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ABSTRACT

Recently, Gregório and Oliveira developed a proximal point scalarization method (applied to
multiobjective optimization problems) for an abstract strict scalar representation with a vari-
ant of the logarithmic-quadratic function of Auslender et al. as regularization. In this work we
propose a variation of this method, taking into account the regularization with logarithm and
quasi-distance, where we have lost important properties, such as the convexity. We show that
the central trajectory of the scalarized problem is bounded and converges to a weak pareto
solution of the multiobjective optimization problem.

KEYWORDS. Multiobjective Programming. Scalarization Method. Quasi Distance.

RESUMO

Recentemente, Gregório e Oliveira desenvolveram um método de escalarização proximal (Apli-
cado em problemas de Otimização Multiobjetivo) para uma representação escalar estrita ab-
strata com uma variante da função log-quadrática de Auslender et al. como regularização.
Neste trabalho, propomos uma variação deste método considerando a regularização com log-
aritmo e quase distância, onde perdemos propriedades importantes, como a convexidade.
Mostramos que a trajetória central do problema escalarizado é limitada e converge para uma
solução pareto fraca do problema de otimização multiobjetivo.

Palavras Chave. Progamação Multiobjetivo. Método de escalarização. Quase distância.
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1 Introduction

In this work we consider the unconstrained multiobjective optimization problem.

min {F (x); x ∈ Rn} (1)

where F = (F1, F2, ..., Fm)T : Rn → Rm is a convex mapping related to the lexcographic order
generated by the cone Rm+ , i.e., for all x, y ∈ Rn and λ ∈ (0, 1),

Fi(λx+ (1− λ)y) ≤ λFi(x) + (1− λ)Fi(y), ∀i = 1, ...,m.

Moreover, we are going to demand that one of the objective functions must be coercive, i.e.,
there is r ∈ {1, ...,m} such that lim‖x‖→∞ Fr(x) =∞. This class of problems (see, for example,
Miettinen (1999)) is a particular case known as vetorial optimization (see, for example, in Luc
(1989)).

The classic proximal point method to minimize a mono-objective convex function f : Rn →
R generates a sequence {xk} via the iterative scheme: given a starting point x0 ∈ Rn we find

xk+1 ∈ argmin {f(x) + λk‖x− xk‖2, x ∈ Rn},

where λk is a sequency of real positive numbers and ‖.‖1/2 is the usual norm. This method was
originally introduced by Martinet (1970) and developed, and studied, by Rockafellar (1996).
Literature related to the analysis and development of proximal point methods in a convex and
non-convex includes Kaplan and Tichatschke (1998) and Kiwiel (1997). Moreno et al. (2011),
developed a proximal method with a quasi distance as regularization, applied to non-convex
and nonsmooth functions, and showed the importance of the behavior of this proximal point
model to the economic area, specially to the habit formation in Decision and Making Sciences.

The proximal point methods were extended to vetorial optimization, check, for example,
Miettinem and Mäkelä (1995), Gopfert et al. (2003), Bonnel et al. (2005). Gregório and
Oliveira (2010), developed a proximal method, applied to multiobjective optimization problems,
for a abstract strict scalar representation with a variant of the logarithmic-quadratic function
of Auslender et al. (1999) as regularization.

Based on Gregório and Oliveira (2010), we have proposed a proximal method to a abstract
strict scalar represetation considering as regularization a function involving a logarithm term
and a quasi distance.

We show, into section 2, some concepts and results about the quasi distance and the sub-
differential theory. Into section 3, we present some concepts and results of the optimization
multiobjective general theory. Into section 4 we present our own method, where we assure the
existence of the iterations, the stop criterion and the convergency. Finally, into section 5, we
test our method showing some numerical examples using the Matlab.

2 Quasi Distance and Subdifferential Theory

In this section we define the quasi distance application, we present examples and some of
its properties that are fundamental to the development of our work. We will also recall the
concepts of Fréchet subdifferential and limiting-subdifferential with some of its properties.

2.1 Quasi Distance

Definition 1 (Moreno et al. (2011)) Let X be a set. A mapping q : X×X → R+ is called
a quasi distance if for all x, y, z ∈ X,

(i) q(x, y) = q(y, x) = 0⇐⇒ x = y (ii) q(x, z) ≤ q(x, y) + q(y, z).

A quasi distance is not necessarilly a convex function, continually differentiable and coercive
(see Moreno et al. (2011) - Example 3.1 and Remark 3). Moreno et al. (2011) presented the
following exemple of quasi distance.
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Example 1 For each i = 1, ..., n, we consider c−i , c
+
i > 0 and qi : R×R→ R+ defined by

qi(xi, yi) =
{
c+
i (yi − xi) if yi − xi > 0
c−i (xi − yi) if yi − xi ≤ 0

is a quasi distance on R, therefore q(x, y) =
n∑
i=1

qi(xi, yi) is a quasi distance on Rn. On the

other hand, for each z̄ ∈ Rn we have

q(x, z̄) =
n∑
i=1

qi(xi, z̄i) =
n∑
i=1

max{c+
i (z̄i − xi), c−i (xi − z̄i)}, x ∈ Rn,

thus q(., z̄) is a convex function. By the same reasoning, q(z̄, .) is convex.

Moreno et al. (2011) have taken into account the following condition about the quasi distance
q: There are positive constants α and β such that

α‖x− y‖ ≤ q(x, y) ≤ β‖x− y‖, ∀x, y ∈ Rn (2)

Proposition 1 (Moreno et al. (2011), Propositions 3.6 and 3.7) Let q : Rn × Rn →
R+ be a quasi distance that verifies (2). Then for each z̄ ∈ Rn the functions q(z̄, .) and q(., z̄)
are Lipschitz continuous and the functions q2(z̄, .) and q2(., z̄) are locally Lipschitz continuous
functions on Rn.

Proposition 2 (Moreno et al. (2011), Remark 5) Let q : Rn × Rn → R+ be a quasi
distance that verifies (2). Then for each z̄ ∈ Rn the functions q(z̄, .), q(., z̄), q2(z̄, .) and
q2(., z̄) are coercive.

2.2 Subdifferential Theory

We recall now some concepts and results of Frechet subdifferential and limiting subdifferencial.

Definition 2 Let h : Rn → R ∪ {∞} be a proper lower semicontinuous function and x ∈ Rn.

1. The Fréchet subdifferential of h at x, ∂̂h(x), is defined as follows

∂̂h(x) :=

8<:

x∗ ∈ Rn : lim inf

y 6=x,y→x

h(y)− h(x)− 〈x∗, y − x〉
‖x− y‖ ≥ 0

ff
, if x ∈ dom(h)

Ø, if x /∈ dom(h)

2. The limiting-subdifferential of h at x ∈ Rn, ∂h(x), is defined as follows

∂h(x) :=
{
x∗ ∈ Rn : ∃xn → x, h(xn)→ h(x), x∗n ∈ ∂̂h(xn)→ x∗

}
Proposition 3 (Optimality condition - Rockafellar and Wets (1998), Theorem 10.1)

If a proper function h : Rn → R∪{+∞} has a local minimum at x̄, then 0 ∈ ∂̂h(x̄), 0 ∈ ∂h(x̄).

Remark 1 Be C ⊂ Rn. If a proper function h : C → R∪ {∞} has a local minimun at x̄ ∈ C,
then 0 ∈ ∂̂(h+δC)(x̄), 0 ∈ ∂(h+δC)(x̄), where δC is the indicator function of the set C, defined
as δC(x) = 0 if x belongs to C and δC(x) =∞ on the contrary.

Proposition 4 (Rockafellar and Wets (1998), Exercise 10.10) If f1 is locally Lispschitz
continuous at x̄, f2 is lower semicontinuous and proper with f2(x̄) finite, then

∂(f1 + f2)(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄).
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Proposition 5 (Mordukhovich and Shao (1996), Theorem 7.1) Let fi : Rn → R, i =
1, 2, be Lipschitz continuous around x̄. If fi ≥ 0, i = 1, 2. Then one has a product rule of the
equatily form

∂(f1.f2)(x̄) = ∂(f2(x̄)f1 + f1(x̄)f2)(x̄).

Proposition 6 (Rockafellar and Wets (1998), Proposition 5.15) A mapping S : Rn →
P (Rm) is locally bounded if and only if S(B) is bounded for every bounded set B.

Proposition 7 (Rockafellar and Wets (1998), Theorem 9.13) Suppose h : Rn → R ∪
{±∞} is locally lower semicontinuous at x̄ with h(x̄) finite. Then the following conditions are
equivalent:

(a) h is locally Lipschitz continuous at x̄,

(b) the mapping ∂̂h : x 7→ ∂̂h(x) is locally bounded at x̄,

(c) the mapping ∂h : x 7→ ∂h(x) is locally bounded at x̄.

Moreover, when these conditions hold, ∂h(x̄) is nonempty and compact.

3 Multiobjective programming - preliminary concepts

We are going to present only the concepts and results that are fundamental to the develop-
ment of our work. For more details, see, for example, Miettinen (1999).

Definition 3 We say that a ∈ Rn is a local pareto solution to the problem (1) if there is
a disc Bδ(a) ⊂ Rn, with δ > 0, such that there is no x ∈ Bδ(a) satisfying Fi(x) ≤ Fi(a) for all
i = 1, ...,m and Fj(x) < Fj(a) for at least one index j ∈ {1, ...,m}.

Definition 4 a ∈ Rn is known as weak local pareto solution if there is a disc Bδ(a) ⊂ Rn,
with δ > 0, such that there is no x ∈ Bδ(a) satisfying Fi(x) < Fi(a) for all i = 1, ...,m.

In general, if a constrained or unconstrained multiobjective optimization problem is a convex
problem, to say, if an objective function F : Rn → Rm is a convex function, then all (weak)
local pareto solution is also a (weak) global pareto solution. This result is discussed in the
2.2.3 Theorem, in Miettinen (1999).

We will denote by argmin{F (x)|x ∈ Rn} and argminw{F (x)|x ∈ Rn} the local pareto
solution set and the local weak pareto solution set to the problem (1). It is easy to see that
argmin{F (x)|x ∈ Rn} ⊂ argminw{F (x)|x ∈ Rn}.

Definition 5 A real valued function f : Rn −→ R is said to be a strict scalar representa-
tion of a map F = (F1, ..., Fm) : Rn −→ Rm when given x, x̄ ∈ Rn

Fi(x) ≤ Fi(x̄), ∀ i = 1, ...,m =⇒ f(x) ≤ f(x̄)

and
Fi(x) < Fi(x̄), ∀ i = 1, ...,m =⇒ f(x) < f(x̄).

Futhermore, we say that f is a weak scalar representation of F if

Fi(x) < Fi(x̄), ∀ i = 1, ...,m =⇒ f(x) < f(x̄).

It is obvious that all strict scalar representations are weak scalar representations.
The next result establishes an important relation between the sets argmin {f(x)|x ∈ Rn} and
argminw{F (x)|x ∈ Rn}. The Proof follows immediately from the Definition 5.

Proposition 8 Let f : Rn −→ R be a weak scalar representation of a map F : Rn −→ Rm

and argmin {f(x)|x ∈ Rn} the local minimizer set of f . We have the inclusion

argmin {f(x)|x ∈ Rn} ⊂ argminw{F (x)|x ∈ Rn}.
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4 Proximal point scalarization method with logarithm and quasi
distance - (LQDPS) Method

Gregório and Oliveira (2010) showed the existence of a function f : Rn ×Rm+ −→ R satisfying
the following properties:

(P1) f is bounded below for any α ∈ R, i.e, f(x, z) ≥ α for every (x, z) ∈ Rn ×Rm
+ ;

(P2) f is convex in Rn ×Rm
+ , i.e., given (x1, z1), (x2, z2) ∈ Rn ×Rm

+ and λ ∈ (0, 1)

f(λ(x1, z1) + (1− λ)(x2, z2)) ≤ λf(x1, z1) + (1− λ)f(x2, z2);

(P3) f is a strict scalar representation of F , with respect to x, i.e.,

Fi(x) ≤ Fi(y) ∀i = 1, ...,m ⇒ f(x, z) ≤ f(y, z)

and
Fi(x) < Fi(y) ∀i = 1, ...,m ⇒ f(x, z) < f(y, z)

for every x, y ∈ Rn and z ∈ Rm
+ ;

(P4) f is differentiable, with respect to z and

∂

∂z
f(x, z) = h(x, z),

where h(x, z) = (h1(x, z), · · · , hm(x, z))T is a continuous map from Rn×Rm to Rm
+ , i.e, hi(x, z) ≥

0 for all i = 1, · · · ,m.

More precisely, they showed that the function f : Rn ×Rm+ −→ R such that

f(x, z) =
m∑
i=1

exp(zi + Fi(x)) (3)

satisfies the properties (P1) a (P4). As another example, we present the following proposition:

Proposition 9 Be F = (F1, F2, ..., Fm) : Rn → Rm a convex application, then f : Rn×Rm+ →

R such that f(x, z) =
m∑
i=1

[zi + h(Fi(x))] where h(Fi(x)) =
{ 1

2−Fi(x) if Fi(x) ≤ 1
(Fi(x))2 if Fi(x) > 1

satisfies

the properties (P1) to (P4).

Proof. As h : R → R given by h(x) =
{

1
2−x if x ≤ 1
x2 if x > 1

is positive (h > 0), convex and

strictly increasing, it is easy to see that f satisfies the properties (P1) to (P4).

Notation: Be y, ȳ ∈ Rm, then y ≤ ȳ ⇐⇒ yi ≤ ȳi ∀i = 1, ...,m and y � ȳ ⇐⇒ yi < ȳi ∀i =
1, ...,m.

The Method (LQDPS):
Let F : Rn −→ Rm be convex and q : Rn × Rn → R+ a quasi distance application, satisfy-
ing (2).Given the initial points x0 ∈ Rn, z0 ∈ Rm++ and sequences βk > 0, k = 0, 1, · · · and
0 < µ0 < µk < µ1 ∀k = 1, 2, ..., the method (LQDPS) of proximal point scalarization with
logarithm and quasi distance generates sequences

{
xk
}
k∈N ⊂ Rn and

{
zk
}
k∈N ⊂ Rm++ with

the iterates xk+1 and zk+1 defined as the solution of the (LQDPS) problem

min ϕk(x, z) = f(x, z) + βk〈 z
zk
− log

z

zk
− e, e〉+

µk

2
q2(x, xk), (4)

x ∈ Ωk, z ∈ Rm++,

where f : Rn × Rm+ −→ R verifies the properties (P1) to (P4),
z

zk
and log

z

zk
which are the

vectors whose ith components are given by
zi

zki
and log

zi

zki
, respectively, e ∈ Rm is the vector

with all components equal to 1 and Ωk = {x ∈ Rn|F (x) ≤ F (xk)}.
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4.1 Well-posedness

The function ϕk : Rn × Rm++ −→ R in (4), was considered by Gregório and Oliveira (2010)
having as regularization a variant of the logarithm-quadratic function of Auslender et al. (1999)
and, in this case, due to the strict convexity of the fuction ϕk, they have showed that the
iteractions of the method are unique and interior the restrictions. As the quasi distance is
not necessarily a convex function, we will not assure the uniqueness of the iteractions and we
will not assure also that the iteractions xk+1 are interior the restrictions Ωk. Therefore, we
will have to act differently to assure the good definition of the sequencies and their respective
characterizations. It is easy to prove that:

Lemma 1 Let F : Rn −→ Rm be a convex map such that there exists r ∈ {1, ...,m} satisfying
lim‖x‖→∞ Fr(x) = ∞. Then, Ωk is a convex and compact set. Particularly, Ωk × Rm+ is a
convex and closed set.

Proof. Suppose, for contradiction that Ω0 = {x ∈ Rn|F (x) ≤ F (x0)} is unbounded. Then
there is {xn}n∈N ⊂ Ω0 such that ‖xn‖ → ∞ when n → ∞. As {xn}n∈N ⊂ Ω0 we have
F (xn) ≤ F (x0) ∀n ∈ N , and then, Fi(xn) ≤ Fi(x0), ∀ i = 1, ...,m and n ∈ N . Therefore,
in particular, Fr(xn) ≤ Fr(x0) ∀n ∈ N . Since Fr is coercive and ‖xn‖ → ∞ when n → ∞
we “∞ ≤ Fr(x0) < ∞′′, that is a contradiction. So Ω0 is limited. As Ωk+1 ⊆ Ωk, k ≥ 0, it
follows that Ωk ⊆ Ω0, k ≥ 1 and therefore Ωk is limited ∀k ≥ 0. The convexity of F implies
its continuity and the convexity of Ωk, ∀k. It is followed from the continuity of F that Ωk, ∀k
is closed. Therefore, Ωk ∀k is a compact convex set.

Lemma 2 The fuction H : Rm++ → R such that

H(z) =
〈
z
zk − log z

zk − e, e
〉

= ‖ z
zk
− log

z

zk
− e‖1

where ‖ • ‖1 is the 1–norm on Rm defined by ‖z‖1 =
m∑
i=1

|zi| is strictly convex,non negative and

coercive.

Proof. See Gregório and Oliveira (2010), demonstration of Lema 1.

As long as H : Rm++ → R is coercive, we can consider H : Rm+ → R ∪ {∞} and therefore,
ϕk : Rn ×Rm+ −→ R ∪ {∞}.

Proposition 10 (Well-posedness) Let F : Rn −→ Rm be a convex map such that there
exists r ∈ {1, ...,m} satisfying lim‖x‖→∞ Fr(x) = ∞, q : Rn × Rn → R+ a quasi distance map
satisfying (2) and f : Rn × Rm+ −→ R be a function verifying the properties (P1) to (P4).
Then, for every k ∈ N , there is one solution

(
xk+1, zk+1

)
for the (LQDPS) problem.

Proof. The function ϕk : Ωk ×Rm++ → R is coercive. In fact, for (P1) we have:

ϕk(x, z) = f(x, z) + βk
〈 z
zk
− log

z

zk
− e, e

〉
+
µk

2
q2(x, xk)

≥ α+ βk(‖ z
zk
− log

z

zk
− e‖1) +

µk

2
q2(x, xk). (5)

Let us define ‖(x, z)‖ = ‖x‖ + ‖z‖ and suppose that ‖(x, z)‖ → ∞. This is the same as
‖x‖ → ∞ or ‖z‖ → ∞. As Ωk is compact (see lema 1) and the function ‖ z

zk
− log

z

zk
− e‖1 is

coercive in Rm++ (see lema 2), it follows from (5) that ϕk is coercive in Ωk ×Rm++.
The function ϕk : Rn × Rm++ → R is continuous in Rn × Rm++. In fact: (P2) implies f
continoues in Rn × Rm++. The lema 2 implies H(z) =

〈
z
zk − log z

zk − e, e
〉

continuous in Rm++.
As a consequence of proposition 1, q2(., xk) : Rn → R is a continuous application in Rn.
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Threfore, the function ϕk : Rn ×Rm++ → R ∪ {+∞} is continuous in Rn ×Rm++.
As ϕk : Ωk × Rm++ → R is a continuous, coercive and proper in Ωk × Rm++, we have that
the set argmin

{
ϕk(x, z)/(x, z) ∈ Ωk ×Rm++

}
is not empty, i.e., to every k, there is a solution(

xk+1, zk+1
)

to the problem (LQDPS).

Definition 6 Let C ⊂ Rn be a convex set and x̄ ∈ C. The normal cone (Cone of normal
directions) at the pointo x̄ related to the set C is given by

NC(x̄) = {v ∈ Rn / 〈v, x− x̄〉 ≤ 0 ∀x ∈ C}.

Corollary 1 (Characterization)
The solutions

(
xk+1, zk+1

)
of the problems LQDPS are characterized by:

(i) There are ξk+1 ∈ ∂f(., zk+1)(xk+1), ζk+1 ∈ ∂(q(., xk))(xk+1) and
vk+1 ∈ NΩk(xk+1) such that

ξk+1 = −µkq(xk+1, xk)ζk+1 − vk+1 (6)

and

(ii)
1

zk+1
i

− 1
zki

=
hi
(
xk+1, zk+1

)
βk

, i = 1, · · ·m. (7)

xk+1 ∈ Ωk, zk+1 ∈ Rm++

Proof.
By observation 1 we have

0 ∈ ∂
„
f(., zk+1) + βk

fi
zk+1

zk
− log

zk+1

zk
− e, e

fl
+
µk

2
q2(., xk) + δΩk

«
(xk+1). (8)

For (P2), f(., zk+1) + β
〈
zk+1

zk − log z
k+1

zk − e, e
〉

is continuous in xk+1, from the proposition 1,
µk

2 q
2(., xk) is locally lipschitz in xk+1, the convexity of Ωk implies in the convexity of δΩk and

therefore that δΩk is locally lipschitz, then, using the proposition 4 em (8) and remembering
that

β

〈
zk+1

zk
− log

zk+1

zk
− e, e

〉
is constant into relation to Ωk, we obtain

0 ∈ ∂
(
f(., zk+1)

)
(xk+1) + ∂

(
µk

2
q2(., xk)

)
(xk+1) + ∂ (δΩk) (xk+1). (9)

As Ωk is closed and convex, it follows ∂ (δΩk(.)) (xk+1) = NΩk(xk+1), where NΩk(xk+1) denotes
the normal cone in the point xk+1 in relation to the set Ωk (see def. 6). From the propositon
1, q(., xk) is Lipschitz continuous in Rn. Therefore, taking f1 = f2 = q in the proposition 5,
we have of (9) that

0 ∈ ∂
(
f(., zk+1)

)
(xk+1) + µkq(xk+1, xk)∂

(
q(., xk)

)
(xk+1) +NΩk(xk+1),

i.e., there are ξk+1 ∈ ∂f(., zk+1)(xk+1), ζk+1 ∈ ∂(q(., xk))(xk+1) and vk+1 ∈ NΩk(xk+1) such
that

ξk+1 = −µkq(xk+1, xk)ζk+1 − vk+1.

To end the demonstration, we observe (see Gregório and Oliveira (2010), Lemma 1) that

1
zk+1
i

− 1
zki

=
hi
(
xk+1, zk+1

)
βk

, i = 1, · · ·m.

xk+1 ∈ Ωk, zk+1 ∈ Rm++

2358



4.2 STOP CRITERION

As Gregório and Oliveira (2010), we are going to stablish the same stopping rule that was used
by Bonnel et al. (2005).

Proposition 11 (Stop criterion) Let {(xk, zk)}k∈N be the sequence generated by the (LQDPS)
method. If (xk+1, zk+1) = (xk, zk) for any integer k then xk is a weak pareto solution for the
unconstrained multiobjective optimization problem (1).

Proof. Now, suppose that the stopping rule is verified in the kth iteration. By contradiction,
admit that xk is not a weak pareto solution. Then, there is x̄ ∈ Rn such that F (x̄) � F (xk).
By (P3) we have

f(x̄, zk) < f(xk, zk).

This implies that exists α > 0 such that f(x̄, zk) = f(xk, zk) − α. Defined xλ = λxk + (1 −
λ)x̄, λ ∈ (0, 1). We have that

(xλ, zk) = λ(xk, zk) + (1− λ)(x̄, zk).

Since (xk+1, zk+1) solves the (LQDPS) problem, (xk+1, zk+1) = (xk, zk), q2(xk, xk) = 0 and
xλ ∈ Ωk, ∀λ ∈ (0, 1), we obtain,

f(xk, zk) ≤ f(xλ, zk) + µk

2 q
2(xλ, xk), ∀ λ ∈ (0, 1).

Of (2), we have,

f(xk, zk) ≤ f(xλ, zk) +
µk

2
β2‖xλ − xk‖2, ∀ λ ∈ (0, 1). (10)

As xλ − xk = (1− λ)(x̄− xk), of (10) we obtain

f(xk, zk) ≤ f(xλ, zk) +
µk

2
β2(1− λ)2‖x̄− xk‖2, ∀ λ ∈ (0, 1). (11)

On the other hand, the convexity of f implies that

f(xλ, zk) ≤ λf(xk, zk) + (1− λ)f(x̄, zk)
= λf(xk, zk) + (1− λ)(f(xk, zk)− α)
= f(xk, zk)− (1− λ)α. (12)

From (11) and (12), f(xk, zk) ≤ f(xk, zk)− (1− λ)α+ µk

2 β
2(1− λ)2‖x̄− xk‖2. So

α ≤ (1− λ)µ
k

2 β
2‖x̄− xk‖2, ∀λ ∈ (0, 1).

Hence, α ≤ lim
λ→1−

(1− λ)
µk

2
β2‖x̄− xk‖2, and therefore, α ≤ 0, that is a contradiction. So xk is

a weak pareto solution for the unconstrained multiobjective optimization problem (1).

4.3 CONVERGENCE

Based on Fliege and Svaiter (2000), Gregório and Oliveira (2010) supposed that Ω0 is limited
and stablished the convergency of the proximal scalarization method log-quadratic. In this
work, we assume that one of the objective functions is coercive, that has as consequence the
limitation of Ω0, see lema 1.

Proposition 12 Let {(xk, zk)}k∈N be a sequence generated by Method (LQDPS). Then (i)
{xk}k∈N is é bounded; (ii) {zk}k∈N is convergent; (iii) {f(xk, zk)}k∈N is convergent.
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Proof. (i) Since Ωk ⊇ Ωk+1, k = 0, 1, ..., we have xk ∈ Ωk−1 ⊆ Ω0 ∀k ≥ 1. As Ω0 is limited,
it follows that {xk} is limited.
(ii) Since hi(x, z) ≥ 0, βk > 0 and {zki }k∈N is bounded bellow, the Equation (7) implies
{zk}k∈N is convergent (see, [5], proof of theorem 1).
(iii) ϕk(xk+1, zk+1) ≤ ϕk(xk, zk),∀k ∈ N , i.e, to every k ∈ N ,

f(xk+1, zk+1) + βk

〈
zk+1

zk
− log

zk+1

zk
− e, e

〉
+
µk

2
q2(xk+1, xk) ≤ f(xk, zk). (13)

As βk
〈
zk+1

zk − log z
k+1

zk − e, e
〉

+ µk

2 q
2(xk+1, xk) ≥ 0 ∀k ∈ N , we have,

f(xk+1, zk+1) ≤ f(xk, zk) ∀k ∈ N ,

i.e., {f(xk, zk)}k∈N is a noincreasing sequence. For (P1), {f(xk, zk)} is bounded lower, and
therefore convergent.

Proposition 13 Let {xk}k∈N be a sequence generated by Method (LQDPS). Then

(i)
∞∑
k=0

q2(xk+1, xk) <∞. In particular lim
k→∞

q2(xk+1, xk) = 0.

(ii) lim
k→∞

‖xk − xk+1‖ = 0.

Proof. (i) As βk
〈
zk+1

zk − log z
k+1

zk − e, e
〉
≥ 0, of (13) we have:

f(xk+1, zk+1) + µk

2 q
2(xk+1, xk) ≤ f(xk, zk), ∀k ∈ N.

Hence, q2(xk+1, xk) ≤ 2
µk

(
f(xk, zk)− f(xk+1, zk+1)

)
, ∀k ∈ N

≤ 2
µ0

(
f(xk, zk)− f(xk+1, zk+1)

)
,∀k ∈ N.

Therefore, as long as {f(xk, zk)}k∈N is noincreasing and convergent,

n∑
k=0

q2(xk+1, xk) ≤ 2
µ0

(
f(x0, z0)− lim

k→∞
f(xk+1, zk+1)

)
<∞ ∀n ∈ N

(ii) (2) implies α2‖xk − xk+1‖2 ≤ q2(xk+1, xk), ∀ k ∈ N. So of (i), lim
k→∞

‖xk − xk+1‖ = 0.

Proposition 14 If {xk}k∈N is bounded, then the set ∂
(
q(., xk)

)
(xk+1) is bounded to every

k ∈ N.

Proof. It follows from the propositions (6) and (7), see Moreno et al. (2011), Lema 5.1.

Now, we can prove the convergence of our method if the stopping rule never applies.

Theorem 1 (convergence) Let F : Rn −→ Rm be a convex map such that lim‖x‖→∞ Fr(x) =
∞ for some r ∈ {1, ...,m}, f : Rn × Rm+ −→ R be a function verifying the properties (P1) to
(P4) and q : Rn × Rn → R+ be a function quasi distance satisfazendo (2) . If

{
µk
}
k∈N and{

βk
}
k∈N are sequences of real positive numbers, with 0 < µ0 < µk < µ1, ∀ k ∈ N , then the

sequence {(xk, zk)}k∈N generated by the proximal point scalarization Method with logarithm
and quasi distance is bounded and each cluster point of {xk}k∈N is a weak pareto solution for
the unconstrained multiobjective optimization problem (1).
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Proof. From the proposition 12, there are x∗ ∈ Rn, z∗ ∈ Rm+ and {xkj}j∈N subsequency
of {xk}k∈N such that lim

j→∞
xkj = x∗ and lim

k→∞
zk = z∗. By (P2) f is continuous in Rn ×

Rm++, so lim
k→∞

f(xkj , zkj ) = f(x∗, z∗) = inf
k∈N
{f(xk, zk)}. From corollary 1(i), there are ζk+1 ∈

∂(q(., xk))(xk+1) and vk+1 ∈ NΩk(xk+1) such that

−µkq(xk+1, xk)ζk+1 − vk+1 ∈ ∂f(., zk+1)(xk+1).

Hence, from subgradient inequality to the convex function f(., zk+1) we have: ∀x ∈ Rn,

f(x, zkj+1) ≥ f(xkj+1, zkj+1)− µkjq(xkj+1, xkj ) < ζkj+1, x− xkj+1 >

− < vkj+1, x− xkj+1 > (14)

As vkj+1 ∈ N
Ωkj (xkj+1) we have − < vkj+1, x − xkj+1 > ≥ 0 ∀x ∈ Ωkj (See definition 6).

Therefore, in particular, of (14) we have: ∀x ∈ Ωkj ,

f(x, zkj+1) ≥ f(xkj+1, zkj+1)− µkjq(xkj+1, xkj ) < ζkj+1, x− xkj+1 > (15)

From the propositions 13 e 14, lim
k→∞

‖xkj − xkj+1‖ = 0 and ‖ζkj+1‖ ≤ M respectivelly. As

0 < µ0 < µk < µ1, ∀ k ∈ N , using (2) and inequality of Cauchy-Swartz we conclude that
| µkjq(xkj+1, xkj ) < ζkj+1, x− xkj+1 >|→ 0 when j →∞. Therefore from (15),

f(x, z∗) ≥ f(x∗, z∗), ∀ x ∈ Ωkj . (16)

We are going to show now that x∗ ∈ argminw{F (x)/x ∈ Rn}. Suppose, by contradiction, that
there is x̄ ∈ Rn such that F (x̄)� F (x∗). As z∗ ∈ Rm+ , for (P3),

f(x̄, z∗) < f(x∗, z∗). (17)

As Ωk+1 ⊆ Ωk, ∀k ≥ 0 and xkj ∈ Ωkj−1, ∀j with xkj → x∗; j → ∞ we have that x∗ ∈ Ωkj ,
i.e., F (x∗) ≤ F (xkj ). Hence F (x̄)� F (xkj ), i.e, x̄ ∈ Ωkj , which contradicts (16) and (17).

5 Numerical examples

Acknowledgements: The authors are grateful to Dr. Michael Souza (UFC-Brazil) for its aid in the
implementation of the LQDPS Method.

In this section we are going to implement the LQDPS method given into section 4. All nu-
merical experiences were done in an intel(R) Core(TM) 2 Duo with Windows 7 installed and
the source code is written in Matlab 7.9.0. We have tested our method taking into account
three multiobjective test functions that were presented by Li and Zhang (2009), that is, we
have taken into account the following functions:

(a) ([8], function F1, pg. 287): Fa = (F 1
a , F

2
a ) : R3 → R2 given for F 1

a = x1 + 2(x3 − x2
1)2,

F 2
a = 1−√x1 + 2(x2− x0,5

1 )2 and xi ∈ [0, 1], i = 1, 2, 3 which set of all Pareto optimal points
(PS) is given for x2 = x0,5

1 and x3 = x2
1, x1 ∈ [0, 1].

(b) ([8], function F4, pg. 287): Fb = (F 1
b , F

2
b ) : R3 → R2 given for F 1

b = x1 + 2(x3 −
0, 8x1cos((6πx1 + π)/3))2, F 2

b = 1 −√x1 + 2(x2 − 0, 8x1sin(6πx1 + 2π/3))2 and (x1, x2, x3) ∈
[0, 1] × [−1, 1] × [−1, 1] with the set (PS) given by x2 = 0, 8x1sin(6πx1 + 2π/3) and x3 =
0.8x1cos((6πx1 + π)/3), x1 ∈ [0, 1].
(c) ([8], function F6, pg. 287): Fc = (F 1

c , F
2
c , F

3
c ) : R3 → R3 given for: F 1

c = cos(0, 5x1π)
cos(0, 5x2π), F 2

c = cos(0, 5x1π)sin(0, 5x2π), F 3
c = sin(0, 5x1π) + 2(x3 − 2x2sin(2πx1 + π))2

and (x1, x2, x3) ∈ [0, 1] × [0, 1] × [−2, 2] with the set (PS) given by x3 = 2x2sin(2πx1 + π),
(x1, x2) ∈ [0, 1]× [0, 1].
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In the tables below we denote for tol, the tolerance related to the stop criterion (‖(xk, zk) −
(xk+1, zk+1)‖∞ ≤ tol); µk, βk are the parameters of the (LQDPS) method; k∗i , i = 1, 2 the
iteractions number of the algorithm using the scalarization function fi : Rn×Rm+ → R, i = 1, 2
where f1 is given through the proposition 9 and f2 is given by (3); ‖x∗k∗i − x

∗‖∞, the distance,
related to the infinite norm, of the approximated solution related to fi and the exact solution,
i.e., the mistake commited with the scalarization function fi. The maximum number of itera-
tions is 100. In all tests we are going to consider the quasi distance application contained in
the example 1.

Example 2 In this example, we are going to consider the Multiobjective function Fa : R3 → R2

given above, and the initial iterations x0 = (0.5, 0.5, 0.5) ∈ R3 and z0 = (1, 1) ∈ R2
++. The

numeric results are presented in the table below.

No. tol µk βk k∗1 ‖x∗k∗1 − x
∗‖∞ k∗2 ‖x∗k∗2 − x

∗‖∞
1 10−2 1 + 1/k 1 + 1/k 9 5.545339e-003 10 5.118762e-002
2 10−3 1 + 1/k 1 + 1/k 28 6.247045e-009 23 6.979995e-003
3 10−4 1 + 1/k 1 + 1/k 87 7.960987e-009 62 8.279647e-009
4 10−2 1 + 1/k k 7 1.701151e-002 9 5.726488e-002
5 10−3 1 + 1/k k 28 7.351215e-009 24 6.281176e-003
6 10−4 1 + 1/k k 100 3.576296e-009 41 8.260435e-009
7 10−2 2− 1/k 1/k 7 2.273775e-002 8 9.389888e-002
8 10−3 2− 1/k 1/k 15 2.790977e-003 32 1.040779e-002
9 10−4 2− 1/k 1/k 28 1.071720e-008 100 9.213105e-009
10 10−2 2− 1/k k 7 1.674806e-002 8 9.413130e-002
11 10−3 2− 1/k k 27 8.168611e-009 32 1.039107e-002
12 10−4 2− 1/k k 100 8.096220e-009 65 7.790086e-009
13 10−2 1 1 8 6.966285e-003 9 5.000950e-002
14 10−3 1 1 26 1.906054e-009 23 6.138829e-003
15 10−4 1 1 83 8.254353e-009 39 1.546241e-005

Example 3 In this example we consider the Multiobjective function Fb : R3 → R2 given above,
and the initial iterations x0 = (0.5, 0.5, 0.5) ∈ R3 and z0 = (1, 1) ∈ R2

++. the numeric results
are presented in the table below.

No. tol µk βk k∗1 ‖x∗k∗1 − x
∗‖ k∗2 ‖x∗k∗2 − x

∗‖∞
1 10−2 1 + 1/k 1 + 1/k 10 4.419117e-003 10 3.800596e-002
2 10−3 1 + 1/k 1 + 1/k 29 7.617346e-009 20 5.872760e-003
3 10−4 1 + 1/k 1 + 1/k 92 7.831306e-009 100 8.102059e-009
4 10−2 1 + 1/k k 7 1.423293e-002 10 3.771631e-002
5 10−3 1 + 1/k k 20 4.560126e-009 21 5.533943e-003
6 10−4 1 + 1/k k 98 6.872232e-009 38 1.000619e-007
7 10−2 2− 1/k 1/k 7 2.265857e-002 9 6.038495e-002
8 10−3 2− 1/k 1/k 15 3.304754e-003 25 8.176106e-003
9 10−4 2− 1/k 1/k 28 7.814512e-009 100 7.497307e-009
10 10−2 2− 1/k k 7 1.251182e-002 7 6.525365e-002
11 10−3 2− 1/k k 30 8.735791e-009 23 8.117802e-003
12 10−4 2− 1/k k 100 5.561728e-009 52 7.547563e-009
13 10−2 1 1 8 5.099261e-003 10 4.231940e-002
14 10−3 1 1 27 5.045036e-009 22 5.051759e-003
15 10−4 1 1 88 8.499673e-009 82 9.235203e-010

Example 4 In this example we consider the Multiobjective function Fc : R3 → R3 given
above,and the initial iterations x0 = (0.5, 0.5, 0.5) ∈ R3 and z0 = (1, 1, 1) ∈ R3

++. The numeric
results are presented in the table below.
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No. tol µk βk k∗1 ‖x∗k∗1 − x
∗‖ k∗2 ‖x∗k∗2 − x

∗‖∞
1 10−2 1 + 1/k 1 + 1/k 10 1.066481e-002 18 5.068830e-002
2 10−3 1 + 1/k 1 + 1/k 31 1.698174e-008 33 5.315241e-003
3 10−4 1 + 1/k 1 + 1/k 100 5.432795e-009 100 1.130028e-008
4 10−2 1 + 1/k k 10 9.733382e-003 19 5.908485e-002
5 10−3 1 + 1/k k 28 4.176586e-010 34 2.307318e-007
6 10−4 1 + 1/k k 100 7.086278e-011 35 7.450585e-009
7 10−2 2− 1/k 1/k 11 2.653977e-002 20 9.899806e-002
8 10−3 2− 1/k 1/k 18 2.046561e-007 47 1.059293e-002
9 10−4 2− 1/k 1/k 33 1.161832e-008 100 9.253656e-009
10 10−2 2− 1/k k 11 1.835990e-002 22 8.862843e-002
11 10−3 2− 1/k k 28 5.441347e-010 48 1.047200e-002
12 10−4 2− 1/k k 100 9.476497e-010 75 2.793537e-009
13 10−2 1 1 9 8.326796e-003 17 5.182457e-002
14 10−3 1 1 29 1.343175e-008 32 4.799238e-003
15 10−4 1 1 96 6.882171e-009 100 3.961009e-009

6 Conclusions

We propose a condition in one of the objective function that has as a consequence the
limitation of Ω0 and we propose another example of a function that satisfies the properties
(P1) to (P4). As a variation of the Logarithm-Quadratic proximal scalarization method of
Gregório and Oliveira (2010), we replaced the quadratic term with the quasi distance, where
we have lost important properties as, for example, the convexity. However, acting in a different
way, we proved the convergence of the method.
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