
A CONSTRAINT-BASED SCHEDULING OF OFFSHORE WELL
DEVELOPMENT ACTIVITIES WITH INVENTORY MANAGEMENT

Thiago Serra
Instituto de Matemática e Estatística – Universidade de São Paulo

Rua do Matão, 1010 – Cidade Universitária – São Paulo – SP – Brasil – CEP: 05508-090
tserra@ime.usp.br

Gilberto Nishioka
Departamento de Engenharia Química – Escola Politécnica – Universidade de São Paulo

Av. Prof. Lineu Prestes, 580 – Cj. Quimicas Bl.18– São Paulo – SP – Brasil – CEP: 05508-970
gknishi@usp.br

Fernando J. M. Marcellino
PETROBRAS - Tecnologia da Informação São Paulo

Av. Paulista, 901 – 4o andar – São Paulo – SP – Brasil – CEP: 01311-100
fmarcellino@petrobras.com.br

ABSTRACT
This work aims at proposing and tackling a novel version of the resource scheduling
problem to perform exploitation activities in offshore oil wells. It differs from previous
approaches for considering inventory issues related to the transportation of lines that
connect wells to the surface. The Constraint Programming (CP) technique was used this
time due to late improvements in state-of-art constraint modeling that facilitated
prototyping and also due to the improvement of CP solving mechanisms for scheduling.
An algorithm for upper bound estimation is also presented to assess the quality of the
obtained solutions. The resulting scheduler was tested with real data from PETROBRAS
and it will be further improved to be used by this company very soon.

KEYWORDS. Oil Well Development, Scheduling, Constraint Programming.
Main area. P&G – O.R. in Oil & Gas Applications.

RESUMO
Este trabalho visa propor e abordar uma nova versão do problema de alocação de
recursos para a realização de atividades de produção em poços de petróleo marítimos. Ele
difere de abordagens anteriores por contemplar questões de estoque relativas ao
transporte de linhas que conectam os poços à superfície. A técnica de Programação por
Restrições (PR) foi usada devido a melhorias recentes nas ferramentas de modelagem
com restrições que facilitaram a prototipagem e também devido à melhoria dos
mecanismos de resolução de PR para problemas de escalonamento. Um algoritmo para a
obtenção de um limitante superior é também apresentado para avaliar a qualidade das
soluções obtidas. O escalonador resultante foi testado com dados reais da PETROBRAS
e será aperfeiçoado para o uso por esta empresa em breve.

PALAVRAS CHAVE. Desenvolvimento de Poços, Escalonamento, Programação por
Restrições.
Área principal. P&G – PO na Área de Petróleo & Gás.

3459

1. Introduction
Exploitation activities are related to the development of new oil wells and the

maintenance of the existing ones. They must be performed by scarce resources such as oil rigs
and linelay vessels. Those resources are required to operate over a wide geographical area and are
subject to predicted downtimes related to their routine maintenance. Each well starts producing
oil as soon as its development activities are concluded. The schedule of their development is
intended to maximize the resulting short-term gain in oil production. Besides, exploitation
activities are much more detailed than the exploratory ones that precede them, as described by
Glinz and Berumen (2009). Therefore, this problem assumes a critical role due to its closeness to
the operational level in one of the most expensive processes of oil companies value chain.

On account of the amount of wells and resources managed by the company under study,
it takes days to find a scheduling solution manually and optimization is barely considered. It is
noticeable that unexpected events such as activity delays and resource breaks may invalidate the
whole schedule. Moreover, any tactical analysis to acquire more resources requires a comparison
between schedules with and without them. Hence, exploitation scheduling represents a situation
in which automatization is mandatory and optimization would provide a competitive edge.

This problem has already been tackled by many approaches since its inception by Hasle
et. al. (1996). It was shown by Nascimento (2002) that it is NP-hard since it is as hard as the Job-
Shop Scheduling problem, what means that it is not known an efficient algorithm for the general
case of the problem. Several of these previous approaches represent a progressive detail of a
single specification, including Nascimento (2002), Accioly et. al. (2002), Pereira et. al. (2005)
and Moura et. al. (2008). Techniques such as Constraint Programming (CP) and metaheuristics
like Greedy Randomized Adaptive Search Procedures (GRASP) and Tabu Search (TS) have been
used to some extent in previous works. CP was first used by Accioly et. al. (2002) and compared
to GRASP in Pereira et. al. (2005), where it was slightly outperformed. There are also approaches
to related problems in the life-cycle of oil reservoirs such as resource planning for exploration
activities by Glinz and Berumen (2009) and scheduling routine maintenance on wells that are
already producing. Paiva (1997) tackled the maintenance of offshore wells whereas Aloise et. al.
(2006) tackled onshore wells. Nevertheless, there are some subtleties in real-life exploitation
scheduling yet to be considered in order to achieve a solution that is truly applicable.

This work presents an augmented description of the problem and a novel approach to
tackle it. Such amend to the problem description refers to the inclusion of inventory restrictions
of linelay vessels. Those resources are responsible for the load of lines at harbors and their
release at developing wells in order to trigger oil production. The approach to the problem
consists of a declarative formulation aimed at facilitating the problem resolution by means of a
commercial CP solver. An algorithm that provides an estimation of the optimality gap to assess
the quality of the obtained solutions is also introduced. Thus, our intent is to give further insight
about the problem and to explore current capabilities of the CP technology for scheduling
problems as well.

The organization of the remainder of the text is as follows. A description of the problem
is presented in section 2. The approach to the problem is presented in section 3 along with an
introduction to the CP technique and to the syntax in which the problem is then formulated. The
algorithm for upper bound estimation is described in section 4. Some experimental results are
exhibited in section 5 and subsequently discussed in section 6. Final remarks are presented in
section 7.

2. Problem
The exploitation scheduling problem can be depicted as a matter of deciding if, when and

how to perform each of several activities associated with wells or harbors using a given set of
resources. Time is discretized in days, starting from a given date represented by 0. For notational
convention, resources will be denoted by the index i, ranging from 1 to nr ; activities by j, ranging
from 1 to na with the first nw activities performed on wells and the remainder on harbors; and
sites, both wells and harbors, by k. In what follows, such indexes are used to represent the

3460

problem details.

2.1. Optimization criteria
The main objective is to maximize short-term production of the schedule, which is a

measure of how much each well would produce since the day its development finishes until a
given date H. Each activity j is supposed to have an associated daily production rate pj once it is
concluded, which is nonzero only in the case of the last activities on each well. Secondarily, it is
also pursued to anticipate the conclusion of each activity in the schedule.

2.2. General resource restrictions
– Each resource performs only one activity at a time.
– Each resource i has a contract period from day csi to day cei , out of which it is

unavailable.
– During that contract period, there are predicted resource outages. These outages are

periods in which no activity can be performed by the resource.
– A resource can perform only activities whose requirements are compatible with its

features. Let cij = 1 if and only if resource i and activity j are compatible.
– Only one resource can be assigned to a well at any time.
– In order to use a resource to perform consecutive activities at different sites, it is

necessary to consider the time to move that resource from a location to another.
– Some resources are not allowed to get closer than a given distance to each other due

to the collision risk.

2.3. General activity restrictions
– Once an activity starts, it is performed non-stop until conclusion.
– Each activity j has pre-defined early and late starting dates, denoted by esj and lsj .
– Each activity j is associated with a site sitj .
– For activities on wells, the duration is fixed and given by dj .
– One activity may be preceded by other activities, each of which demanding a

minimum time interval from the end of one to the start of the other.
– Some activities may belong to a cluster, in which all activities should be performed

by a single resource.

2.4. Inventory restrictions
– Each resource starts the schedule with an empty inventory.
– Each resource i has a maximum inventory capacity ici , which is nonzero only for

linelay vessels.
– Only resources with positive inventory capacity may perform loading activities at

harbors.
– Each harbor k may support up to sk simultaneous loading activities.
– A loading activity performed by a resource i lasts from mili up to mali days.
– The increase of the onboard inventory due to a loading activity is proportional to the

time it lasts, and a resource i increases its inventory by ici after mali days.
– In order to perform an activity j that involves line connection, a resource must have

the necessary line weight wlj to unload there.
– Loading activities are not subject to cluster or precedence constraints.
– The number of loading activities is not predetermined. However, it is possible to set

an upper limit as the product of the number of harbors by the number of connection
activities.

3. Approach
Our approach to the problem is based on the CP technique or, more specifically, on

Constraint-Based Scheduling (CBS). The problem of study was formulated to be tackled with a

3461

CBS solver using the concept of interval variables. In what follows, some notions about CP and
CBS as well as about interval variables formulation are given prior to the CP model itself.

3.1. CP and Constraint-Based Scheduling
CP is defined by Lustig and Puget (2001) as a computer programming technique in which

combinatorial problems are formulated using constraints designed to capture problem structure
more easily. These constraints make it possible to infer domain reductions involving the decision
variables of the problem so that search space is pruned before and during search, what is
described by Barták (2001) as constraint propagation. In addition, its search techniques are based
on backtracking and local search algorithms that are possibly biased by problem structure,
according to Beek (2006) and Godard et al. (2005). With the advent of algebraic modeling
languages supported by CP solvers, Lustig and Puget (2001) regarded that the technique was no
longer restricted to computer programming experts and it was possible to use it in the
development of abstract formulations suitable for direct execution in these solvers.

It is noticeable that CP strength is due to how it can handle specificities of application
domains, usually by means of global constraints. Bessière and Hentenryck (2003) observe that a
global constraint represents a complex but common relation among a set of variables, for which
more efficient propagation algorithms are designed. Scheduling is a special case in which CP is
very competitive, what led to the development of CBS. CBS is a specialization of CP towards
scheduling problems, whose competitiveness is due to the fact that scheduling problems usually
require linear formulations whose size prevents them from being solved with Mixed-Integer
Programming (MIP) algorithms in reasonable time with available hardware resources. For a
comprehensive introduction to CP and to CBS, the interested reader is referred to Dechter (2003)
and Baptiste et. al. (2001), respectively.

3.2. Formulation syntax
Interval variables represent an expressive generalization of abstractions such as activities

and resources for modeling scheduling problems. Each interval variable depicts an event through
a collection of interdependent properties such as its occurrence, starting date, duration and ending
date. Those properties will be denoted by the following functions over the interval given as
argument, respectively: occur, start, duration and end. Intervals can be used to formulate a
problem according to a solving hierarchy imposed by one-to-many constraints such as
alternative, no-overlap and transition. The alternative constraint imposes that only one interval
in a collection can represent some event and thus occur. Intervals can be grouped into sequences,
upon which the no-overlap constraint can be imposed to state that only one interval can occur at a
time. The transition constraint is a complement of no-overlap, through which a setup time
between consecutive intervals in the sequence is defined. Intervals can also be used to define
cumulative functions over producing and consuming events. In such case, the start and the end of
each interval in the cumulative function is associated with step variation coefficients. It is
possible to constrain the value of a cumulative function during an interval or on its entire domain.
All the abstractions just mentioned will be used somehow to model the problem hereafter.

Those abstractions involving interval variables are provided through an algebraic
modeling environment where the model designer does not need to be aware of inner constraint
solving details. However, Serra and Wakabayashi (2010) acknowledge that such knowledge is
important in order to achieve a better performance to solve optimization problem. The interested
reader is referred to Laborie and Rogerie (2008) and Laborie et. al. (2009) for details about
interval variables beyond the scope of this paper.

3.3. Problem formulation
Instead of presenting the formulation through plain mathematical notation or code

excerpts, most of it will be based on an adaptation of the diagram scheme used by Laborie and
Rogerie (2008) and Laborie et. al. (2009) to represent the interactions among variables and
constraints. Those diagrams are not intended to present a complete view of the relationships, but
rather to highlight one example of each kind in order to give the reader an insight about the

3462

hierarchy defined in the model.
Figure 1 presents the main part of the model related to the general association between

activities and resources. The interval vector a possesses one mandatory interval aj associated with
each activity j that is performed on a well and one optional interval associated with each loading
activity. The interval matrix M has as many intervals as the Cartesian product of the sets of
resources and activities, so that each cell mij denotes the interval associated with resource i
performing activity j. The vector a and the matrix M are bound by the alternative constraint,
which states that at most one interval from each column j of M occurs and that it corresponds to
aj . In order to prevent resources from being assigned to more than one activity at a time, each
sequence ri from the vector r involves the entire line of M associated with resource i and the no-
overlap constraint is imposed over each of them. It comes along with transition to define the
displacement time of the resource between the sites of consecutive activities it performs. Each
resource i is also represented by a cumulative function ui of the vector u, which is a composite
pulse function mapping resource usage over time and can be constrained to zero-valued periods
when outages occur.

Figure 1. General association between activities and resources

Figure 2 depicts the basic domain reductions and the clustering constraints of the model.
Domain reductions are imposed over the entries of M and each interval property is denoted in the
figure as a function over the interval: mij can occur if and only if the resource is compatible with
the activity (cij = 1); mij can start only after the beginning of the resource contract (csi) and the
early start of the activity (esj); mij must not finish after the end of the resource contract (cei) and
the sum of the late start and the duration of the activity (lsj + dj); and mij lasts as much as the
duration of the activity (dj). Each cluster is represented by logical implications, which force the
occurrence of all activities of a cluster in the same line of matrix M.

Figure 3 shows the relation among the activities and their relation with the sites in which
they are performed. In order to prevent activities from concurring in the same well, each
sequence wk from the vector w comprises all the intervals aj of a whose associated activity j is
located at well k. A no-overlap constraint is imposed over each sequence of w. The same
reasoning can be used to impose the security distance among resources in matrix M. For
controlling concurrence in harbors, each cumulative function in the vector h is composed of
unitary pulses associated with the intervals of a denoting loading activities at each harbor.
Precedence constraints are directly stated in the constraint set of the model over the mandatory

3463

intervals associated with each activity.

Figure 2. Basic domain reductions and clustering constraints

Figure 3. General association between activities and locations

Figure 4 depicts how inventory constraints are imposed over each resource. For a
resource i, inventory capacity is represented by the cumulative function li over the i-th line of
matrix M, which involves both loading activities in harbors and unloading activities in wells.
Each loading activity implies a positive step proportional to its duration. Each unloading activity
forces an inventory release related to the needs of the associated activity. Upper and lower limits
on inventory are imposed over the cumulative functions of the vector l.

Figure 4. Resource inventory constraints

Finally, the composition of the objective function is based on a combination of the
expected short-term production and the summation of the conclusion time of each activity. These
two functions get different weights to avoid that the latter affects the value of the former, as
follows:

3464

maximize M 1∗∑
j=1

na

MAX H −end a j ,0 ∗p j − M 2∗∑
j=1

na

end a j (1)

with M 1≫M 2 .

4. Optimality gap evaluator
In order to assess the quality of the solutions, it was used an algorithm that generates an

upper bound for the production of a given scheduling instance. The relaxation evaluation
algorithm is based on a reasonable set of simplifications which induces an overestimation of the
maximum achievable production. It starts with the measurement of the critical path to achieve the
end of each activity whose conclusion increases the daily production rate. If an intermediary
activity is present in the critical path of more than one activity with associated production, it is
considered only at its first occurrence. Those critical paths are then considered as single activities
of a simplified problem and ranked by increasing duration. Each of these activities has a
production rate assigned from the production rates of the original activities in decreasing order of
value, so that the activity denoting the shortest critical path is associated with the highest
production rate and so on. In this simplification, it is assumed that any resource is capable of
performing any activity. Therefore, optimality is achieved by allocating activities in the order in
which they were ranked at the first available date in any available resource. Clearly, the short-
term production achieved in this simplified version of the problem is higher than that of any
feasible solution of the original problem, and thus represents a valid relaxation estimation.

5. Experimental results
The experimental evaluation of the scheduler was based on a data set representing a past

scenario of real case usage. The authors managed to avoid some of the drawbacks of having only
one real instance by splitting the set of activities into smaller parts which were also individually
tested as separate instances. The original instance O had 465 activities involving 171 wells that
were split in two different and unrelated ways, both of which striving to distribute activities as
equally as possible. The first split of activities resulted in two halves, H1 and H2, and the second
in four quarters, Q1 to Q4. In all of them, the entire set of resources was available to schedule the
activities. Table 1 depicts the main characteristics of each instance.

Instance O H1 H2 Q1 Q2 Q3 Q4
Activities 465 231 234 116 118 116 115

Wells 171 82 89 46 37 45 43

Lines 66 32 34 17 17 13 19

Rigs 64

Vessels 9

Outages 12

Table 1. Main characteristics of the tested instances of the problem.

The CP model was implemented using the OPL language and executed on a single thread
using the IBM Cplex Studio 12.2 solver. The computer used had 4 Dual-Core AMD Opteron
8220 processors, 16 Gb of RAM-memory and a Linux operating system. For each of those
instances, the solver was run for one hour with 4 different random seeds. Such time limit was set
based on the end user's expectation about the scheduler. The best production achieved on each
instance was set as 100 and the other solutions found as well as the upper bound evaluation were
normalized accordingly. The main results of the experiments are presented in table 2. The

3465

improvement of the best solution found during each run of instance O is given in figure 5.
Figures 6 and 7 depict the improvement of the best solution found for each run of instances H1
and H2, and Q1 to Q4, respectively.

Instance O H1 H2 Q1 Q2 Q3 Q4
Avg. Time
Initial Sol.

27.46 s 21.54 s 20.64 s 6.75 s 6.78 s 7.51 s 6.05 s

Avg. Value
Initial Sol.

87.54 96.94 93.63 99.78 99.46 99.63 82.07

Avg. Value
Final Sol.

99.62 99.76 99.88 99.99 99.99 99.98 99.94

Upper
Bound Est.

138.24 122.32 124.94 122.08 138.13 117.78 118.31

Table 2. Main results of the tests: time for the first solution, normalized values for
average initial, final solution and upper bound estimation.

Figure 5. Best solution found along time for each run of the solver in instance O

Figure 6. Best solution found along time for each run of the solver in instances H1 and H2

0 1200 2400 3600
90

92

94

96

98

100

time (s)B
es

t s
ol

ut
io

n
fo

un
d

pe
r r

un
 (n

or
m

.) Instance H1

0 1200 2400 3600
90

92

94

96

98

100

time (s)B
es

t s
ol

ut
io

n
fo

un
d

pe
r r

un
 (n

or
m

.) Instance H2

0 1200 2400 3600
80

84

88

92

96

100

time (s)Be
st

so
lu

tio
n

fo
un

d
pe

r r
un

 (n
or

m
.) Instance O

3466

Figure 7. Best solution found along time for each run of the solver in instances Q1 to Q4

6. Discussion
The results indicate that the time limit set by the end user is reasonable to avoid

performance fluctuations. That can be concluded from the fact that most of the curves show a
trend of convergence to some solution value. Even if the convergence of solution values occurs
almost at the end of the period for instance O, the average value of the final solution found on
each run for all the instances were less than 0.4% lower than the best solution found. However,
the slightly higher optimality gap and the slow pace of convergence for instance O also indicate
that the results for that case could be better if it were possible to use a longer time limit.

From figures 5 to 7, one can notice that instances with more activities are more likely to
show greater variations between the initial solution and the best solution found. The major
deviation happened when testing Q4, a small instance with more lines than the average, for which
the observed variation was the greatest one and the convergence to the final solution value was
also a bit irregular. In the remainder of the small instances, Q1 to Q3, the first solution was found
in less than 8 seconds and its average value was less than 0.6% lower than the best solution found
in one hour. In the case of instance O, it took less than half a minute to find a solution but the
difference between the average initial solution and the best solution found was about 12.5%. It is
also noticeable that, except for the initial solutions in one run of instance Q2 and all runs of
instance Q4, all solutions found by the solver in the instances Q1 to Q4 lay within 1% to the best
solution found. In the case of instances H1 and H2, all solutions found were within 8% of the best

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n
fo

un
d

pe
r r

un
 (n

or
m

.) Instance Q1

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n
fo

un
d

pe
r r

un
 (n

or
m

.) Instance Q4

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n
fo

un
d

pe
r r

un
 (n

or
m

.) Instance Q2

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n
fo

un
d

pe
r r

un
 (n

or
m

.) Instance Q3

3467

solution found. For the instance O, all of the solutions had a difference of less than 20% but it
could be less than 10% if the initial solution of two runs were ignored. Despite that, the upper
bound for the solution value did not vary much with respect to the best solution found on each
instance.

All things considered, there is clear evidence about the robustness of the solver due to the
small time to find an initial solution in all cases and to the stability of the final results across
independent runs. Besides, all runs found a solution within 40% of the optimal solution and even
20% in some cases, since the optimality gap was smaller than that. Nevertheless, there is still
much opportunity for improving the quality of the initial solution and for reducing the estimated
value of the optimality gap.

The implementation of the initial solutions generator to serve as input to the CP solver
would leverage domain knowledge of who does the manual scheduling and avoid degeneracy at
the beginning of the search. If successful, it would diminish the variation observed for some
instances and provide more confidence to the end user. The suspicion about the optimality gap
achieved comes from the fact that instances of all sizes had a similar relative value. Moreover,
that value is a bit higher if one considers that the solution improvement of small instances halt
very early on some runs and larger improvements are usually not expected in such cases. Thus, it
might be possible that a less simplified relaxation of the problem would still be easy to solve
optimally and thus lead to a more accurate measurement of the results quality.

7. Conclusion
This paper has presented a CP model to solve the offshore oil exploitation scheduling

problem that covers most of the requirements identified by previous approaches and even extends
them. The only exception relates to the security distance between resources due to the lack of
data for tests, albeit some implementation guidelines are given for that case. The production
maximization is a justifiable criterion due to the necessity of anticipating the return-of-investment
related to the expensive resources used. Moreover, it is supplemented by a secondary criterion to
anticipate activities' conclusions, which indirectly induces a better use of resources by
minimizing displacement and idleness. Unfortunately, the lack of manual scheduling information
over the same data has not allowed a direct comparison for the moment. Besides, it was not
possible to compare CP results with those previously achieved with other techniques due to the
nature of the new problem requirements considered. Nevertheless, the experimental results
indicate that the solver was able to find solutions within 20% from the optimal value in some
cases.

As future work, the authors intend to propose a tighter upper bound estimator for a better
assessment of the optimality gap and a generator of initial solutions in order to boost solver
performance. At a further stage, it would be desirable to include more operational features of the
problem as well as other levels of decision such as resource acquisition analysis in order to
improve the company outcome. The specification deepening of this optimization problem is very
important due to the costs and opportunities involved. Therefore, performance improvements are
critical to scale up the problem to a wider scope in which company expenses are sensibly higher.

The proposed model and the results achieved by its execution on a CP solver validate the
concept of abstract modeling using interval variables and endorse the use of constraint
programming in real problems. Besides, drawbacks such as the lack of relaxation evaluators
obtained directly from the model when MIP is used can be surpassed with simple algorithms like
the one proposed in section 4. Hence, the authors hope that this work may stimulate the use of CP
by optimization professionals working in any industry with challenging discrete problems like the
one tackled here for the oil industry.

Acknowledgements
The authors gratefully acknowledge the company under study for authorizing the publication of
the information here present. Furthermore, the opinions and concepts which were presented are
the sole responsibility of the authors.

3468

References
Accioly, R., Marcellino, F. J. M. and Kobayashi, H. (2002), Uma aplicação da programação
por restrições no escalonamento de atividades em poços de petróleo. In: Proceedings of the
XXXIV Brazilian Symposium on Operations Research, Rio de Janeiro, Brazil.
Aloise, D. J., Aloise, D., Rocha, C. T. M., Ribeiro, C. C., Filho, J. C. R. e Moura, L. S. S.
(2006), Scheduling workover rigs for onshore oil production. Discrete Applied Mathematics,
154(5):695-702.
Baptiste, P., Le Pape, C. and Nuijten, W., Constraint-Based Scheduling: Applying Constraint
Programming to Scheduling Problems, Kluwer Academic Publishers, Norwell, 2001.
Barták, R. (1999), Constraint programming: In pursuit of the holy grail. In: Proceedings of the
Week of Doctoral Students (WDS99), pp. 555-564, Charles University, Prague, Czech Republic.
Beek, P. van, Backtracking search algorithms. In: Rossi, F., Beek, P. van, Walsh, T. (Eds.),
Handbook of Constraint Programming,Elsevier, New York, 2006.
Bessièrre, C. and Hentenryck, P. V. (2003), To be or not to be... a global constraints. In:
Proceedings of the 9th International Conference on Principles and Practice of Constraint
Programming, Kinsale, Ireland.
Dechter, R. , Constraint Processing. Morgan Kaufmann Publishers, San Francisco, 2003.
Glinz, I. and Berumen; L. (2009), Optimization model for an oil well drilling program: Mexico
case. Oil and Gas Business, v. 1.
Godard, D., Laborie, P. and Nuijten, W. (2005) Randomized large neighborhood search for
cumulative scheduling. In: Proceedings of the 15th International Conference on Automated
Planning and Scheduling, pp. 81-89, Montery, USA.
Hasle, G., Haut, R., Johansen, B. and Ølberg, T., Well activity scheduling – an application of
constraint reasoning. In: Braunschweig, B., Bremdal, B. A. (Eds.), Artificial Intelligence in the
Petroleum Industry: Symbolic and Computational Applications II, pp. 209-228, Technip, Paris,
1996.
IBM, ILOG CPLEX Optimization Studio 12.2 documentation for ODM Enterprise, USA, 2010.
Laborie, P. and Rogerie, J. (2008), Reasoning with conditional time-intervals. In: Proceedings
of the 21st International Florida Artificial Intelligence Research Society Conference, Coconut
Grove, USA.
Laborie, P., Rogerie, J., Shaw, P. and Vilím, P. (2009), Reasoning with conditional time-
intervals part II: An algebraical model for resources. In: 22nd International Florida Artificial
Intelligence Research Society Conference, Sanibel Island, USA.
Lustig, I. J. and Puget, J. -F. (2001), Program does not equal program: Constraint programming
and its relationship to mathematical programming. Interfaces, 31(6):29-53.
Moura, A. V., Pereira, R. A. and Souza, C. C. de (2008), Scheduling activities at oil wells with
resource displacement. International Transactions in Operational Research, 15:659-683(25).
Nascimento, J.M. do, Ferramentas computacionais híbridas para a otimização da produção de
petróleo em águas profundas. Master thesis, Instituto de Computação, Universidade Estadual de
Campinas, 2002.
Paiva, R. O. de, Itinerário de sondas com quantificação de perdas através de simulador de
reservatórios. Master thesis, Faculdade de Engenharia Mecânica, Universidade Estadual de
Campinas, 1997.
Pereira, R. A., Moura, A. V. and Souza, C. C. de (2005), Comparative experiments with
GRASP and constraint programming for the oil well drilling problem. In: Proceedings of the 4th

Workshop on Experimental Algorithms, Santorini Island, Greece.
Serra, T. and Wakabayashi, Y. (2010), The full employment theorem for solver designers and
related issues in CP modeling. In: Proceedings of the 5th Workshop on M.Sc. Dissertation and
Ph.D. Thesis in Artificial Intelligence, São Bernardo do Campo, Brazil.

3469

	ABSTRACT
	RESUMO

