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Abstract

This paper presents the application of the L-Shaped algorithm for the problem of supply chain investment
and planning under uncertainty applied to the petroleum byproducts supply chain. The uncertainty considered is
related with the unknown demand levels for byproducts. For this purpose, a model was developed based on two-
stage stochastic programming. It is proposed two different solution methodologies, one based on the classical
L-Shaped formulation, and the other, based on a multi cut extension of it. The methods were evaluated on a real
sized case study. Preliminary numerical results obtained from computational experiments are encouraging.
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1 Introduction
Oil companies are global multinational organizations whose decisions involve a large number of factors related to
the supply of raw materials, their processing and distribution. For companies with strongly diversified sources of
petroleum supply, a long cast of products, and multiple markets, the advance planning of all activities along the
supply chain is vital. Such planning includes the definition of production levels of oil (from oil fields and offshore
platforms) and of petroleum products (from oil refineries), as well as the distribution among these refineries and to
the final consumers of oil products. Major oil companies are characterized by integrated and verticalized activities,
and the activities of refining and distributing oil byproducts are characterized by low profit margins. Therefore,
techniques for decision-making optimization are frequently used in the context of the oil supply chain.

The use of optimization techniques for supply chain design and planning has already been observed in the
literature since the 1970’s, especially the in seminal works of Geoffrion and Graves (1974). Vidal and Goetschalckx
(1997) and Beamon (1998) present an extensive literature review on supply chain models. Although the research
literature on the strategic modeling of supply chains is quite rich, few studies have included uncertainty mitigation
in addition to other decisions of financial scope, such as commercialization income, market considerations and
investment planning. According to Sahinidis (2004), the incorporation of uncertainty into planning models using
stochastic optimization remains a challenge due to the large computational requirements involved.

For nearly 50 years, companies in the oil and chemical industries have led the development and use of mixed
integer linear programming to support decision making at all levels of planning. An overriding feature in the
oil industry is its wide range of uncertainties, typically related to the unpredictable levels of demand for refined
products, fluctuations in prices in domestic and international markets and inaccuracies in the forecasted production
of oil and gas. For this reason, many works have used techniques based on mathematical programming to support
decision-making under uncertainty.(Escudero et al., 1999, Dempster et al., 2000, Al-Othman et al., 2008, Khor
et al., 2008)

Due to the great level of uncertainties taken into consideration, and the fact that the aforementioned problem is
modeled as a mixed-integer linear program, it might become computationally infeasible to deal with great number
of scenarios by solving deterministic equivalents of the stochastic problems. Therefore, a decomposition approach
might turn out to be a valid alternative as solution methodology.

The first approaches using decomposition schemes for stochastic programs were presented by Van Slyke and
Wets (1969), a framework based on Benders decomposition (Benders, 1962) directly applied to two-stage stochas-
tic problems, which became known as the L-Shaped method. Birge and Louveaux (1988) present an extension of
the method presented by Van Slyke and Wets (1969), exploiting the structure of two-stage stochastic problems to
place several cuts at once at each major iteration.

Cutting-plane schemes has been successfully used in solving large-scale problems since the pioneering paper
of Geoffrion and Graves (1974): e.g., the uncapacitated network design problem with undirected arcs (Magnanti
et al., 1986), the stochastic transportation-location problems (França and Luna, 1982), the locomotive and car
assignment problem (Cordeau et al., 2000, 2001), and the non-convex water resource management problem (Cai
et al., 2001), to name a few.

The objective of this paper is present a mathematical model for the optimization of the supply chain investment
planning problem applied to the petroleum byproducts supply chain. Uncertainties related to product demand levels
are considered, thus, the stochastic programming framework is adopted as modeling approach. Furthermore, it is
shown an application of two decomposition techniques based on L-Shaped decomposition (Van Slyke and Wets,
1969) as solution technique. Experiments were performed in order to evaluate the efficiency of the proposed
algorithms.

The document is organized as follows: section 2 describes the proposed mathematical model; section 3 presents
the L-Shaped decomposition framework, while section 4 presents the multi cut framework for the L-Shaped algo-
rithm; computational results are shown in section 5; Section 6 draws some conclusion.
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2 Mathematical Model
Petroleum byproducts supply chains are composed by several types of nodes and arcs. Nodes are different in a
sense that they might represent refineries, international markets, distribution bases, and marine terminals. Arcs are
the connections between the nodes, and might represent pipelines, roadways, waterways, and so forth.

The objective here is to choose, among some possible investment, which projects should be implemented in
order to reach the best logistic efficiency. What we understand as the ideal logistic efficiency here is the config-
uration that would provide the lowest combination of costs for the chain. The system is subject to several costs.
Costs are related with freight, operation, product inventory, investments, and demand shortfall. The commercial-
ization of petroleum byproducts is also considered, since the logistic configuration must take into consideration
such opportunities.

To address the problem in question, a two-stage stochastic model is proposed based on mathematical program-
ming (Birge and Louveaux, 1997). The first-stage comprises the decisions of which projects to implement and
when; the second-stage decisions are those relating to the flows of products, inventory levels, supply provided
to each demand site, amounts to be internally and externally commercialized, and supply levels at sources. The
purpose of the model is to provide the optimal distribution of refined products to meet the demand of distribu-
tion bases, minimizing the logistics costs of this operation and maximizing revenue for retailing such products.
Meeting the demand depends on the characteristics of the network operations, refinery availability and sources
of production. The production distribution is defined in conjunction with investment decisions, which are chosen
from a predefined portfolio of possibilities and allocated over the planning horizon. The uncertainties in the model
are related to the levels of demand for byproducts in the distribution bases, which are modeled as random variables.

The notation to be used for the presentation of the mathematical model is presented below. In order to provide
greater clarity to the notation, the domains of summations will be omitted, except when the summation is evaluated
only on a subset of the natural domain. When there is no mention of this fact, its domain should be considered as
the original set to which the index refers.

2.1 Indexes and Sets

i, i′ ∈ B - Set of basis
j ∈ R - Set of refineries
k, k′ ∈M - Set of marine terminals
l ∈ J - Set of international markets
p ∈ P - Set of products
t ∈ T - Set of periods
ξ ∈ Ω - Uncertainty realizations (scenarios)

2.2 Constants

2.2.1 Freight Costs

FTBtki - Terminal-base
FRBtji - Refinery-base
FRT tjk - Refinery-terminal
FTEtkl - Terminal-international market
FET tlk - International Market-terminal
FBBtii′ - Base-base
FTT tkk′ - Terminal-terminal

2.2.2 Inventory Costs

EBip Base inventory cost

ET kp Terminal inventory cost

2.2.3 Arc Capacities

ATBtki - Terminal-base seasonal adjustment
ARBtji - Refinery-base seasonal adjustment
ART tjk - Refinery-terminal seasonal adjustment
ABBtii′ - Base-base seasonal adjustment
ATT tkk′ - Terminal-terminal seasonal adjustment
CTBki - Terminal-base before investment
CITBki - Terminal-base after investment
CRBji - Refinery-base before investment
CIRBji - Refinery-base after investment
CRT jk - Refinery-terminal before investment
CIRT jk - Refinery-terminal after investment
CBBii′ - Base-base before investment
CIBBii′ - Base-base after investment
CTT kk′ - Terminal-terminal before investment
CITT kk′ - Terminal-terminal after investment

2.2.4 Node Capacities

TBip - Base storage capacity before investment
TIBip - Base storage capacity after investment
TT kp - Terminal storage capacity before investment
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TIT kp - Terminal storage capacity after investment
GBtip - Base throughput rotation
GT tip - Terminal throughput rotation

2.2.5 Investment Costs

IRT tjk - Refinery-terminal connection
ITBtki - Terminal-base connection
IRBtji - Refinery-base connection
ITT tkk′ - Terminal-terminal connection
IBBtii′ - Base-base connection
IT tkp - Terminal storage
IBtip - Base storage

2.2.6 Market parameters

DBtip(ξ) - Product demand at the base
ORtjp - Refinery supply
OM t

lp - Export limit
POM t

lp - Export sales price
DM t

lp - Import Limit
PDM t

lp - Import purchase price
PDSip - Demand shortfall cost

2.3 Variables
2.3.1 Continuous

etklp(ξ) - Amount exported
itlkp(ξ) - Amount imported
utjkp(ξ) - Refinery-Terminal flow
wtjip(ξ) - Refinery-base flow
vtkip(ξ) - Terminal-base flow
xtii′p(ξ) - Flow between bases
ztkk′p(ξ) - Flow between terminals
ttkp(ξ) - Terminal inventory
stip(ξ) - Base inventory
otip(ξ) - Demand shortfall

2.3.2 Binary (Investment decisions)

υtjk - Refinery-terminal connection
ϕtki - Terminal-base connection
ωtji - Refinery-base connection
κtkk′ - Connection between terminals
χtii′ - Connection between bases
σtip - Base tank
τ tkp - Terminal tank

2.4 Formulation
The mathematical model for the optimization of aforementioned problem can be stated as follows:

min
∑
jkt

IRT tjkυ
t
jk +

∑
kit

ITBtkiϕ
t
ki +

∑
jit

IRBjiω
t
ji +

∑
kk′t

ITT kk′tκ
t
kk′ +

∑
ii′t

IBBii′χ
t
ii′

+
∑
ipt

IBipσ
t
ip +

∑
kpt

ITktτ
t
kp +Q(υ, ϕ, ω, κ, χ, σ, τ) (1)

s.t.∑
t

υtjk ≤ 1 ∀j, k (2)∑
t

ϕtki ≤ 1 ∀k, i (3)∑
t

ωtji ≤ 1 ∀j, i (4)∑
t

κtkk′ ≤ 1 ∀k, k′|k 6= k′ (5)∑
t

χtii′ ≤ 1 ∀i, i′|i 6= i′ (6)∑
t

σtip ≤ 1 ∀i, p (7)∑
t

τ tkp ≤ 1 ∀k, p (8)
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where the term Q(υ, ω, ϕ, χ, κ, σ, τ) = EΩ [Q(υ, ω, ϕ, χ, κ, σ, τ, ξ)] represents the expectation evaluated over all
ξ ∈ Ω possible realizations of the uncertain parameters of the second-stage problem, given a investment decision
(υ, ω, ϕ, χ, κ, σ, τ). Constraints (2)-(8) define that each investment can happens only once along the time horizon
considered. The second-stage problem Q(υ, ω, ϕ, χ, κ, σ, τ, ξ) can be stated as follows:

Q(υ, ω, ϕ, χ, κ, σ, τ, ξ) =

min
∑
kipt

FTBkiv
t
kip(ξ) +

∑
jipt

FRBjiw
t
jip(ξ) +

∑
jkpt

FRT jku
t
jkp(ξ) +

∑
klpt

(FTEkl − PDM lp)eklp(ξ)
t+

+
∑
lkpt

(FET lk + POM lp)i
t
lkp(ξ) +

∑
ii′pt

FBBii′x
t
ii′p(ξ) +

∑
kk′pt

FTT kk′z
t
kk′p(ξ)

+
∑
ipt

EBips
t
ip(ξ) +

∑
kpt

ET kpt
t
kp(ξ) +

∑
ipt

PDSipo
t
ip(ξ) (9)

s.t.∑
k′ 6=k

ztk′kp(ξ) +
∑
j

utjkp(ξ) +
∑
l

itlkp(ξ) + tt−1
kp (ξ) =

∑
i

vtkip(ξ) +
∑
l

etklp(ξ) + ttkp(ξ) +
∑
k′ 6=k

ztkk′p(ξ) ∀k, p, t (10)

∑
k

vtkip(ξ) +
∑
j

wtjip(ξ) +
∑
i′ 6=i

xti′ip(ξ) + st−1
ip = Dt

ip(ξ)− otip(ξ) + stip(ξ) +
∑
i′ 6=i

xtii′p(ξ) ∀i, p, t (11)

∑
k

utjkp(ξ) +
∑
i

wtjip ≤ OR
t
jp ∀j, p, t (12)∑

k

itlkp(ξ) ≤ OMlp ∀l, p, t (13)∑
k

etklp(ξ) ≤ DMlp ∀l, p, t (14)

∑
p

wtjip(ξ) ≤ ARB
t
ji

CRBji + (CIRBji − CRBji)
∑
t′≤t

ωt
′

ji

 ∀j, i, t (15)

∑
p

utjkp(ξ) ≤ ART
t
jk

CRTjk + (CIRTjk − CRTjk)
∑
t′≤t

υt
′

jk

 ∀j, k, t (16)

∑
p

vtkip(ξ) ≤ ATB
t
ki

CTBki + (CITBki − CTBki)
∑
t′≤t

ϕt
′

ki

 ∀k, i, t (17)

∑
p

xtii′p(ξ) ≤ ABB
t
ii′

CBBii′ + (CIBBii′ − CBBii′)
∑
t′≤t

χt
′

ii′

 ∀i, i′, t (18)

∑
p

ztkk′p(ξ) ≤ ATT
t
kk′

CTTkk′ + (CITTkk′ − CTTkk′)
∑
t′≤t

κt
′

kk′

 ∀k, k′, t (19)

stip(ξ) ≤ TBip + (TIBip − TBip)
∑
t′≤t

σt
′

ip ∀i, p, t (20)

ttkp(ξ) ≤ TTkp + (TITkp − TTkp)
∑
t′≤t

τ t
′

kp ∀k, p, t (21)
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∑
k

vtkip(ξ) +
∑
j

wtjip(ξ) +
∑
i′ 6=i

xti′ip(ξ) ≤ GBipTBip ∀i, p, t (22)

∑
k′ 6=k

ztk′kp(ξ) +
∑
j

utjkp(ξ) +
∑
l

itlkp(ξ) ≤ GT kpTT kp ∀k, p, t (23)

The objective function represents freight costs between the nodes, the net value of importation and exportation,
inventory costs at terminals and bases, and the cost of the unmet demand. Equation (10) comprises the material
balance for marine terminals. Equation (11) represents the material balance for bases. Constraint (12) limits the
amount offered by refineries. Constraints (13) and (14) limit the amounts imported from/exported to international
markets. Constraints (15) to (19) model arc capacities and the possibility of substituting its current capacity with an
eventual investment subject to a seasonal adjustment due to external reasons. Constraints (20) and (21) represent
the storage capacity of bases and terminals and the possibility of investing on its expansion. Constraints (22) and
(23) limit the maximum throughput allowed for bases and terminals.

3 L-Shaped Algorithm
For notational simplicity, let us define y = (υ, ω, ϕ, χ, κ, σ, τ) as the first-stage decisions, and Y as the feasible set
for y. The model in the previous section can be defined as an optimization model with binary first-stage variables,
continuous second-stage variables and discrete random parameters. Moreover, the model has relatively complete
recourse (?), that is for any feasible first stage solution, the second stage is feasible (Q(y, ξ) < +∞ for any y ∈ Y).
Such characteristics allow us to use the Benders decomposition framework (Benders, 1962) applied to stochastic
optimization, commonly known as L-Shaped Algorithm (Van Slyke and Wets, 1969). We start by noting that the
master problem can be equivalently reformulated as follows:

min F(y) +M

s.t.
(2) to (8)
M ≥ Q(y)

Where F(y) represents the first-stage cost function. This formulation allows one to distinguish an important issue.
The inequality M ≥ Q(y) cannot be used computationally as a constraint, since it is not defined explicitly, but
only implicitly, by a number of optimization problems. The main idea of the L-Shaped method is to relax this con-
straint and replace it by a number of cuts, which may be gradually added following an iterative solving process.
The L-Shaped method applied to the aforementioned problem can be stated as follows:

Initialization: Define LB and UB as lower and upper bounds. Set LB = −∞ and UB =∞. Define B as the
iteration counter and set B = 0. Let ŷ denote the incumbent solution.

Step 1: Solve the master problem and let yB and LB be its optimal solution and optimal objective value re-
spectively.

Step 2: For each realization ξ ∈ Ω solve the slave problem (9)-(23) stated before for yB and calculate the value
for Q̂(yB) given by:

Q̂(yB) =
∑
ξ∈Ω

P (ξ)Q(yB , ξ)

Where P (ξ) is the probability of realization ξ occurs. Let:

G(yB) = F(yB) + Q̂(yB)
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If G(yB) < UB then update UB = G(yB) and the incumbent solution ŷ = yB

Step 3: If UB − LB ≤ ε, where ε is a pre specified tolerance, then return the incumbent solution ŷ and the
objective function value UB. Otherwise, proceed to step 4.

Step 4: Let α(ξ), β(ξ), γ(ξ), δ(ξ), ζ(ξ), η(ξ), θ(ξ), λ(ξ), µ(ξ), π(ξ), ρ(ξ), ι(ξ), ϑ(ξ), and φ(ξ) be the dual vari-
ables associated with constraints (10)− (23) of the second-stage problem for each realization ξ ∈ Ω. Generate the
cut:

M ≥
∑
jkt

atjkb
∑
t′≤t

υt
′

jk +
∑
jit

btjib
∑
t′≤t

ωt
′

ji +
∑
kit

ctki
∑
t′≤t

ϕt
′

ki +
∑
ii′t

dtii′b
∑
t′≤t

χt
′

ii′+∑
kk′t

etkk′b
∑
t′≤t

κt
′

kk′ +
∑
ipt

f tipb
∑
t′≤t

σt
′

ip +
∑
kpt

gtkpb
∑
t′≤t

τ t
′

kp +Kb ∀b = 1, ..., B

where:

atjkB =
∑
ξ∈Ω

P (ξ)
[
ART tjk(CIRTjk − CRTjk)θtjk(ξ)

]
btjiB =

∑
ξ∈Ω

P (ξ)
[
ARBtji(CIRBji − CRBji)ηtji(ξ)

]
ctkiB =

∑
ξ∈Ω

P (ξ)
[
ATBtki(CITBki − CTBki)λtki(ξ)

]
dtii′B =

∑
ξ∈Ω

P (ξ)
[
ABBtii′(CIBBii′ − CBBii′)µtii′(ξ)

]
etkk′B =

∑
ξ∈Ω

P (ξ)
[
ATT tkk′(CITTkk′ − CTTkk′)πtkk′(ξ)

]
f tipB =

∑
ξ∈Ω

P (ξ)
[
(TIBip − TBip)ρtip(ξ)

]
gtkpB =

∑
ξ∈Ω

P (ξ)
[
(TITkp − TTkp)ιtkp(ξ)

]

KB =
∑
ξ∈Ω

P (ξ)

[∑
ipt

Dt
ip(ξ)β

t
ip(ξ) + TBipρ

t
ip(ξ) +

∑
jpt

ORtjpγ
t
jp(ξ) +

∑
lpt

OM t
lpδ

t
lp(ξ) +DMlpζ

t
lp(ξ)+∑

jit

ARBjitCRBjiη
t
ji(ξ) +

∑
jkt

ARTjktCRTjkθ
t
jk(ξ) +

∑
kit

ATBtkiCTBkiλ
t
ki(ξ) +

∑
ii′t

ABBii′tCBBi,i′µ
t
ii′(ξ)+

∑
kk′t

ATTkk′tCTTkk′π
t
kk′(ξ) +

∑
kpt

TTkpι
t
kp(ξ) +

∑
ipt

GBipTBipϑ
t
ip(ξ) +

∑
kpt

GTkpTTkpφ
t
kp(ξ)

]

and add it to the master problem. Update B = B + 1 and go to step 1.

4 Multi Cut L-Shaped Algorithm
The structure of stochastic programs allows one to add multiple cuts instead of a single one at each major iteration.
Birge and Louveaux (1988) shown in their work that the usage of such a framework may greatly speed up conver-
gence. The main idea behind this multi cut framework is to generate an outer linearization for all function Q(y, ξ),
replacing the outer linearization ofQ(y). The multi cut approach relies on the idea that using outer approximations
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of all Q(y, ξ) send more information than the single cut on Q(y) and that, therefore, fewer iterations are needed.
In fact, following Birge and Louveaux (1988), it is possible to show that the maximum number of iterations for the
multi cut procedure is given by:

1 + |Ω|(qm − 1) (24)

While the maximum number of iterations for the L-shaped algorithm is given by:

[1 + |Ω|(q − 1)]
m (25)

where q represents the total of slopes for the second-stage problem and m the number of recourse constraints.
Although q might turn out to be quite complicated to calculate for real world problems, bounds (24) and (25)
show that the maximum number of iterations needed for reaching the optimum grows linearly with the number of
realizations for the multi cut approach, while it grows exponentially for the traditional L-Shaped approach. We
start by reformulating the original master problem to conveniently adequate it to the multi cut framework:

min F(y) +
∑
ξ∈Ω

P (ξ)M(ξ)

s.t.
(2) to (8)
M(ξ) ≥ Q(y, ξ) ∀ξ ∈ Ω

The multi cut L-Shaped procedure can be stated as follows:
Initialization: Set lower and upper bounds LB = −∞ and UB = ∞. Set the iteration counter B = 0. Let ŷ
denote the incumbent solution.

Step 1: Solve the master problem and let yB and LB be its optimal solution and the optimal objective value.

Step 2: For each realization ξ ∈ Ω solve the slave problem (9)-(23) stated before and calculate the value for
Q̂(yB) given by:

Q̂(yB) =
∑
ξ∈Ω

P (ξ)Q(yB , ξ)

Where P (ξ) is the probability of realization ξ occurs. Let:

G(yB) = F(yB) + Q̂(yB)

If G(yB) < UB then update UB = G(yB) and the incumbent solution ŷ = yB

Step 3: If UB−LB ≤ ε then return the incumbent solution ŷ and the objective function value UB. Otherwise,
proceed to step 4.

Step 4: Let α(ξ), β(ξ), γ(ξ), δ(ξ), ζ(ξ), η(ξ), θ(ξ), λ(ξ), µ(ξ), π(ξ), ρ(ξ), ι(ξ), ϑ(ξ), and φ(ξ) be the dual vari-
ables associated with constraints (10)− (23) of the second-stage problem for each realization ξ ∈ Ω. Generate the
cuts:

M(ξ) ≥
∑
jkt

atjk(ξ)b
∑
t′≤t

υt
′

jk +
∑
jit

btjib(ξ)b
∑
t′≤t

ωt
′

ji +
∑
kit

ctki(ξ)b
∑
t′≤t

ϕt
′

ki +
∑
ii′t

dtii′b(ξ)b
∑
t′≤t

χt
′

ii′+∑
kk′t

etkk′b(ξ)b
∑
t′≤t

κt
′

kk′ +
∑
ipt

f tipb(ξ)b
∑
t′≤t

σt
′

ip +
∑
kpt

gtkpb(ξ)b
∑
t′≤t

τ t
′

kp +Kb(ξ)b ∀b = 1, ..., B, ∀ξ ∈ Ω
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where:

atjk(ξ)B =
[
ART tjk(CIRTjk − CRTjk)θtjk(ξ)

]
btji(ξ)B =

[
ARBtji(CIRBji − CRBji)ηtji(ξ)

]
ctki(ξ)B =

[
ATBtki(CITBki − CTBki)λtki(ξ)

]
dtii′(ξ)B =

[
ABBtii′(CIBBii′ − CBBii′)µtii′(ξ)

]
etkk′(ξ)B =

[
ATT tkk′(CITTkk′ − CTTkk′)πtkk′(ξ)

]
f tip(ξ)B =

[
(TIBip − TBip)ρtip(ξ)

]
gtkp(ξ)B =

[
(TITkp − TTkp)ιtkp(ξ)

]
K(ξ)B =

[∑
ipt

Dt
ip(ξ)β

t
ip(ξ) + TBipρ

t
ip(ξ) +

∑
jpt

ORtjpγ
t
jp(ξ) +

∑
lpt

OM t
lpδ

t
lp(ξ) +DMlpζ

t
lp(ξ)+∑

jit

ARBjitCRBjiη
t
ji(ξ) +

∑
jkt

ARTjktCRTjkθ
t
jk(ξ) +

∑
kit

ATBtkiCTBkiλ
t
ki(ξ) +

∑
ii′t

ABBii′tCBBi,i1µ
t
ii′(ξ)+∑

kk′t

ATTkk′tCTTkk′π
t
kk′(ξ) +

∑
kpt

TTkpι
t
kp(ξ) +

∑
ipt

GBipTBipϑ
t
ip(ξ) +

∑
kpt

GTkpTTkpφ
t
kp(ξ)

]
Add the cuts to the master problem. Update B = B + 1 and go to step 1.

5 Numerical Results
In this section we describe numerical experiments using the proposed methodology for solving a realistic supply
chain investment planning under demand uncertainty problem. The transport in the case study considered is pri-
marily done using modal waterways, which are strongly affected by seasonality issues regarding the navigability
of rivers. For this study, four different products were considered - diesel, gasoline, aviation fuel and fuel oil - to
be distributed over 19 locations (13 bases, 3 of which have sea terminals, one refinery and two external supply
locations). Waterway transportation is generally by large ferries, typically done during periods of river flooding
and by smaller boats, which are able to navigate the sections during droughts, i.e., in periods of low levels of the
rivers, which have high transportation costs. The portfolio of projects considered for the study consists of 28 local
projects and three arc project. Such projects are considered mutually independent and can therefore be combined
as needed by the problem. The planning horizon considered was 8 years, divided into a total of 32 quarterly
periods.

To take into account the uncertainty in demand levels for byproducts, scenarios were generated by the following
first order autoregressive model:

Dt
lp = Dt−1

lp [1 + ωp + σε] , t = 2, . . . , |T |

where ωp represents the expected average growth rate for the consumption of product p over the planning horizon,
σ represents the estimated maximum deviation for byproduct consumption in the region and ε ∼ N(0, 1). The
estimate of the maximum deviation was made based on the analysis of the annual consumption historical series
over the last 40 years. Each scenario represents a possible byproduct demand curve for the whole time horizon
considered, for each product and place.
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N #Variables #Constraints DE(s) SCut(s) MCut(s)

20 194,443 204,024 18.20 56.08 12.25
30 291,243 306,024 29.81 41.14 28.52
40 388,043 408,024 40.92 45.70 24.98
50 484,843 510,024 48.34 84.42 43.53
60 581,643 612,024 86.31 113.92 51.17
70 678,443 714,024 160.84 101.30 70.75
80 755,243 816,024 110.20 98.28 61.09
90 872,043 918,024 136.06 138.28 71.11

100 968,843 1,020,024 150.13 171.28 53.48

Table 1: Experiment Summary

The mathematical model and the scenario generation routines were implemented using AIMMS 3.10. The
mathematical model was solved using CPLEX 11.2. All experiments were performed on a Pentium Quad-Core
2.6 GHz with 8 Gb RAM. Table 1 summarizes the data of the experiments performed.

The first column of table 1 represents the 9 different instances generated, with 20 up to 100 scenarios. The
next two columns summarize the size of the complete model considering all scenarios at once, what is commonly
known as the deterministic equivalent (Birge and Louveaux, 1997). It is worth to notice that all instance have the
same number of integer variables, a total of 840 each. The following columns shows the solving time taken by
each technique to reach the optimum of the instance, namely solving the complete deterministic equivalent (DE),
using the classical L-Shaped framework (SCut), and using the proposed multi cut approach (MCut).

As can be seen in table 1, the multi cut approach has the smallest solution time for every instance, being up to
3 times faster than solving the determinitic equivalent and up to 5 times faster than using the single cut approach.
Furthermore, it is worth to notice that the solution time for the single cut procedure is consistently higher than the
solution of the deterministic equivalent among the experiments performed. This indicates that, for this particular
case, it seems more efficient to simply solve the complete deterministic problem than use the L-Shaped procedure.

The results suggest that the classical L-Shaped framework performs worse when compared with directly solv-
ing the deterministic equivalent. However, when it is used the multi cut approach, it can be notice that there is a
considerable improvement in the time taken to reach the optimal solution, specially for the instance with a greater
number of scenarios.

6 Conclusions
This paper presents the application of a decomposition scheme for the problem of supply chain design applied to the
petroleum byproducts supply chain. We propose a mathematical model that captures the impact of uncertainty on
investment decisions, since the problem approached here is a mixture of logistic infrastructure investment planning
problem and the stochastic transportation problem. With demand at each destination as a random variable, the
objective is to minimize the sum of expected holding and shortage costs, transportation costs, fixed investment
costs, and demand shortfall costs.

In order to solve the proposed model, we propose an application of the L-Shaped decomposition framework
(Van Slyke and Wets, 1969) to the problem at hand, together with the application of the multi cut extension of it,
proposed by Birge and Louveaux (1988).

The results suggest that the first approach performs worse than the second in terms of computational time. It is a
expected, yet important, result that corroborates the theoretical bounds for the total number of necessary iterations
before complete convergence of the algorithms. In a general sense, the multi cut framework performs better
than simply solving the deterministic equivalent - or even than directly applying the classic L-Shaped framework -
allowing one to solve instances of greater size and, thus, with a more precise representation of the random variables.
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