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RESUMO 

O critério D-otimalidade é relacionado à precisão da regressão linear. Colocado em 

outras palavras, é determinado o impacto de utilizar delineamentos com diferentes níveis de D-
otimalidade na precisão dos coeficientes e da predição da regressão. 

É mostrado que não é possível relacionar o critério D-otimalidade a nenhuma das 

medidas de eficiência (MDE) utilizadas, i.e., não há uma única MDE que seja uma função 
monotônica absoluta no intervalo estudado. 

PALAVARAS CHAVE. Delineamento de Experimentos, Superfície de Resposta, 

Estatística. 

Área principal: Estatística 

ABSTRACT 

We related the D-optimality criterion to the precision of the linear regression. Put in 
other words, we assessed the impact of using designs with different D-optimality levels in the 

precision of the regression coefficients and predictions. 

It was shown that it is not possible to relate the D-efficiency criterion to any of the 

measures of efficiency (MOE) used, i.e., there is not a single MOE that is an absolutely 
monotonic function in the studied interval. 

KEYWORDS. Design of Experiments, Response Surface, Statistics.  

Main area: Statistics 
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1. Introduction 

“There is not a single area of science and engineering that has not successfully 

employed statistically designed experiments” (Montgomery, 2005). 
The Design of Experiments (DoE) was born in the 1920's through the pioneering work 

of Fisher (1958) in the agriculture arena. As noted by Montgomery (2005), it has a vast number 

of success stories. 

DoE can be divided in two classifications: 

 Classical Designs: designs based on orthogonal arrays (see Hedayat, Sloane and 

Stufken, 1999); and 

 Alphabetic Optimal Designs: designs based on a single efficiency criterion. 

The latter were created because classical designs may require an excessive number of 

design points (also known as runs) for certain combination of factors. For example: a problem 
with 6 numerical discrete factors with 2, 2, 5, 7, 7 and 11 levels requires 10780 runs (the only 

classical DoE suitable for this problem is the Full Factorial), which makes its utilization 

impractical. 
One of the approaches utilized to solve this problem, also known as “the curse of 

dimensionality”, was the development of criteria in which several designs could be evaluated 

with the objective of selecting the best. 

The most popular criteria are given bellow, where X  is the design matrix which has n  

rows and p  columns, and x  is a 1 p  matrix that describes a feasible combination of levels of 

the p  design factors: 

 A-Optimality: deals with the variances of the regression coefficients by 

minimizing the trace of the design information matrix:   1
TMin trace X X



; 

 G-Optimality: deals with the variance of the prediction by minimizing the 

maximum scaled prediction variance:  
1

T TMin Max Nx X X x


; 

 D-Optimality: deals with the volume of the joint confidence region on the 

vector of regression coefficients by minimizing the determinant of the 

information matrix:  
1

TMin X X


. 

According to Montgomery (2005, p. 441), “[p]erhaps the most widely used [criterion] is 
the D-optimality”. 

The objective of this paper is to relate the D-optimality to the precision of the 

regression. Put in other words, it is desired to assess the impact of using designs with different D-

optimality levels in the precision of the regression coefficients and predictions. 
The organization of this paper is the following. The next section will describe the D-

efficiency criterion and the methodology of our study. Numerical results will be presented in 

Section 3, and Section 4 summarizes our conclusions. 
 

2. Methodology 

 
2.1 D-Efficiency 

 

To allow for the comparison of different designs, the D-Efficiency criterion was created 

as given in (1), where iX  is the 
thi  design matrix, M  is the determinant of matrix M , and p  

is the number of model parameters. 
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The D-Efficiency describes the relative efficiency of one design in relation to another. 

If, for example, 0.5eD  , this implies that the second design  2X  must be replicated 

1 2
eD
  times to have the same precision the first has (Montgomery, 2005). 

 
2.2 Measures of Efficiency 

 
In order to reach our objective, we compare several designs with different D-Efficiency 

levels by using the following measures of efficiency: 

MOE 1. Mean Euclidian Distance 
DE  value; 

MOE 2. Probability of yielding a smaller Euclidian Distance 
DE  value; 

MOE 3. Mean Missing Coefficients Number 
cM  value; 

MOE 4. Probability of yielding a smaller Missing Coefficients Number 
cM  value; 

MOE 5. Mean Incorrect Coefficients Number 
cI  value; 

MOE 6. Probability of yielding a smaller Incorrect Coefficients Number 
cI  value; 

MOE 7. Mean Prediction Variance 
vP  value;  

MOE 8. Probability of yielding a smaller Prediction Variance  vP  value; 

MOE 9. Maximum Prediction Variance 
vP  value; 

MOE 10. Mean 
2

adjR  value;  

MOE 11. Probability of yielding a greater 
2

adjR  value. 

 
To be able to measure these efficiencies, the following measures of performance are 

defined: 

MP 1. Euclidian Distance DE  

The Euclidian distance between the estimated regression coefficients and the true 

regression coefficient. This measure is given by (2), where   is the estimated 

regression coefficient vector and   is the true model coefficient vector. 

    
T

DE        (2) 

MP 2. Missing Coefficients Number cM  

The number of coefficients that are in the true model and were estimated as 

having a p value (the probability of obtaining a test statistic at least as extreme 

as the one that was actually observed given that the null hypothesis is true) 
greater than 5%. 

MP 3. Incorrect Coefficients Number cI  

The number of coefficients that are not in the true model and were estimated as 

having a p value smaller than or equal 5%. 

MP 4. Prediction Variance vP  

The average squared deviation from the true mean value measured in a uniform 
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11p
 grid in space [ 1,1]pV   , where p  is the number of model parameters. 

 

An example of the first three measures of performance is given bellow. Imagine an 
experiment with two factors and that the nature behaves according to the model given by (3), 

where   is the random noise which is independent and identically distributed (I.I.D.) Normally 

distributed with zero mean and variance 
2 . 

 
2

1 210 2y x x      (3) 

If the experimenter tries to fit a full second order model 

 2 2

0 1 1 2 2 3 1 2 4 1 2 2y x x x x x x            to the data and has 

 9.5 2.2 0 0.1 0.5 0
T

   as estimated regression coefficients with p  values 

smaller than or equal 5%, then: 1.245DE  , 1cM   (due to 
2

2x ) and 2cI   (due to 
1 2x x  and 

2

1x ). We remark that the estimated coefficients with value zero are the ones that have p  values 

greater than 5%. 

 
2.3 Model 

 

We use the model adopted in Goel et al. (2008), which is described by (4). 

 
2 2

1 3 2 410(1 )y x x x x        (4) 

The random noise   is I.I.D. Normally distributed with zero mean and unitary variance 

 ~ (0,1)N . 

 
2.4 Designs 

 

We compare 5 different designs for 4 factors with 25 design points: (1) a Latin-

Hypercube Design for second-order models (LHD-2); (2) a Face-centered Central Composite 
Design (FCCD); (3) a Maxmin Latin-Hypercube Design (LHS); (4) a computer generated D-

Optimal Design; and a Box-Behnken Design (BBD). 

All the designs are listed in the appendix A. 

 

3. Numerical Evaluation 

 

We generated a random noise vector   and, by using it, created the observed simulated 

outputs y  for all the designs. After this, we fitted a second order model to all designs by using a 

standard stepwise regression with maximum and minimum p  values of 5% for, respectively, a 

term to be added or removed from the model. The results of these stepwise regressions were 
stored and the whole process was repeated 10,000 times. 

We used the function stepwisefit, from the software MATLAB R2007b, to perform 

these 10,000 macro-replications. 

Tables 1 and 2 and Figures 1 and 2 summarizes the results of our study. Observe that 
the MOEs 3 and 4 are not listed in any Table or Figure. The reason is that all designs correctly 

identified all the true model coefficients, so 0cM   for all designs. 

As the design 4 (D-optimal Design) is the one with greatest D-Efficiency value, the 

MOEs 2, 6, 8 and 11 were defined as the probability the other designs yield a better (smaller in 

MOEs 2, 6 and 8 and greater in MOE 11) value than the design 4. 
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Table 1.  D-Efficiency and MOEs 1, 5, 7, 9 and 10. 

Design effD  
DE  cI  vP   vMax P  2

adjR  

Des. 1 0.798 1.324 0.650 100.395 133.852 0.991 

Des. 2 0.961 1.051 0.644 100.258 123.212 0.996 

Des. 3 0.799 1.443 0.566 100.465 136.742 0.986 

Des. 4 1.000 1.130 0.651 100.364 122.092 0.996 

Des. 5 0.863 1.062 0.632 100.270 126.850 0.994 

 

 

Figure 1. Bivariate plot of D-Efficiency versus   2, , , ,D c v v adjE I P Max P R  

Table 2. Pairwise probability of yielding a best value than Design 4 (MOEs 2, 6, 8 and 11). 

Design effD  
DE  

cI  
vP  

2

adjR  

Des. 1 0.798 39.110% 29.720% 49.010% 3.820% 

Des. 2 0.961 54.530% 30.260% 49.880% 66.270% 

Des. 3 0.799 35.000% 31.030% 48.600% 0.330% 

Des. 5 0.863 53.450% 71.120% 49.530% 16.640% 

 

 

Figure 2. Bivariate plot of D-Efficiency versus  2, , ,D c v adjE I P R  

 

 As it can be seen by Tables 1 and 2 and Figures 1 and 2, there is not a single MOE that is 

an absolutely monotonic function in the studied interval. 
 

4. Conclusions 

 

We related the D-optimality criterion to the precision of the linear regression. Put in 

other words, we assessed the impact of using designs with different D-optimality levels on the 
precision of the regression coefficients and predictions. 

The second section described the D-efficiency criterion and the methodology of our 

study. Numerical results were presented in Section 3 

It was shown that it is not possible to relate the D-efficiency criterion to any of the 
measures of efficiency used, i.e, there is not a single MOE that is an absolutely monotonic 

function in the studied interval. 

Future research should focus on: (1) trying to relate other efficiency criteria (A- and G-
efficiency) to the precision of the linear regression; and (2) the use of other models (third order 

model, for example) in the study. 
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Appendix A 

LHS for second-order  FCCD  Maxmin LHS  D-optimal  BBD 

-0.134 -0.178 -0.975 0.392  -1 -1 1 1  -1.000 -0.385 0.051 -0.867  -1 -1 -1 -1  -1 1 0 0 
0.442 -1.000 0.543 -0.306  1 1 -1 1  0.698 0.102 0.750 0.521  -1 -1 -1 1  -1 0 0 1 

0.585 0.025 1.000 -0.751  0 0 0 1  -0.097 -0.269 -1.000 -0.711  -1 -1 0 -1  -1 0 -1 0 
-0.392 0.785 0.887 0.537  1 1 -1 -1  -0.596 0.660 1.000 -0.577  -1 -1 1 0  0 -1 0 -1 

-0.906 0.537 -0.608 -0.441  1 1 1 1  0.821 -0.711 -0.893 0.348  -1 -1 1 1  0 1 1 0 
1.000 -0.058 -0.327 -0.777  -1 -1 -1 -1  0.337 0.267 -0.669 0.031  -1 0 0 1  1 -1 0 0 

0.841 -0.823 -0.808 0.219  0 0 1 0  0.934 -0.088 -0.229 -0.768  -1 0 1 -1  -1 0 1 0 
-0.862 -0.723 0.734 -0.474  -1 -1 -1 1  -0.147 0.002 0.932 0.261  -1 1 -1 -1  0 0 1 1 

0.407 0.599 -0.107 -0.057  -1 1 -1 1  -0.700 0.418 -0.549 0.709  -1 1 -1 1  -1 -1 0 0 
0.675 0.333 -0.576 1.000  1 -1 1 1  0.439 0.249 0.582 -0.962  -1 1 1 -1  -1 0 0 -1 

-0.333 0.755 0.348 -0.918  1 -1 -1 -1  0.483 0.067 0.638 -0.190  -1 1 1 1  0 -1 1 0 
0.315 0.700 -1.000 -0.622  -1 1 1 1  0.232 -0.520 0.531 -0.016  0 -1 -1 1  0 1 0 -1 

0.783 -0.483 0.721 0.742  1 1 1 -1  -0.232 0.882 0.153 0.888  0 -1 1 -1  1 0 0 -1 
-0.548 -0.918 -0.108 0.896  1 -1 1 -1  -0.739 -0.872 -0.141 0.391  0 0 -1 -1  1 0 1 0 

-0.525 -0.308 0.807 0.443  -1 -1 1 -1  -0.388 1.000 -0.740 -0.506  0 1 0 0  0 1 0 1 
-0.614 0.225 0.308 -0.548  -1 1 -1 -1  0.001 -0.402 -0.115 -1.000  1 -1 -1 -1  1 1 0 0 

-0.778 -0.634 -0.804 -0.340  -1 1 1 -1  -0.482 -0.924 -0.637 -0.290  1 -1 -1 0  0 0 0 0 
-0.073 -0.642 -0.446 -1.000  0 -1 0 0  1.000 -0.596 0.446 -0.452  1 -1 0 1  0 -1 0 1 

0.212 -0.048 0.108 0.108  0 0 0 0  0.709 0.553 -0.354 1.000  1 -1 1 -1  0 -1 -1 0 
-0.308 1.000 -0.527 0.641  0 0 -1 0  0.608 -0.209 0.003 0.469  1 -1 1 1  0 1 -1 0 

0.055 -0.275 0.110 -0.129  1 -1 -1 1  0.066 0.449 0.265 -0.316  1 0 1 0  1 0 0 1 
-1.000 0.362 -0.058 0.601  0 0 0 -1  0.164 -1.000 -0.970 -0.101  1 1 -1 -1  0 0 -1 -1 

0.141 -0.359 -0.242 0.067  -1 0 0 0  -0.865 0.704 0.344 0.623  1 1 -1 1  1 0 -1 0 
0.192 0.251 0.548 0.795  1 0 0 0  -0.944 -0.746 0.823 0.821  1 1 1 -1  0 0 1 -1 

0.883 0.938 0.363 -0.025  0 1 0 0  -0.338 0.813 -0.443 0.126  1 1 1 1  0 0 -1 1 
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