1%24.7 %
u_i_hihi.0|3513920.0| 17862.1]3087658.6+23247.9|16639.7+533.8|3046180.0| 16502.5 13.3%| 7.6 %
u_i_hilo.0 80755.7, 23502.6 76100.31669.1/20710.6£113.0] 75691.3] 20664.5 6.3% 12.1%
u_i_lohi.0| 120518.0f 17630.7 107372.7+586.7/16318.4+101.8] 106358.0| 16286.5 11.8%| 7.6 %
u_i_lolo.0 2785.6| 24238.9 2624.0+16.0/21588.9+114.3 2608.8| 21744.2 6.4 %/10.3 %
u_s_hihi.0|5160340.0, 25884.0|4473874.7+43251.8/21739.5+365.2|4441760.0| 21554.3 13.9 %|16.7 %
u_s_hilo.0] 104375.0| 27566.5 99679.61£521.9/23536.8+222.0] 99639.8| 23475.9 4.5 %|14.8 %
u_s_lohi.0] 140284.0/ 26006.6] 130829.4+1060.0/21817.1+410.4] 129560.0{ 21791.8 7.7 %116.2 %
u_s_lolo.0 3806.8/ 27608.1 3601.1+18.6/23347.4£159.6 3578.5| 23341.5 6.0 % 15.5 %

Table 1: Bi-objective HCSP results for the instamfrem Braun et al.
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The results in Table 1 indicate that accurate sdesdare computed when using the

parallel micro-CHC algorithm. When compared withe tldeterministic Min-Min results,
significant improvements on the makespan amd metrics are obtained (up 13.9% in the

makespan, and up #2.2% in thewrr). The proposed EA showed a robust behavior, inelica
by the very small standard deviation values in bottrics (below 1.6%) obtained in the 30
executions performed.

Figure 1 reports the best improvements obtainethbyparallel micro-CHC over the
Min-Min results when solving the 48 large dimensMR-HCSP instances (24 with dimension
1024x32 and 24 instances with dimension 20848).

20 4

15 1]

improvement (%)

I

—

M

H

Emakespan

Owrr

ll

1024x32
Figure 2: Improvements over Min-Min for instancathvdimension 102432 and 204864.

2048x64
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The improvements reported in Figure 2 demonsttadé the proposed parallel micro-
CHC algorithm has a good scalability behavior wheslving large dimension MR-HCSP

instances. Improvements up 20.36% in the makespan values and upl®.75% in the wrr

values (with respect to the Min-Min solution) wedgtained.

Table 2 summarizes the average improvements oeelith-Min results (averaged for
the 24 MR-HCSP instances for each dimension), nethivhen solving the MR-HCSP for the

three problem dimensions studied.

. . avg. makespan avg. wrr
dimension . .
improvement improvement
512x16 7.35% 15.26 %
1024x%32 10.35% 12.70%
2048%x64 9.33% 9.56 %

Table 2: Overall average improvements for the Geotive HCSP for all dimensions.

The results in Table 2 indicate that acceptableirate are computed by the proposed
EA, even when solving high-dimension HCSP scenarite® average improvements over the
Min-Min solution were up to 10.35% in the makespatues and up to 15.26 in ther values.
The improvements in thevrr metric slightly decreased when solving the largesiblem
instances, suggesting that there is still roorutthér improve the proposed evolutionary search.

6. Conclusions and future work

This work has presented a parallel micro-CHC evwhatry algorithm to solve a bi-
objective version of the scheduling problem in hegeneous grid computing environments. The
problem formulation considers two metrics that aertofor the resource utilization time
(makespan) and the user point-of-view (the mesighted response ratimetric).

The proposed evolutionary algorithm combines thgimal structure of CHC with a
distributed subpopulation parallel model using migopulations and other specific features
inspired from multiobjective optimization. A speciflocal search operator was designed to
compute accurate schedules in reduced executi@stim

The experimental analysis performed on both stahderd new problem instances
showed that the parallel micro-CHC evolutionaryoaiidnm is able to obtain accurate results
when using a fixed time stopping criterion of 60msprovements up t@0.3%% in the makespan
metric and up td5.26% in the weighted response ratio metric were obthiwhen comparing
with the best results computed using well-knowneruatnistic scheduling algorithms. In
addition, the parallel micro-CHC evolutionary algom showed a good scalability behavior
when solving the new large-sized problem instances.

Two main lines have been identified for future warkfurther improve the results, and
to tackle even larger problem scenarios. Regartiedirst line, new operators should be devised
in order to compute more accurate values of theesdkn and weighted response ratio metrics
by performing a more intelligent neighborhood skarncthe randomized PALS operator. On the
other hand, advanced parallel computing technigsiesh as multithreading implementations of
the evolutionary operators) should be applied #odinrent implementation of the parallel micro-
CHC EA in order to improve the computational efiety, allowing to face even larger instances
of the scheduling problem that model nowadays bg&reous and grid computing systems.
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