
Unconstrained k-staged two-dimensional guillotineable single knapsack
problem

Problema da mochila bidimensional irrestrito guilhotinado de k-etapas

David Álvarez-Martínez*

Luis Miguel Escobar Falcón**

Ramón Alfonso Gallego-Rendón***

*Universidade Estadual Paulista – Faculdade de Engenharia de Ilha Solteira – São Paulo – Brasil

**Joven Investigador COLCIENCIAS – Universidad Tecnológica de Pereira – Facultad de
Ingenierías – Programa de Ingeniería de Sistemas y Computación – Risaralda – Colombia

***Universidad Tecnológica de Pereira – Facultad de Ingenierías – Programa de Ingeniería
Eléctrica – Risaralda – Colombia

ABSTRACT

The cutting and packing problems are considered classic problems in the operations
research of high interest due to its big spectrum of application in the industry, and the development
needed on the treatment of high mathematical and computational complexity structures. In this
study is presented the unconstrained k-staged two-dimensional guillotineable single knapsack
problem of rectangular items, with and without associated weights to the items, with and without 90
degrees rotations to the items, and with guillotine cuts. An appropriate encoding of the problem is
presented to work on it using a metaheuristic hybrid algorithm of variable neighborhood search and
simulated annealing. To check the efficiency of the presented methodology, cases of study were
taken from specialized literature in order to analize and compare the presented solution method with
the state-of-the-art of the problems. Results of excellent quality and never reported before on the
literature were obtained in this work.

KEY WORDS. Unconstrained k-staged two-dimensional knapsack problem, variable neighborhood
search, simulated annealing.

RESUMO

Os problemas de empacotamento e corte ótimo são considerados clássicos na pesquisa
operacional devido a seu grande campo de aplicação na indústria e a sua alta complexidade
matemática e computacional. Neste trabalho é apresentado o problema de empacotamento ótimo
bidimensional irrestrito de peças retangulares numa placa só, com e sem pesos associados às peças,
considerando a possibilidade de rotacionar 90° as peças, com restrições de corte tipo guilhotina e
um número k máximo de etapas de corte (amplamente conhecido como o problema da mochila
bidimensional irrestrita de k-etapas). É proposto um tipo de codificação para ser aplicada neste
problema e resolver-lo mediante um algoritmo de otimização que combina as principais
características do variable neighborhood search and simulated annealing. Para comprovar a
eficiência do método apresentado foram usados casos de teste tomados da literatura especializada,
onde são analisados e comparados os métodos de solução apresentados com aqueles do estado da
arte do problema, obtendo resultados de excelente qualidade e nunca antes reportados na literatura.

PALAVRAS CHAVE. Mochila bidimensional irrestrita de k-etapas, variable neighborhood
search, simulated annealing.

95

1. Introduction

Unconstrained k-staged two-dimensional guillotineable single knapsack problem is
used to solve cutting problems when the material employed is one rectangular piece where the
smaller rectangular pieces must be located, knowing the size and the associated cost for each of
the small pieces, the objective is to maximize the value of the cutted pieces.

The characteristics of this problem are:

i) The associated cost can be related or not with the area of the piece that is going to be
located; if the cost is equal to the area of the piece the problem will be solved without
weights (unweighted version) and if the cost is different to the area of the item the
problem will be solved with weights (weighted version).

ii) The orientation of the pieces that are going to be located with length l and width w is
different from a piece of length l and width w (without rotation). If we consider that the
dimensions (l,w) and (w,l) represent the dimensions of the same piece, we are talking a
problem with rotation.

iii) The cutting patterns are guillotine type, each cut produces two sub-rectangles. The cuts
are done from one edge to the opposite edge of the original rectangle.

iv) Exists a maximum number of stages k, taking the constant k < ∞ as the sum of all the
vertical and/or horizontal parallel cuts. If k is equal to 2, the problem is 2-staged (having
this one a lot of real applications). If k is equal to 3, the problem is 3-staged. Finally, if a
large value is assumed for k, represents a non-staged problem.

v) There is no maximum limit of the quantity of pieces that will be cut from each type
(unconstrained version).

Figure 1: Representation of three solutions when k is fixed to 2, 3 and not-fixed respectively;
Numbers by the cuts are the stage at which the cut is made. (a) a solution of the 2-staged
problem: the value ‘1’ corresponds to the first cut and ‘2’ means that the second cut is applied; in
this case they are 2 vertical cuts (counted one time) and 5 horizontal cuts (counted one time); (b)
a solution to the 3-staged problem: The value ‘1’ represents the first cut, ‘2’ denotes the second
cut and ‘3’ is the third cut; in this case, they are: two vertical cuts (counted one time), 3
horizontal cuts (counted one time) and two internal vertical cuts (counted one time); (c) a
solution to the non-staged problem.

(Gilmore and Gomoroy, 1965; 1966) proposed a recursive exact algorithm based on
dynamic programming to solve the problem. Their algorithm is applicable to both weighted and
unweighted versions. (Herz, 1972) propose a recursive tree search method, his method is more
effective than Gilmore and Gomory’s algorithm for an unweighted problem, but does not apply
to weighted cases. (Beasley 1985) proposed an algorithm that is a modified version of Gilmore

96

and Gomory’s algorithm. (Hifi and Zissimopoulos, 1996) proposed a recursive exact algorithm
that uses a dynamic programming procedure and efficient lower and upper bounds. (G and Kang,
2002) improved Hiffi and Zissimopoulos’ recursive algorithm by applying a more efficient upper
bound. This is presently the most efficient exact algorithm for the unconstrained problem.

There are two general techniques used to solve constrained problems: top-down and
bottom-up approaches. (Christofides and Whitlock, 1977) originally proposed the top-down. The
bottom-up approach requires an enormous amount of memory, for this reason its implementation
is not attractive. However, (G et al., 2003) proposed an algorithm that starts from an initial
solution of good quality and uses the bottom-up algorithm as strategy to generate the branches,
decreasing the number of nodes to explore.

This article uses a binary tree encoding, called slicing tree structure, which decomposes
the problem into smaller packing problems to solve them through two algorithms, the first one is
an enumerative algorithm to find the types of cut (horizontal or vertical), the second one is an
hybrid metaheuristic algorithm that combines the main characteristics of the variable
neighborhood search (VNS) and simulated annealing (SA) to determine the optimal cut distances.
In order to proof the efficiency and quality of the results obtained with the proposed
methodology, study cases of the specialized literature were used. Solutions of excellent quality
were obtained which have never been reported. The structure of this article is as follows:
problem’s description, a general description of the methodology used to solve the unconstrained
k-staged two-dimensional guillotineable single knapsack problem, analysis result and
conclusions.

2. Problem Description

The unconstrained knapsack problem has two variants: unweighted version and weighted
version. The first instance of the problem (k-staged weighted version with rotation) is defined as
a finite set of n rectangular pieces of given dimensions (length li and width wi), where i = 1, 2,…,
n., which are cutted from a rectangular initial plate (knapsack) with lenght L and width W. With
each piece is associated a profit ci. One piece (li, wi) is equal to a piece (wi, li). The objective is to
find a cutting pattern of the plate maximizing the profit function, see the equation 1.

1

n

i i
i

max c z
=

⋅∑ (1)

Where zi is a binary variable that indicates if the piece i would be cutted or not.

Subject to:

• The packed (cutted) pieces cannot trespass the limits of the plate.

• The pieces cannot overlap to each other.

• Only cuts of guillotine type are permitted.

• The cutting pattern should be obtained on k stages of cut.

The second instance of the problem (k-staged weighted version without rotation) only has
one difference with the previous definition, and is the orientation of the pieces, therefore a piece
(li, wi) is not equal to a piece (wi, li).

The third instance of the problem (k-staged unweighted version with rotation) only
differs of the first instance on the associated profit ci, because it is equal to li (length) multiplied

97

by wi (width). Then, the objective consists on maximizing the area produced by the set of pieces
and one piece (li, wi) is equal to a piece (wi, li).

The fourth instance of the problem (k-staged unweighted version without rotation) only
differs from the previous definition on the orientation of the pieces, because a piece with
dimensions (li, wi) is not equal to a piece (wi, li).

The same four previous instances are taken into account when it does not exist a
maximum number of cutting stages (non-staged versions). In order to simplify, the notation
presented by (Hifi, 2001) was used to enumerate the proposed problems on this study, where the
most common k values are two and three.

• FUUkSK: represents the Fixed Unconstrained Unweighted k-Staged Single Knapsack
problem;

• RUWkSK: denotes the Rotated Unconstrained Weighted k-Staged Single Knapsack
problem;

• FUUnSK: corresponds to the Fixed Unconstrained Unweighted Non-Staged Single
Knapsack problem;

• RUWnSK: denotes the Rotated Unconstrained Weighted Non-Staged Single Knapsack
problem.

Figure 1. Slicing tree of two levels.

98

3. Methodology

Encoding

(Wong et al., 1988) presented a data encoding for the floorplan design problem called
slicing tree. A slicing tree is defined as: a tree with root, where each intern node (parent node)
represents the position and how the cut will be done on the material (horizontal or vertical),
meanwhile the terminal nodes (leaf nodes) represent the dimensions of the sub-spaces generated
for cutting the grouped pieces.

One of the main advantages of using the slicing tree is the generation of cutting patterns
guillotine type. Different proposed methodologies have corroborated the effectiveness of the
slicing tree encoding, especially the ones presented by (Kroguer, 1995), (Cui, 2005 and 2007)
and (Toro et al., 2008).

Figure 1 illustrates a slicing tree for the problem, in that one the root node (Level 1)
indicates where and how to make a perpendicular cut to the length of the knapsack. The hierarchy
of the tree indicates that the left child node makes a perpendicular cut to the width of the left
resulting subspace and the right child node makes a new perpendicular cut to the width of the
right resulting subspace, this is for the second level. Then, on the third level to the left we have
the subspaces 1 and 2 and to the right we have the subspaces 3 and 4. On each generated
subspace are placed the biggest amount of pieces with the same shape (in order to keep the
guillotine type constraints) maximizing the used area (or maximize the associated profit for the
instances with this variant).

Therefore, the slicing tree contains on its internal nodes the information about the
orientation of the cut (perpendicular to the length or to the width) and the distance where the cut
should be done. By other hand its leaf nodes contain the dimensions of the resulting subspaces.

Figure 2. Example of slicing tree.

For instance, the Figure 2 presents the slicing tree of a knapsack with length and width
260 and 120 units respectively. The dimensions of the resulting subspaces will be presented on
the Table 1. Note that each node of the slicing tree, except the leaves, contains the orientation and
the distance of the cuts (percentage from zero to hundred). Hence, the root node indicates that a
perpendicular cut to the length of the plate at the 50% of the knapsack will be done, dividing it
into two new subspaces (note that the cut is guillotine type) both with equal dimensions, length
130 and width 120 units. So on, the tree will guide the cut process and the leaves will give us the
dimensions of the subspaces.

50

L

40

W
70

W

 2 1 4 3

L - Length
W - Width

99

Subspaces Length Width
1 130 48
2 130 72
3 130 84
4 130 36

Table 1. Dimensions of the subspaces.

Objective function calculation

After obtaining the sub-spaces, the placement of the pieces should be performed, this
process is developed through a constructive best-fit algorithm, keeping the guillotine type
restrictions and packing the biggest quantity of pieces for each sub-space.

The constructive best-fit algorithm consists on finding the set of identical pieces that
maximizes the area of the subspace j (represented by its length and width, Lj and Wj respectively)
with the best associated profit. The calculation of the objective function consists on applying the
equation (2) to each sub-space.

max ; ; 1, 2,...,j j
i

i i

L W
c i i n

l w
 ⋅ ⋅ ∀ =

(2)

The calculation of the objective function consists on appling the best-fit algorithm to
each sub-space, then the value of the objective function is the sum of the areas (or associated
profits) packed on the knapsack.

The Table 2 presents a set of available pieces to be packed on the plate of the last
example. Combining this information with the Table 1 we have enough data to calculate the
objective function.

Code of the Piece Length Width Associated Profit
1 20 15 300
2 30 25 750
3 15 15 225
4 7 25 175
5 40 25 1000

Table 2. Example of available pieces (note that the associated profit is equal to the area of each
piece, thus this example is an unweighted problem)

The value of the objective function is equal to 25.650 square units, knowing the
dimensions of the plate we can calculate the use percentage of the knapsack 25.650/32.000 =
80,16%. The placement of the pieces is presented on the Table 3.

Subspace Code of the Piece Quantity of Pieces Profit
1 3 18 5.400
2 1 24 7.200
3 4 78 9.450
4 3 16 3.600

Total Profit 25.650
Table 3. Placement of the pieces for the example.

Different proposals that use the slicing tree codification look to find the optimal tree,
having this process a difficult solution (Kroguer, 1995; Cui, 2005 y 2007), in contrast with (Toro

100

et al., 2008) that delimits and reduces the number of trees during the optimization. (Toro et al.,
2008) after making a statistical study, the slicing tree is defined with complete binary trees with
three levels. (The Figure 3 shows a tree with three levels).

Figure 3. Representation through a slicing tree of three levels.

Optimization Scheme

The proposed codification in this study guarantees the feasibility of the guillotine type
constraints and the maximum number of cutting stages. The tree of orientation cut and the tree
with the cut distances are independent from each other (represented with the variables O and D
respectively), this means that for each set of O values exists an optimal solution D*.

The optimization scheme for the knapsack problems is illustrated in figure 4, first the
direction of the cuts will be established (horizontal or vertical) and then the optimal distances for
making these cuts are calculated. The Algorithm I makes an exhaustive search (enumerates all
the possible solutions) over the O tree, whereas that the Algorithm II receives the O trees, and it
must find the optimal distances for each one of them. The Algorithm II belongs to the
metaheuristic techniques.

Figure 4. Optimization Scheme.

Algorithm I

Generates the possible trees of orientation cut through an enumerative technique. Due to
the fact that the maximum number of depth level of the tree is fixed, the result of the algorithm
will be: two orientation trees for the first level, eight trees for the second level, and 128 trees for
the third level, each one of them is used as an input for the Algorithm II.

101

Algorithm II

This algorithm uses metaheuristic optimization techniques, combining the main features
of the variable neighborhood search (VNS; Mladenovic and Hansen, 1997) and simulated
annealing (SA; Kirkpatrick et al. 1983). The first one is considered the main algorithm, the
second one was used as a specialized transition method to make local searches and to produce
changes to the nodes in the tree of distances, using the strategy of the SA (temperature variation).

The variable neighborhood search consists on making local searches over a set of defined
neighborhoods, i.e., based on a solution a new neighborhood is picked to look for a better
solution. In case of finding it, this one will be the new starting point, in the opposite case a new
neighborhood must be generated in order to make a new inspection.

The set of neighborhoods Ni (where, i={1,2,..., imax}; and imax is the number of father
nodes of the slicing tree) are defined as the number of nodes that must change its value.

i=1, then, N1 = {one random number must change its value}

i=2, then, N2 = {two random numbers must change their values}

i=k, then, Nk = {k random numbers must change their values}

Therefore, the resultant set of neighborhoods is N = {N1, N2,..., Nk,..., Nmax}.

The transition mechanism consists in permitting big changes on the distances of the cuts
during the first iterations, like the simulated annealing accepts the lost of quality for the objective
function at the beginning of the process. As the iterations advance, transitions become more
deterministic. The transition is defined as the modification of a node’s value from the distances
tree, trough the mechanism shown in the equation (3).

1 1
2

knode i node i rand
TotalIterations

ε
 = + − ⋅ − +

(3)

Equation (3) is composed by: the current value of the node i from the distances tree, the
number of the current iteration, the number of total iterations and ε is the minimum percentage to
generate a change on the distances, where ε = 100/max(L,W).

The proposed algorithm is a trajectory-based metaheuristic algorithm, and it works as
follows:

1. Start from a random solution D.

2. Define a neighborhood for D, generate a solution DT into the neighborhood through the
transition mechanism previously defined.

3. Evaluate if the objective function of the solution DT is better than the one produced by
D, if this is true D is replaced by DT and the process continues defining a new
neighborhood for this solution, else a new and bigger neighborhood is calculated and a
new DT is generated.

Figure 5 illustrates the flowchart of the algorithm AVNS+SA. The given name to this
algorithm is because it uses a transition mechanism that emulates the temperature variable from
the simulated annealing.

102

Step 1 Initialize Total_Iterations, Number_Of_Levels
Let N = SetOfNeighborhoods(Number_Of_Levels)
Let i = 1
Let k = 1
Let D = GenerateInitialRandomSolution(Number_Of_Levels)
Go to Step 2

Step 2

Let Incumbent = D
Go to Step 3

Step 3

Equation (3) – Let DT = TransitionMechanism(D, N, k, Total_Iterations)
Let k = k + 1
Go to Step 4

Step 3.2

If CalculateObjectiveFunction(DT) > CalculateObjectiveFunction (D)
 Go to Step 3.2.1.
Else
 Go to Step 3.2.2.

Step 3.2.1.

Let D = DT
Let i = 1
If CalculateObjectiveFunction (D) > CalculateObjectiveFunction (Incumbent)
 Go to Step 3.2.3.
Else
 Go to Step 4

Step 3.2.2.

Let Incumbent = D
Go to Step 4

Step 4

Let i = i + 1
Go to Step 5

Step 5

If k = Total_Iterations
 Terminate algorithm
Else
 Go to Step 2

Figure 5. Steps of the Hybrid Algorithm of Variable Neighborhood Search and Simulated
Annealing

Solution Methodology

Therefore, the proposed methodology on this study is a search descending, where the
trees O and D can be treated together or individually depending on the process stage. A scheme
of the methodology is presented on the Figure 6. The steps that must be done are described and
depending of the instance of the problem some steps are omitted.

Moreover, the type of searches that are presented on this work are only different on the
number of levels of the slicing tree. This permits relate these levels with the cutting constraints
by stages, i.e., for the 2-staged problems of the methodology is executed until step 2, for the 3-
staged problems until step 3 and finally for the non-staged problems is executed the whole
methodology.

Calibration of parameters

The parameter adjustment is very important in order to have good results with the
metaheuristic techniques. Different approaches were presented to make the parametrization. In
general, there are no exact and efficient methods to make the parameter adjustment of the
different metaheuristic techniques, commonly these algorithms are parameterized through the
combination of an exhaustive search and a statistical analysis to the quality of the results.

103

Figure 6. Scheme of the solution methodology.

To make the parameterization, different studies suggest: classify the test problems (if
they exist) by its complexity (mathematical or computational), choose one representing problem
(candidate) from each class, make an adjustment to the parameters for each candidate trough an
exhaustive mesh search and finally recombine the obtained parameters for each class picking the
best combination.

This process requires a great computational effort because the parameter adjustment
through a mesh search represents another optimization process of almost the same complexity to
the problem of this study because each parameter belongs to a range of values.

In this case the strongest constraints for the parameter adjustments are the rotation of the pieces
and the maximum number of cutting stages. In the Table 4 the values of the parameters are
shown.

Parameters Problem
Without Rotations With Rotations

Total Iterations Level 1 100 200
Total Iterations Level 2 500 1000
Total Iterations Level 3 1000 2000
Total Iterations Deepening 2000 4000

Table 4. Parameters and values for each type of problem.

Step 1.

Search over a tree of level 1.

Over the tree O (orientation of the cuts) an exhaustive search is done.
Meanwhile over the D tree (distance of the cuts) the hybrid algorithm of
variable neighborhood search and simulated annealing is used.

Step 2.

 Search over a tree of level 2.

Over the tree O (orientation of the cuts) an exhaustive search is done.
Meanwhile over the D tree (distance of the cuts) the hybrid algorithm of
variable neighborhood search and simulated annealing is used.

Step 3.

 Search over a tree of level 3.

The trees O and D are treated as a unique tree that will be optimized by the
hybrid algorithm of variable neighborhood search and simulated annealing.

Step 4. Deepening.

 Searches over the trees of level 2.

The eight resulting subspaces from the optimal tree in the step 3, are sent to
the step 2 in order to make an improvement process to the solution
obtained.

104

4. Results Analysis

The test systems used in this study were taken from the specialized literature; both
approximate and exact methodologies are used in the solution of the mentioned problems. The
selected problems are diverse in terms of the mathematical complexity and were specially
designed for each type of problem.

Thirty test cases were selected for the two-dimensional guillotineable knapsack problem,
15 cases for the weighted version ([UW1-UW11] and [UWL1-UWL4]) and 15 cases for the
unweighted version ([UU1-UU11] and [UUL1-UUL4]). These 30 cases present different types of
knapsack with distributions between 25 and 200 pieces, the data base is presented by (Hifi, 2001)
and its available online (Hifi, 1997). Of all cases, 22 ([UW1-UW11] and [UU1-UU11]) belong to
the category of packing problems with middle mathematical complexity and 8 ([UWL1-UWL4] y
[UUL1-UUL4]) belong to a category of high mathematical complexity. Different studies have
used these test cases to prove the performance of the proposed methodologies.

All the algorithms were developed on Delphi 7.0 ® and executed on a computer with a
Pentium ® IV processor of 3,0 GHz and a RAM memory of 1 GB.

 2-staged

With Rotation

Weighted Unweighted

Quality Time Quality Time

Reached 15 15

Improved 4 4
 Below 11 11

 Table 5. Comparison between the AVNS+SA with the best known solutions.

3-staged
Weighted Unweighted

Without Rotation With Rotation Without Rotation With Rotation
Quality Time Quality Time Quality Time Quality Time

Reached 11 11 7 5
Improved 4 5 4 15 4 6 4 15

Below 10 4 9 6
Table 6. Comparison between the AVNS+SA with the best known solutions.

Once the paper is published, these problems will be made available on the Internet
at http://utp.edu.co/~planeamiento/dinop/librerias/knapsack/index.html. The best reported
solution (Best Known Solution, BKS) in the specialized literature is the one presented on the web
site for the test cases of each type of problem along with the employed computational time. For
the 2-staged knapsack problems without piece rotation and the non-staged knapsack with and
without piece rotation are not published. On the other hand, for the results of the remaining
problems (Hifi, 1998) has the best solutions, but also (G et al., 2003) achieves good results.
Cases like UWL1, UWL2, UWL3, UWL4, UUL1, UUL2, UUL3 and UUL4 for the 3-staged
knapsack problem without piece rotation do not have an answer reported because most of the
approximations to these cases of high mathematical complexity were done through exact

105

http://utp.edu.co/~planeamiento/dinop/librerias/knapsack/index.html

techniques where the computational effort is too high for its solution. Therefore, some authors
omit reporting them.

The Tables 5 and 6 show a comparative summary of the achieved answers by the
presented methodology and the best reported solutions on the specialized literature. For the 2-
staged knapsack problem with pieces rotation and the non-staged with and without pieces
rotation, the comparison is not done due that do not exist references to validate the results.

The tables 5 and 6 show that the AVNS+SA algorithm presented good quality results for the
different types of problems, demonstrating that the proposed methodology is robust for the
different variants of the unconstrained knapsack. It is notable that the obtained results for the
non-staged problems are the same optimal values of the 3-staged problems, this validates the
proposal of limiting the slicing tree to three levels, aiming to reduce the search space with a low
risk of losing good quality solutions.

5. Conclusions

The unconstrained two-dimensional guillotineable problem has been solved with all its
variants: weighted, unweighted, with rotation, without rotation, 2-staged, 3-staged and non-
staged. Using a hybrid algorithm of variable neighborhood search and simulated annealing, the
results achieved were of good quality.

The slicing tree encoding from the floorplan design problem was adapted in this work,
combining a tree with binary values for the orientation slicing and another tree with real values to
determine the distance of the cuts. This encoding proposal presented a satisfactory performance
for this type of problems because it reduces the search space without the risk of losing good
quality solutions.

An optimization algorithm that combines the main features of variable neighborhood
search and simulated annealing was implemented. The first one is considered the main algorithm,
the second one was used as a specialized transition method to make local searches and it changes
the nodes on the tree of distances. At the beginning of the process random values were used and
at the end the values were mainly deterministic.

The computational times obtained using the proposed methodology, in some cases were
better than the ones reported on the specialized literature but due to the differences between the
processors architecture and the programming languages used, is not possible to make a final
conclusion for the methodologies. In general we can say that the times were reasonable.

The solution method used presented a satisfactory performance on the final results with
the different variants of the worked problem, this allows us to conclude that the methodology is
robust and can be used on similar problems like the constrained knapsack, bin packing, strip
packing and others. This can also be used for three-dimensional packing problems.

References

BEASLEY, J. E. Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res.
Soc., vol. 36, pp. 297–306, 1985.

BEN, S.; CHU, C. y ESPINOUSE, M. L. Characterization and modelling of guillotine

constraints. European Journal of Operational Research, vol. 191, pp. 112–126, 2008.

106

CHRISTOFIDES, N. y WHITLOCK, C. An algorithm for two-dimensional cutting problems.
Operations Research, vol. 25, pp. 30-44, 1977.

CUI, Y. An exact algorithm for generating homogenous T-shape cutting patterns. Computers &

Operations Research, vol. 34, pp. 1107-1120, 2007.

GALLEGO, R.; ESCOBAR, A. H. and TORO, E. M. Técnicas metaheurísticas de optimización,
Textos universitarios, Universidad Tecnológica de Pereira, 2008.

G, Y.-G. y KANG, M.-K. A new upper bound for unconstrained two-dimensional cutting and
packing. J. Oper. Res. Soc., vol. 53, pp. 587–591, 2002.

G, Y.-G.; KANG, M.-K. and SEONG, J. A best-first branch and bound algorithm for

unconstrained two-dimensional cutting problems. Operations Research Letters, vol. 31, pp.
301–307, 2003.

GILMORE, P. C.and GOMORY, R. E., Multistage cutting problems of two and more

dimensions. Operations Research, vol. 13, pp. 94-120, 1965.

—. The theory and computation of knapsack functions. Oper. Res., vol. 14, pp. 1045-1074, 1966.

HERZ, J. C. A recursive computing procedure for two-dimensional stock cutting. I.B.M. Ji Res.
Dev., vol. 16, pp. 462-469, 1972.

HIFI, M. and ZISSIMOPOULOS, V. A recursive exact algorithm for weighted two-dimensional
cutting. European J. Oper. Res., vol. 91, pp. 553–564, 1996.

HIFI, M. Problem instances for the 2D Cutting/Packing Problems, [on line], 1997.

<ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/>.

—. Exact algorithms for the guillotine strip cutting/packing problem. Computers & Operations
Research, vol. 25, pp. 925–940, 1998.

—, M. Exact algorithms for large-scale unconstrained two and three staged cutting problems.
Computational Optimization and Applications, vol. 18, pp. 63 – 88, 2001.

KIRKPATRICK S., GELATT C., and VECCHI M., (1983). “Optimization by simulated
annealing”, Science, Vol. 220, pp. 671-680.

KRÖGER B., (1995). “Guillotineable bin packing: A genetic approach”, European

Journal of Operational Research, Vol. 84, pp. 645-661.

MLADENOVIC N. and HANSEN P., (1997). “Variable neighborhood search”,

Computers and Operations Research, Vol. 24, pp. 1097–1100.

TORO, E.; GARCÉS, A. and RUIZ, H. Solución al problema de empaquetamiento bidimensional

usando un algoritmo híbrido constructivo de búsqueda en vecindad variable y recocido
simulado. Revista Fac. de Ing. Universidad de Antioquia, vol. 46, pp. 119-131, 2008.

WONG, D. F.; LEONG, H. W. and LIU, C. L. Simulated Annealing for VLSI Design. Kluwer
Academic Publishers, 1988.

107

