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ABSTRACT
This work aims at proposing and tackling a novel version of the resource scheduling 
problem to perform exploitation activities in offshore oil wells. It differs from previous 
approaches for considering inventory issues  related to  the transportation of  lines that 
connect wells to the surface. The Constraint Programming (CP) technique was used this 
time  due  to  late  improvements  in  state-of-art  constraint  modeling  that  facilitated 
prototyping and also due to the improvement of CP solving mechanisms for scheduling. 
An algorithm for upper bound estimation is also presented to assess the quality of the 
obtained solutions. The resulting scheduler was tested with real data from PETROBRAS 
and it will be further improved to be used by this company very soon.

KEYWORDS. Oil Well Development, Scheduling, Constraint Programming. 
Main area. P&G – O.R. in Oil & Gas Applications.

RESUMO
Este  trabalho  visa  propor  e  abordar  uma  nova  versão  do  problema  de  alocação  de 
recursos para a realização de atividades de produção em poços de petróleo marítimos. Ele 
difere  de  abordagens  anteriores  por  contemplar  questões  de  estoque  relativas  ao 
transporte de linhas que conectam os poços à superfície. A técnica de Programação por 
Restrições (PR) foi usada devido a melhorias recentes nas ferramentas de modelagem 
com  restrições  que  facilitaram  a  prototipagem  e  também  devido  à  melhoria  dos 
mecanismos de resolução de PR para problemas de escalonamento. Um algoritmo para a 
obtenção de um limitante superior é também apresentado para avaliar a qualidade das 
soluções obtidas. O escalonador resultante foi testado com dados reais da PETROBRAS 
e será aperfeiçoado para o uso por esta empresa em breve.

PALAVRAS CHAVE. Desenvolvimento de Poços, Escalonamento, Programação por 
Restrições.
Área principal. P&G – PO na Área de Petróleo & Gás.
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1. Introduction
Exploitation  activities  are  related  to  the  development  of  new  oil  wells  and  the 

maintenance of the existing ones. They must be performed by scarce resources such as oil rigs  
and linelay vessels. Those resources are required to operate over a wide geographical area and are 
subject to predicted downtimes related to their routine maintenance. Each well starts producing 
oil  as soon as its development activities are concluded. The schedule of their development is 
intended  to  maximize  the  resulting  short-term gain  in  oil  production.  Besides,  exploitation 
activities are much more detailed than the exploratory ones that precede them, as described by 
Glinz and Berumen (2009). Therefore, this problem assumes a critical role due to its closeness to  
the operational level in one of the most expensive processes of oil companies value chain.

On account of the amount of wells and resources managed by the company under study, 
it takes days to find a scheduling solution manually and optimization is barely considered. It is  
noticeable that unexpected events such as activity delays and resource breaks may invalidate the 
whole schedule. Moreover, any tactical analysis to acquire more resources requires a comparison 
between schedules with and without them. Hence, exploitation scheduling represents a situation 
in which automatization is mandatory and optimization would provide a competitive edge.

This problem has already been tackled by many approaches since its inception by Hasle 
et. al. (1996). It was shown by Nascimento (2002) that it is NP-hard since it is as hard as the Job-
Shop Scheduling problem, what means that it is not known an efficient algorithm for the general  
case of the problem. Several of these previous approaches represent a progressive detail  of a  
single specification, including Nascimento (2002), Accioly et. al. (2002), Pereira et. al. (2005) 
and Moura et. al. (2008). Techniques such as Constraint Programming (CP) and metaheuristics 
like Greedy Randomized Adaptive Search Procedures (GRASP) and Tabu Search (TS) have been 
used to some extent in previous works. CP was first used by Accioly et. al. (2002) and compared 
to GRASP in Pereira et. al. (2005), where it was slightly outperformed. There are also approaches 
to related problems in the life-cycle of oil reservoirs such as resource planning for exploration  
activities by Glinz and Berumen (2009) and scheduling routine maintenance on wells that are  
already producing. Paiva (1997) tackled the maintenance of offshore wells whereas Aloise et. al. 
(2006) tackled onshore wells.  Nevertheless,  there are some subtleties in real-life exploitation  
scheduling yet to be considered in order to achieve a solution that is truly applicable.

This work presents an augmented description of the problem and a novel approach to  
tackle it. Such amend to the problem description refers to the inclusion of inventory restrictions 
of linelay vessels.  Those resources are  responsible  for the  load of  lines  at  harbors and their  
release  at  developing  wells  in  order  to  trigger  oil  production.  The  approach to  the  problem 
consists of a declarative formulation aimed at facilitating the problem resolution by means of a 
commercial CP solver. An algorithm that provides an estimation of the optimality gap to assess 
the quality of the obtained solutions is also introduced. Thus, our intent is to give further insight 
about  the  problem and  to  explore  current  capabilities  of  the  CP technology for  scheduling 
problems as well.

The organization of the remainder of the text is as follows. A description of the problem 
is presented in section 2. The approach to the problem is presented in section 3 along with an  
introduction to the CP technique and to the syntax in which the problem is then formulated. The 
algorithm for upper bound estimation is described in section 4. Some experimental results are 
exhibited in section 5 and subsequently discussed in section 6. Final remarks are presented in 
section 7.

2. Problem
The exploitation scheduling problem can be depicted as a matter of deciding if, when and 

how to perform each of several activities associated with wells or harbors using a given set of  
resources. Time is discretized in days, starting from a given date represented by 0. For notational  
convention, resources will be denoted by the index i, ranging from 1 to nr ; activities by j, ranging 
from 1 to  na with the first  nw activities performed on wells and the remainder on harbors; and 
sites,  both wells  and harbors,  by  k.  In  what  follows,  such indexes are  used to  represent  the 
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problem details.

2.1. Optimization criteria
The main objective is to maximize short-term production of the schedule, which is  a 

measure of how much each well would produce since the day its development finishes until a  
given date H. Each activity j is supposed to have an associated daily production rate pj once it is 
concluded, which is nonzero only in the case of the last activities on each well. Secondarily, it is  
also pursued to anticipate the conclusion of each activity in the schedule.

2.2. General resource restrictions
– Each resource performs only one activity at a time.
– Each resource  i has a contract period from day  csi to day  cei ,  out of which it is 

unavailable.
– During that contract period, there are predicted resource outages. These outages are 

periods in which no activity can be performed by the resource.
– A resource can perform only activities whose requirements are compatible with its 

features. Let cij = 1 if and only if resource i and activity j are compatible.
– Only one resource can be assigned to a well at any time.
– In order to use a resource to perform consecutive activities at different sites, it is  

necessary to consider the time to move that resource from a location to another.
– Some resources are not allowed to get closer than a given distance to each other due 

to the collision risk.

2.3. General activity restrictions
– Once an activity starts, it is performed non-stop until conclusion.
– Each activity j has pre-defined early and late starting dates, denoted by esj and lsj .
– Each activity j is associated with a site sitj .
– For activities on wells, the duration is fixed and given by dj .
– One  activity  may  be  preceded  by  other  activities,  each  of  which  demanding  a 

minimum time interval from the end of one to the start of the other.
– Some activities may belong to a cluster, in which all activities should be performed 

by a single resource.

2.4. Inventory restrictions
– Each resource starts the schedule with an empty inventory.
– Each resource  i has a maximum inventory capacity  ici , which is nonzero only for 

linelay vessels.
– Only resources with positive inventory capacity may perform loading activities at 

harbors.
– Each harbor k may support up to sk simultaneous loading activities.
– A loading activity performed by a resource i lasts from mili up to mali days.
– The increase of the onboard inventory due to a loading activity is proportional to the 

time it lasts, and a resource i increases its inventory by ici after mali days.
– In order to perform an activity j that involves line connection, a resource must have 

the necessary line weight wlj to unload there.
– Loading activities are not subject to cluster or precedence constraints.
– The number of loading activities is not predetermined. However, it is possible to set 

an upper limit as the product of the number of harbors by the number of connection 
activities.

3. Approach
Our approach to  the problem is based on the CP technique or,  more specifically,  on 

Constraint-Based Scheduling (CBS). The problem of study was formulated to be tackled with a 
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CBS solver using the concept of interval variables. In what follows, some notions about CP and 
CBS as well as about interval variables formulation are given prior to the CP model itself.

3.1. CP and Constraint-Based Scheduling
CP is defined by Lustig and Puget (2001) as a computer programming technique in which 

combinatorial problems are formulated using constraints designed to capture problem structure  
more easily. These constraints make it possible to infer domain reductions involving the decision 
variables  of  the  problem so  that  search  space  is  pruned  before  and  during  search,  what  is  
described by Barták (2001) as constraint propagation. In addition, its search techniques are based 
on  backtracking  and  local  search  algorithms  that  are  possibly  biased  by  problem structure,  
according  to  Beek (2006)  and Godard  et  al.  (2005).  With  the  advent  of  algebraic  modeling 
languages supported by CP solvers, Lustig and Puget (2001) regarded that the technique was no 
longer  restricted  to  computer  programming  experts  and  it  was  possible  to  use  it  in  the 
development of abstract formulations suitable for direct execution in these solvers.

It is noticeable that CP strength is due to how it can handle specificities of application 
domains, usually by means of global constraints. Bessière and Hentenryck (2003) observe that a  
global constraint represents a complex but common relation among a set of variables, for which 
more efficient propagation algorithms are designed. Scheduling is a special case in which CP is 
very competitive, what led to the development of CBS. CBS is a specialization of CP towards  
scheduling problems, whose competitiveness is due to the fact that scheduling problems usually 
require  linear  formulations  whose size  prevents  them from being solved  with Mixed-Integer 
Programming (MIP) algorithms in reasonable time with available hardware resources.  For a 
comprehensive introduction to CP and to CBS, the interested reader is referred to Dechter (2003) 
and Baptiste et. al. (2001), respectively.

3.2. Formulation syntax
Interval variables represent an expressive generalization of abstractions such as activities  

and resources for modeling scheduling problems.  Each interval variable depicts an event through 
a collection of interdependent properties such as its occurrence, starting date, duration and ending 
date.  Those properties will  be denoted by the following functions  over  the  interval  given as  
argument,  respectively:  occur,  start,  duration and  end. Intervals  can  be  used  to  formulate  a 
problem  according  to  a  solving  hierarchy  imposed  by  one-to-many  constraints  such  as 
alternative,  no-overlap and transition. The alternative constraint imposes that only one interval 
in a collection can represent some event and thus occur. Intervals can be grouped into sequences,  
upon which the no-overlap constraint can be imposed to state that only one interval can occur at a 
time.  The  transition constraint  is  a  complement  of  no-overlap,  through  which  a  setup  time 
between consecutive intervals in the sequence is defined. Intervals can also be used to define 
cumulative functions over producing and consuming events. In such case, the start and the end of  
each  interval  in  the  cumulative  function  is  associated  with  step  variation  coefficients.  It  is  
possible to constrain the value of a cumulative function during an interval or on its entire domain. 
All the abstractions just mentioned will be used somehow to model the problem hereafter.

Those  abstractions  involving  interval  variables  are  provided  through  an  algebraic 
modeling environment where the model designer does not need to be aware of inner constraint 
solving details. However, Serra and Wakabayashi (2010) acknowledge that such knowledge is 
important in order to achieve a better performance to solve optimization problem. The interested  
reader is  referred to Laborie and Rogerie (2008) and Laborie et.  al.  (2009) for details  about  
interval variables beyond the scope of this paper.

3.3. Problem formulation
Instead  of  presenting  the  formulation  through  plain  mathematical  notation  or  code 

excerpts, most of it will be based on an adaptation of the diagram scheme used by Laborie and 
Rogerie  (2008)  and Laborie  et.  al.  (2009)  to  represent  the  interactions  among variables  and 
constraints. Those diagrams are not intended to present a complete view of the relationships, but 
rather to highlight one example of each kind in order to give the reader an insight about the 
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hierarchy defined in the model.
Figure 1 presents the main part of the model related to the general association between 

activities and resources. The interval vector a possesses one mandatory interval aj associated with 
each activity j that is performed on a well and one optional interval associated with each loading 
activity.  The interval matrix  M has as many intervals as the Cartesian product of the sets of 
resources  and activities,  so  that  each cell  mij denotes  the  interval  associated with  resource  i 
performing activity  j. The vector  a and the matrix  M are bound by the  alternative constraint, 
which states that at most one interval from each column j of M occurs and that it corresponds to 
aj . In order to prevent resources from being assigned to more than one activity at a time, each  
sequence ri from the vector r involves the entire line of M associated with resource i and the no-
overlap constraint is imposed over each of them. It comes along with  transition to define the 
displacement time of the resource between the sites of consecutive activities it performs. Each 
resource i is also represented by a cumulative function ui of the vector u, which is a composite 
pulse function mapping resource usage over time and can be constrained to zero-valued periods  
when outages occur.

Figure 1. General association between activities and resources

Figure 2 depicts the basic domain reductions and the clustering constraints of the model.  
Domain reductions are imposed over the entries of M and each interval property is denoted in the 
figure as a function over the interval: mij can occur if and only if the resource is compatible with 
the activity (cij = 1);  mij can start only after the beginning of the resource contract (csi) and the 
early start of the activity (esj ); mij must not finish after the end of the resource contract (cei) and 
the sum of the late start and the duration of the activity (lsj +  dj); and  mij lasts as much as the 
duration of the activity (dj ). Each cluster is represented by logical implications, which force the 
occurrence of all activities of a cluster in the same line of matrix M.

Figure 3 shows the relation among the activities and their relation with the sites in which 
they  are  performed.  In  order  to  prevent  activities  from concurring  in  the  same  well,  each 
sequence wk from the vector w comprises all the intervals aj of a whose associated activity j is 
located  at  well  k.  A no-overlap  constraint  is  imposed  over  each  sequence  of  w.  The  same 
reasoning  can  be  used  to  impose  the  security  distance  among  resources  in  matrix  M.  For 
controlling concurrence in harbors,  each cumulative function in the vector  h is  composed of 
unitary pulses  associated  with  the  intervals  of  a denoting  loading  activities  at  each  harbor. 
Precedence constraints are directly stated in the constraint set of the model over the mandatory 
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intervals associated with each activity.

Figure 2. Basic domain reductions and clustering constraints

Figure 3. General association between activities and locations

Figure  4  depicts  how  inventory  constraints  are  imposed  over  each  resource.  For  a 
resource  i, inventory capacity is represented by the cumulative function  li over the  i-th line of 
matrix  M,  which involves both loading activities in harbors and unloading activities in wells.  
Each loading activity implies a positive step proportional to its duration. Each unloading activity 
forces an inventory release related to the needs of the associated activity. Upper and lower limits  
on inventory are imposed over the cumulative functions of the vector l.

Figure 4. Resource inventory constraints

Finally,  the  composition  of  the  objective  function  is  based  on  a  combination  of  the 
expected short-term production and the summation of the conclusion time of each activity. These 
two functions get different weights to avoid that the latter affects the value of the former, as 
follows:
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maximize M 1∗∑
j=1

na

MAX  H −end  a j ,0 ∗p j − M 2∗∑
j=1

na

end  a j (1)

with M 1≫M 2 .

4. Optimality gap evaluator
In order to assess the quality of the solutions, it was used an algorithm that generates an 

upper  bound  for  the  production  of  a  given  scheduling  instance.  The  relaxation  evaluation 
algorithm is based on a reasonable set of simplifications which induces an overestimation of the 
maximum achievable production. It starts with the measurement of the critical path to achieve the 
end of each activity whose conclusion increases the daily production rate. If an intermediary 
activity is present in the critical path of more than one activity with associated production, it is  
considered only at its first occurrence. Those critical paths are then considered as single activities 
of  a  simplified  problem and  ranked  by  increasing  duration.  Each  of  these  activities  has  a  
production rate assigned from the production rates of the original activities in decreasing order of  
value,  so  that  the  activity  denoting  the  shortest  critical  path  is  associated  with  the  highest 
production rate and so on. In this simplification, it is assumed that any resource is capable of 
performing any activity. Therefore, optimality is achieved by allocating activities in the order in 
which they were ranked at the first available date in any available resource. Clearly, the short-
term production achieved in this simplified version of the problem is higher than that of any 
feasible solution of the original problem, and thus represents a valid relaxation estimation.

5. Experimental results
The experimental evaluation of the scheduler was based on a data set representing a past 

scenario of real case usage. The authors managed to avoid some of the drawbacks of having only 
one real instance by splitting the set of activities into smaller parts which were also individually  
tested as separate instances. The original instance O had 465 activities involving 171 wells that 
were split in two different and unrelated ways, both of which striving to distribute activities as  
equally as possible. The first split of activities resulted in two halves, H1 and H2, and the second 
in four quarters, Q1 to Q4. In all of them, the entire set of resources was available to schedule the 
activities. Table 1 depicts the main characteristics of each instance.

Instance O H1 H2 Q1 Q2 Q3 Q4
Activities 465 231 234 116 118 116 115

Wells 171 82 89 46 37 45 43

Lines 66 32 34 17 17 13 19

Rigs 64

Vessels 9

Outages 12

Table 1. Main characteristics of the tested instances of the problem.

The CP model was implemented using the OPL language and executed on a single thread 
using the IBM Cplex Studio 12.2 solver. The computer used had 4 Dual-Core AMD Opteron 
8220 processors,  16  Gb of  RAM-memory and a  Linux operating system.  For  each of  those 
instances, the solver was run for one hour with 4 different random seeds. Such time limit was set 
based on the end user's expectation about the scheduler. The best production achieved on each 
instance was set as 100 and the other solutions found as well as the upper bound evaluation were 
normalized  accordingly.  The  main  results  of  the  experiments  are  presented  in  table  2.  The 
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improvement  of  the  best  solution found during each run of  instance  O is  given in  figure  5. 
Figures 6 and 7 depict the improvement of the best solution found for each run of instances H1 
and H2, and Q1 to Q4, respectively.

Instance O H1 H2 Q1 Q2 Q3 Q4
Avg. Time 
Initial Sol.

27.46 s 21.54 s 20.64 s 6.75 s 6.78 s 7.51 s 6.05 s

Avg. Value 
Initial Sol.

87.54 96.94 93.63 99.78 99.46 99.63 82.07

Avg. Value 
Final Sol.

99.62 99.76 99.88 99.99 99.99 99.98 99.94

Upper 
Bound Est.

138.24 122.32 124.94 122.08 138.13 117.78 118.31

Table 2. Main results of the tests: time for the first solution, normalized values for 
average initial, final solution and upper bound estimation.

Figure 5. Best solution found along time for each run of the solver in instance O

Figure 6. Best solution found along time for each run of the solver in instances H1 and H2
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Figure 7. Best solution found along time for each run of the solver in instances Q1 to Q4

6. Discussion
The  results  indicate  that  the  time  limit  set  by  the  end  user  is  reasonable  to  avoid 

performance fluctuations. That can be concluded from the fact that most of the curves show a  
trend of convergence to some solution value. Even if the convergence of solution values occurs  
almost at the end of the period for instance O, the average value of the final solution found on 
each run for all the instances were less than 0.4% lower than the best solution found. However, 
the slightly higher optimality gap and the slow pace of convergence for instance O also indicate 
that the results for that case could be better if it were possible to use a longer time limit.

From figures 5 to 7, one can notice that instances with more activities are more likely to  
show greater  variations  between  the  initial  solution  and the  best  solution  found.  The  major 
deviation happened when testing Q4, a small instance with more lines than the average, for which 
the observed variation was the greatest one and the convergence to the final solution value was 
also a bit irregular. In the remainder of the small instances, Q1 to Q3, the first solution was found 
in less than 8 seconds and its average value was less than 0.6% lower than the best solution found 
in one hour. In the case of instance O, it took less than half a minute to find a solution but the 
difference between the average initial solution and the best solution found was about 12.5%. It is 
also noticeable that, except for the initial solutions in one run of instance  Q2 and all runs of 
instance Q4, all solutions found by the solver in the instances Q1 to Q4 lay within 1% to the best 
solution found. In the case of instances H1 and H2, all solutions found were within 8% of the best 

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n 
fo

un
d 

pe
r r

un
 (n

or
m

.) Instance Q1

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n 
fo

un
d 

pe
r r

un
 (n

or
m

.) Instance Q4

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n 
fo

un
d 

pe
r r

un
 (n

or
m

.) Instance Q2

0 1200 2400 3600
99.0

99.2

99.4

99.6

99.8

100.0

time (s)B
es

t s
ol

ut
io

n 
fo

un
d 

pe
r r

un
 (n

or
m

.) Instance Q3

3467



solution found. For the instance O, all of the solutions had a difference of less than 20% but it  
could be less than 10% if the initial solution of two runs were ignored. Despite that, the upper 
bound for the solution value did not vary much with respect to the best solution found on each 
instance. 

All things considered, there is clear evidence about the robustness of the solver due to the 
small time to find an initial solution in all cases and to the stability of the final results across  
independent runs. Besides, all runs found a solution within 40% of the optimal solution and even 
20% in some cases, since the optimality gap was smaller than that. Nevertheless, there is still  
much opportunity for improving the quality of the initial solution and for reducing the estimated 
value of the optimality gap. 

The implementation of the initial solutions generator to serve as input to the CP solver  
would leverage domain knowledge of who does the manual scheduling and avoid degeneracy at  
the beginning of the search. If successful,  it  would diminish the variation observed for some  
instances and provide more confidence to the end user. The suspicion about the optimality gap 
achieved comes from the fact that instances of all sizes had a similar relative value. Moreover,  
that value is a bit higher if one considers that the solution improvement of small instances halt  
very early on some runs and larger improvements are usually not expected in such cases. Thus, it  
might be possible that a less simplified relaxation of the problem would still be easy to solve 
optimally  and thus lead to a more accurate measurement of the results quality.

7. Conclusion
This paper has presented a CP model to solve the offshore oil exploitation scheduling 

problem that covers most of the requirements identified by previous approaches and even extends 
them. The only exception relates to the security distance between resources due to the lack of  
data for tests,  albeit  some implementation guidelines are given for that  case.  The production 
maximization is a justifiable criterion due to the necessity of anticipating the return-of-investment 
related to the expensive resources used. Moreover, it is supplemented by a secondary criterion to  
anticipate  activities'  conclusions,  which  indirectly  induces  a  better  use  of  resources  by 
minimizing displacement and idleness. Unfortunately, the lack of manual scheduling information 
over the same data has not allowed a direct comparison for the moment. Besides, it was not 
possible to compare CP results with those previously achieved with other techniques due to the 
nature  of  the  new  problem  requirements  considered.  Nevertheless,  the  experimental  results 
indicate that the solver was able to find solutions within 20% from the optimal value in some  
cases.

As future work, the authors intend to propose a tighter upper bound estimator for a better 
assessment of the optimality gap and a generator of initial  solutions in order to boost  solver  
performance. At a further stage, it would be desirable to include more operational features of the  
problem as well  as other levels of  decision such as resource acquisition analysis in order to 
improve the company outcome. The specification deepening of this optimization problem is very 
important due to the costs and opportunities involved. Therefore, performance improvements are 
critical to scale up the problem to a wider scope in which company expenses are sensibly higher.

The proposed model and the results achieved by its execution on a CP solver validate the 
concept  of  abstract  modeling  using  interval  variables  and  endorse  the  use  of  constraint  
programming in real  problems.  Besides,  drawbacks such as  the lack of relaxation evaluators 
obtained directly from the model when MIP is used can be surpassed with simple algorithms like 
the one proposed in section 4. Hence, the authors hope that this work may stimulate the use of CP 
by optimization professionals working in any industry with challenging discrete problems like the 
one tackled here for the oil industry.
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