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RESUMO

Neste trabalho propomos a inclusão de inequações válidas obtidas a partir da opera-
ção de lifting em um modelo integrado de dimensionamento e sequenciamento da produção
aplicado ao setor de bebidas. As inequações válidas são obtidas a partir do conjunto de
restrições associado ao sequenciamento de lotes. O estudo computacional desenvolvido com
o objetivo de avaliar a qualidade do modelo reformulado e a interação das inequações válidas
propostas com os planos de corte incluídos em um sistema comercial é descrito. Os resul-
tados obtidos usando dados da literatura mostram que sob certas condições as inequações
validas propostas são úteis no processo de solução do problema.

PALAVRAS CHAVE: Dimensionamento e Sequenciamento de Lotes, Problema
do Caixeiro Viajante, Restrições de Eliminação de Subrotas.

Área Principal: Otimização Combinatória

ABSTRACT

In this paper, we propose the inclusion of a set of valid inequalities derived using a
lifting procedure into a lot scheduling model applied to the soft-drink production. The set
of valid inequalities is derived from constraints associated with the scheduling decisions. A
computational study conducted to evaluate the quality of the proposed reformulation and
how the lifted inequalities relate to the cutting planes included in a commercial solver is
described. The results, using data from the literature, show that under certain conditions
the proposed inequality is useful to improve the solution process of the lot scheduling model.

KEYWORDS: Lot sizing and Scheduling Problems, Traveling Salesman Pro-
blem, Subtour elimination constraints.

Main area: Combinatorial Optimization
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1 Introduction

The development of a formulation that approximates the convex hull of a set of feasible
points can facilitate the resolution of Mixed Integer Programmes by methods such as Branch
and Bound or Branch and Cut and may lead to smaller solution times. Speeding up the
solution process of a given optimization model is an important aspect to be addressed in
order to develop a flexible decision support system. In this paper we are interested in
speeding up the solution process of the integrated lot size and scheduling problem (ILS)
associated with the production planning of soft drinks.

Several mathematical formulations are proposed in the literature for the ILS problem
(e.g. Fleischmann and Meyr (2007), Pochet and Wolsey (2006), Bernado et al. (2007),
Toso et al. (2008)). Two main approaches have been used to model the decisions associated
with lot scheduling: the division of a period of the planning horizon into subperiods (GLSP
approach), and the use of the assignment and subtour elimination constraints associated
with the asymmetric travelling salesman problem (ATSP approach). In the latter, there
are formulations that use subtour elimination constraints proposed by Dantzig, Fulkerson
e Johnson (DFJ) and others that use those proposed by Miller, Tucker e Zemlim (MTZ)
(e.g Lawler (1985)). The solution process of instances of both formulations varies with the
application type, and in general, instances of realistic size have been proven difficult to solve
even when state of the art commercial solvers are used.

In the context of soft drink production, Defalque et al. (2010) present a formulation
for the associated ILS problem based on the ATSP approach (model P1S1MTS - one-stage
one-machine traveling salesman lot-scheduling problem). The model P1S1MTS performs
well, particularly when compared to the model of Ferreira et al. (2010) which is based
on the GLSP approach. However, the solution gaps for instances of realistic size showed
that there is scope for further improvements. In this paper we apply a proposal from the
literature to obtain valid inequalities for the P1S1MTS model by applying a lifting procedure
to the associated subtour elimination constraints. The aim is to obtain a reformulation of
the P1S1MTS model that has a better approximation of the convex hull of the feasible set
(Nemhauser and Wolsey (1998)).

This paper is organized as follows. In section 2 we briefly present the P1S1MTS model.
In Section 3 the proposed valid inequalities are derived. The results of a computational
study to evaluate the model efficiency are presented in Section 4, and conclusions are given
in Section 5.

2 Brief description of the P1S1MTS model

In this section we review the mathematical model P1S1MTS proposed by Defalque et al.
(2010) to represent the production process of small scale soft drink plants. The production
process of soft drinks in different sizes and flavours is carried out in two stages: liquid flavor
preparation (Stage I) and bottling (Stage II). The model P1S1MTS considers that there
are J soft drinks (items) to be produced from L liquid flavors (syrup) on one production
line (machine). To model the decisions associated with Stage I, it is supposed that there
are several tanks to store the syrup and that it is ready when needed. Therefore, it is not
necessary to consider the scheduling of syrups in the tanks, nor the changeover times since
it is possible to prepare a new lot of syrup in a given tank, while the machine is bottling
the syrup from another tank. However, the syrup lot size needs to satisfy upper and lower
bound constraints in order to not overload the tank and to guarantee syrup homogeneity.
In Stage II, the machine is initially adjusted to produce a given item. To produce another
item it is necessary to stop the machine and make all the necessary adjustments (another
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bottle size and/or syrup flavor). Therefore, in this stage, changeover times from one product
to another may affect the machine capacity and thus have to be taken into account. The
P1S1MTS model addresses the problem of defining the lot size and lot schedule taking into
account the demand for items and the capacity of the machine and syrup tanks, minimizing
the overall production costs. It assumes that there is an unlimited quantity of other supplies
(e.g. bottles, labels, water).

In the P1S1MTS model the decisions associated with lot sizing are based on the Capa-
citated Lot Sizing Problem (CLSP) (e.g. Karimi et al. (2003)). The scheduling decisions
use the ATSP approach with the MTZ constraints to eliminate subtours. To present the
model, let the following parameters define the problem size:

J : number of soft-drinks (items);
L : number of syrup flavors;
T : number of periods;

and let (i, j, k, l, t) be the index set defined as: i, j, k ∈ {1, . . . , J}; l ∈ {1, . . . , L}; t ∈
{1, . . . , T}. The data and variables described below with superscript I relate to Stage I
(syrup preparation) and with superscript II relate to Stage II (bottling).

Data

aIIj : machine production time for one lot of item j;
bIIij : machine changeover time from item i to j;
djt : demand for item j in period t;
gj : non-negative backorder cost for item j;
hj : non-negative inventory cost for item j;
I+j0 : initial inventory for item j;
I−j0 : initial backorder for item j;
KII
t : total time capacity of the machine in period t;

sIIij : machine changeover cost from item i to j;
St : maximum number of tank setups in períod t;
KI : total capacity of the tank, in liters of syrup;
ql : minimum quantity of syrup l to guarantee homogeneity;
rlj : quantity of syrup l necessary for the production of one lot of item j;
γl : set of items that need syrup l;

Variables

I+jt : inventory for item j at the end of period t;
I−jt : backorders for item j at the end of period t;
xIIjt : production quantity of item j in period t;
zIIijt : changeover on machine (stage II) from item i to item j in period t.
ujt : auxiliary variable - might be used to indique the production order of item j in period t;
wlt : number of tanks to be prepared with syrup l in period t;
nlt : fraction of tank capacity used to produce syrup l in period t;
yIlt : is equal to 1 if the tank is setup for syrup l in period t;

The complete description of the P1S1MTS model is given by expressions (1)-(15).
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Stage II (bottling) - scheduling:
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ujt ≥ uit + 1− (J − 1)(1− zIIijt); ∀i, ∀j; i 6= j; ∀t (13)
1 ≤ ujt ≤ J − 1 ∀j,∀t (14)

xIIjt ≥ 0, zIIijt, y
I
lt = 0/1, wlt ∈ Z+, nlt ≥ 0, ∀i, j; ∀t;∀l. (15)

The optimization criterion (1) is to minimize the overall costs taking into account in-
ventory, backorder and machine changeover costs. In Stage I, constraints (2)-(5) control
the syrup production. Constraints (2) guarantee that if the tank is ready for production
of syrup l, then there will be production of item j and the quantity produced uses all the
syrup prepared in that period. The variables nlt allow partial use of the tank and is con-
trolled to respect the minimum amount needed to ensure syrup homogeneity, as specified
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by constraints (3). Constraints (4) ensure that there is production of the syrup l only if
the tank is prepared. According to constraints (5), the total number of tanks produced in
period t is limited by the total number of tank setups.

In Stage II, constraints (6) represent the flow conservation of each item in each time
period. Constraints (7) represent the machine capacity in each time period. Constraints
(8) guarantee that there is production of item j only if the machine is prepared. Note that
the setup variable is considered implicitly in terms of the changeover variables and that
production may not occur although the machine might be prepared. Constraints (9) control
the maximum number of setups in each period.

Constraints (10)-(14) model the order in which the items will be produced in a given
period t. They are based on the ATSP model. Constraints (10) consider that in each period
the machine is initially setup for a ghost item i0. The changeover costs associated with the
ghost item are zero and do not interfere in total solution cost. Constraints (11) guarantee
that each item j is produced at maximum once in each period t. Constraints (12) conserve
flow and ensure that if there is a changeover from an item i to any item k then there is a
changeover from that item k to an item j.

Constraints (10) and (12) alone might generate subtours, that is disconnected cycles,
and thus do not guarantee a proper sequence of items. The MTZ type subtour elimination
constraints (13) avoid this situation. With the inclusion of constraints (14) the variable ujt
gives the order position in which item j is produced. Finally constraints (15) define the
variables’ domain. More details on the P1S1MTS model can be obtained from Defalque et
al. (2010) and Defalque (2010). Other formulations of the soft drink production process
can be found in Toledo et al (2007), Ferreira et al. (2009 and 2010).

3 Lifted valid inequalities

In model P1S1MTS the constraints associated with the lot scheduling decisions are
formulated based on the constraints proposed by Miller, Tucker and Zemlim (MTZ) to eli-
minate subtours in a formulation of the traveling salesman problem (Lawer, 1985), hereafter
called MTZ-TSP. These constraints are of polynomial order, thus allowing their inclusion
a priori. However, the MTZ constraints produce a weak linear relaxation of the associated
formulation. Since the MTZ constraints allow a compact polynomial representation of the
subtour elimination constraints, they are very attractive when the TSP emerges as submo-
dels in the context of large-scale models such as those for the vehicle routing and scheduling
problems. Motivated by this fact, Desrochers and Laporte (1991) proposed a new class of
valid inequalities to improve the MTZ-TSP formulation. A lifting procedure (Wolsey (1998))
is applied to the subtour elimination constraints to obtain stronger valid inequalities. In
what follows, we will use the same technique to obtain stronger valid inequalities for the
P1S1MTS model.

The MTZ subtour elimination constraints (13) can be rewritten as follows:

uit − ujt + (J − 1)zIIijt ≤ J − 2 t, i, j = 1, . . . , J ; i 6= j. (16)

We wish to construct a valid inequality for model P1S1MTS including the variable zIIjit with
coefficient αjit in (16):

uit − ujt + (J − 1)zIIijt + αjitz
II
jit ≤ J − 2 t, i, j = 1, . . . , J ; i 6= j. (17)

We must find the largest value that coefficient αjit can to take so that the inequality (17)
continues to be valid for P1S1MTS, through the use of the lifting technique. This is done
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by solving a new optimisation problem:

Max Z =αjit (18)

αjitz
II
jit ≤ J − 2− uit + ujt − (J − 1)zIIijt. (19)

We will consider two cases when solving the optimization problem (18)-(19): zIIjit = 0

and zIIjit = 1. If zIIjit = 0, then we will have the following maximisation problem:

Max Z =αjit (20)

such that:

0 ≤ J − 2− uit + ujt − (J − 1)zIIijt. (21)

Thus, whatever the value of αjit, the inequality (17) is valid for P1S1MTS, as any value of
αjit satisfies the constraint (21).

If zIIjit = 1 then zIIijt = 0, and we must solve the following problem:

Max Z =αjit (22)

such that:

αjit ≤ J − 2− uit + ujt. (23)

However, we know that if zIIjit = 1, then item i is produced after item j, so the inequality
(24) is valid for the P1S1MTS.

uit = ujt + 1. (24)

Thus, substituting (24) in (23), we obtain the following optimization problem:

Max Z =αjit (25)

such that:

αjit ≤ J − 3 (26)

As we are maximizing, the largest value that coefficient αjit can take is J − 3. Thus

uit − ujt + (J − 1)zIIijt + (J − 3)zIIjit ≤ J − 2 t, i, j = 1, . . . , J ; i 6= j. (27)

is valid for P1S1MTS.
The proposed model, denoted P1S1MTS-DL, is constructed using the same constraints

as model P1S1MTS, but substituting constraints (13) by constraints (27) and removing
constraints (14).

4 Computational Experiments

This section presents the computational results from evaluating the performance of mo-
del P1S1MTS-DL proposed in section 3. The tests carried out for model P1S1MTS were
newly repeated due to the use of a different computer processor and RAM to that used by
Defalque et al. (2010) resulting in a small difference between this paper and Defalque et al.
(2010). The models were implemented in the AMPL modelling language and solved using
CPLEX 10.0 with its default parameters. The tests were carried out on an Intel Core i7
2.93 GHz processor with 1.87 Gb of RAM under Windows 7.

The computational tests were divided into 2 parts. In the first, we evaluated the per-
formance of model P1S1MTS-DL using instances obtained from randomly generated data.
In the second part, we used instances generated from real data. Both sets of instances were
obtained from Defalque et al (2010).
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4.1 Results from random generated data

Three classes of random instances were generated, 10 instances in each class. The first
class (Class 1) considers that more than one item uses the same syrup for their production.
The second class (Class 2) is a modification of the instances in Class 1 such that the chan-
geover costs are equal to 10 % of the changeover times. For the instances in the third class
(Class 3), different items use different syrups. All the instances were generated considering
that there are J = 4 items. For the instances in Classes 1 and 2, there are L = 2 syrups
and for the instances in Class 3, L = 4. The planning horizon is T = 2 periods, the tank
capacity is KI = 1000 liters and the minimum syrup quantity for liquid homogeneity is
ql = 176.802 liters. The other parameters were randomly generated by a uniform distri-
bution in the intervals shown in Table 1. The machine capacity is KII = 867.48 minutes,
which is considered to be loose capacity.

Parameters Intervals
hj [0.006, 0.009]
gj [15, 18,9]
aIIj [0.03, 0.06]
bIIij [4; 30]
sIIij - Classes 1 and 3 0.5 ×bij
sIIij - Class 2 0.1 ×bij
djt [746, 12,958]
rlj [0.237, 0.290]

Table 1: Intervals for random data (Defalque et al. (2010))

The optimal solution for all 30 instances of models P1S1MTS and P1S1MTS-DL was
found. The average computational time did not exceed 0.10 seconds. Due to space limitation
in the tables, from now on we will refer to models P1S1MTS and P1S1MTS-DL as TS and
DL respectively. Table 2 shows the results for a set of 15 instances of the three models (5
from Class 1, 4 from Class 2 and 6 from Class 3). For these instances, Table 2 shows the
linear relaxation value (LR), the value of the optimal solution (Z), the number of nodes
necessary to prove optimality (NN) and the node where the solution was found (SN). The
results for the other 15 instances can be found in Carretero (2011).

The use of the lifted subtour inequalities in formulation DL did not improve the value
of the linear relaxation. However, as the results in Table 2 show, it did affect the solu-
tion process. For formulation DL, in 11 instances, the total number of nodes necessary to
prove optimality was smaller or equal to the number of nodes necessary with the original
formulation. For only one instance, the number of nodes increased more than 50%. The
optimal solution was found in the root node in four instances of each formulation (the same
instances as for models TS and DL). From these results, we can expect formulation DL to
have similar or better behavior than the original formulation.
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I LR Z NN SN
TS DL TS DL

a1 250451 269211 27 18 27 17
a2 269054 278729 45 28 40 20
a3 430373 446301 10 10 9 9
a4 391788 421772 12 19 0 0
a5 154880 187150 15 16 13 13
b2 277278 287911 45 46 37 38
b5 344598 370688 1 1 0 0
b6 389732 408012 32 32 30 30

b10 162517 189858 25 25 24 24
c1 429335 466601 23 23 20 20
c2 330025 372326 22 20 0 0
c3 312395 339595 20 17 10 9
c5 353439 385602 5 6 3 5
c8 137678 178670 21 20 19 19
c9 351468 387116 47 47 0 0

Table 2: Optimal solution for random instances

CPLEX 10.0 solved the problems by a branch and cut method. Several types of cutting
planes were generated during the solution process. Due to space limitation, Table 3 only
shows, for each instance of each model, the number of cutting planes generated for four
types: implied Bounds (implied), flow cover (flow), mixed integer rounding (mir), and
Gomory(Gom) inequalities. The last column in Table 3 (Total) shows the total number of
cutting planes generated.

implied flow mir Gom Total
I TS DL TS DL TS DL TS DL TS DL

a1 5 4 8 9 2 2 8 8 23 23
a2 10 8 6 6 2 2 9 9 27 25
a3 7 8 10 8 3 3 4 4 24 23
a4 7 13 9 13 2 2 5 5 23 33
a5 3 3 8 9 7 7 9 9 27 28
b2 4 12 9 7 3 3 8 8 24 30
b5 5 6 12 10 4 4 8 8 29 28
b6 7 11 19 18 2 2 8 8 36 39
b10 6 9 8 6 3 3 8 8 25 26
c1 12 13 12 11 6 6 8 8 38 38
c2 7 13 11 11 5 5 13 13 36 42
c3 8 12 11 8 12 11 17 15 48 46
c5 1 8 11 10 7 7 18 16 37 41
c8 8 10 13 15 7 7 12 13 40 45
c9 11 16 17 14 9 9 12 12 49 51

Table 3: Cutting planes for random instances

The total number of cutting planes generated for each instance (Table 3) is similar for the
two models. However, the number of implied cuts generated for instances of formulation DL
is higher than the ones generated for TS in 12 instances. More details of the computational
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study using random instances can be found in Carretero (2011).

4.2 Results from real data

Ten instances of the proposed formulation DL were generated using the same real data
used in Ferreira et al. (2010) and Defalque et al. (2010). Two instances, S1 and S6, differ
by their demand and initial inventory values. The other 8 instances were obtained from
these two by reducing or increasing the costs of changeover and inventory. All the instances
consider J = 27 items, L = 10 syrups, T = 5 periods. The tank capacity is KI = 84000
liters. The machine capacity is KII = 6840 minutes for all but the first period which has
KII = 2280 of capacity. More details of theses instances can be found in Ferreira et al.
(2010)

The maximum total execution time for solving each instance of the TS and DL models
by CPLEX was set to three hours. No instance was solved to optimality. Table 4 shows
the linear relaxation value (LR), the value of the best solution (ZB), the associated GAP as
given by Cplex, the number of nodes examined (NE) and the node where the best solution
was found (SN) for the instances of the original model TS and the formulation DL.

LR ZB GAP (%) NE SN
I LR TS DL TS DL TS DL TS DL

S1 1793 55695 54984 31.13 27.12 2572701 1992479 2546300 1897500
S2 2114 62404 60236 31.23 35.09 2430053 1925901 2237900 1880000
S3 4229 70472 76522 32.97 36.87 2671452 2611559 2467200 1632000
S4 2114 24148 23923 27.77 25.16 2959653 2032036 2869200 1979200
S5 4229 29148 28977 22.47 19.82 2980671 2552008 2755700 2449600
S6 1209 57212 57212 14.01 21.67 2039220 1688801 681000 1450000
S7 1256 68768 67422 27.54 23.85 2648122 2252726 2533400 2094500
S8 2418 66593 64302 17.47 15.36 2736483 2180101 2508200 2168700
S9 2512 32637 32537 18.05 17.62 2977021 2288662 2743700 2211300

S10 1256 26417 27231 16.80 18.96 2563825 1950434 2364000 1799100

Table 4: Best solution for real instances

The results shown in Table 4 indicate that the use of the lifted inequalities improved the
original formulation TS. For eight instances it was possible to find a solution with a smaller
cost than the solution given by the original formulation. However, the integrality GAP was
smaller for only six instances of DL. For all instances, the total number of nodes examined
during the three hours was smaller for formulation DL then for the original formulation TS.
In all, but one instance, the best solution was found examining less nodes using formulation
DL.
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implied flow mir gom Total
I TS DL TS DL TS DL TS DL TS DL

S1 497 1372 359 370 264 55 68 66 1287 2090
S2 531 1313 395 381 374 61 65 65 1518 2056
S3 531 1185 365 354 316 51 58 61 1407 2019
S4 526 1268 317 333 248 55 61 67 1255 2012
S5 462 1237 311 303 393 45 56 67 1346 1990
S6 500 1513 402 400 222 46 73 75 1333 2232
S7 472 1459 378 396 340 44 74 75 1423 2230
S8 471 1442 391 391 295 34 76 62 1384 2214
S9 512 1364 358 330 319 39 86 89 1423 2115

S10 492 1392 362 369 274 32 81 76 1318 2108

Table 5: Cutting planes for real instances

Note in Table 5 that the total number of cutting planes generated for the instances of DL
is higher than the ones generated for TS. The number of implied bounds for DL is far higher
than the number of this type of cut generated for the original model TS. In contrast, fewer
mir cuts were generated for DL. The number of flow cover and Gomory cuts are similar for
both models. Since the integer GAP of both formulations TS and DL is higher than 14%,
there is scope for further research into the effect of other types of valid inequalities in the
solution process of the original and the proposed reformulations.

5 Conclusions and further work

In this paper we investigated the effect of lifted valid inequalities in the solution process
of a lotscheduling model applied to soft drink production planning. The proposed valid
inequalities was used to obtain a priori reformulations of a model given in the literature.
The computational study was conducted using instances generated from random and real
data, and showed the benefits the proposed reformulation. With formulation DL, it was
possible to improve the solution process of both random and real data instances. However,
the integrality GAP associated with the real instances (between 14% and 36%) shows scope
for further research. Other types of valid inequalities (e.g. Sherali and Driscoll (2002))
might be useful as cutting planes in a branch-and-cut algorithm and/or to obtain a priori
reformulations of the lot scheduling problem. Other reformulations strategies, for example
exploring different formulations for the ATSP problem (Oncan et al. (2009)) and/or for-
mulations for the scheduling problem (Aldowaisan et al. (1999)), might also be useful to
improve the solution process of this problem.
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