
MINIMUM DILATION GEOMETRIC SPANNING TREES

Miguel Francisco Alves de Mattos Gaiowski1

Instituto de Computação - UNICAMP
Av. Albert Einstein, 1251 - Cidade Universitária, Campinas/SP - Brasil

miggaiowski@gmail.com

Cid Carvalho de Souza2

Instituto de Computação - UNICAMP
Av. Albert Einstein, 1251 - Cidade Universitária, Campinas/SP - Brasil

cid@ic.unicamp.br

ABSTRACT

The Minimum Dilation Geometric Spanning Tree Problem (MDGSTP) is N P-hard,
which justifies the development of heuristics to it. This paper presents heuristics based on the
GRASP metaheuristic paradigm for MDGSTP. The input of this problem is a set of points P =
{p1, p2, . . . , pn} in the plane. Let the geometric graph G(P) associated with P be the undirected
weighted complete graph of n vertices with edge weights corresponding to the euclidean distance
between the points represented by its endpoints. The goal is to find a subgraph T of G(P) with n−1
edges (a tree) that minimizes the greatest ratio between the length of the shortest path in T and in
G(P) for all pairs of vertices. This measurement is called the dilation of T .

KEYWORDS. GRASP, Minimum Dilation, Computational Geometry.

Main area: Metaheuristics

1Supported by a grant from PIBITI/CNPq (UNICAMP).
2Supported by CNPq grants 301732/2007-8, 472504/2007-0, 473867/2010-9 and FAPESP grant 07/52015-0.

1824

1 Introduction

Consider the following situation: an air company has been authorized to operate n− 1
flights among n cities. Each flight must be directly between two of the cities, without intermediate
stops. The flight times between all pairs of cities are already known. The company is free to choose
any flights but, for market reasons, it decided to offer the clients the possibility to travel from each
city to any other, possibly having to stop in intermediate cities, traveling only in flights that it
operates. A passenger should be able to go from one airport to any other, taking as many flights
as needed. That is, no airport should be disconnected from the rest. Considering all pairs of cities,
the goal of the company is to minimize the ratio between the total travel time (sum of the times of
flights taken) and the direct flight time.

That way, ignoring the waiting times in the airports, the strategy of the company is to try
to minimize the biggest delay a client would have (only using flights from that company) to go from
one city to another for which the company does not offer a direct flight. For each pair of distinct
airports, we define the dilation of the pair as the ratio between the shortest path to be traversed
in order to go from one airport to the other and the (euclidean) distance between the two airports.
From this definition, the goal is now to find a set of flights that minimizes the greater dilation among
all the pairs of airports.

This practical situation may be mathematically modeled with a weighted undirected graph,
using vertices instead of airports and edges for flights. This problem is called the Minimum Dilation
Geometric Spanning Tree Problem (MDGSTP). When graphs are used, this means that the result-
ing graph must be a tree, hence the name of the problem. Figure 1 shows a set of 9 flights connecting
10 Brazilian airports, the dilation of that tree is 2.08. Besides the given example, this problem is
of great interest for other study areas, such as communication networks, motion planning, network
design and many more (e.g. Cai and Corneil (1995) and Eppstein (2000)).

Figure 1: Example of 10 Brazilian airports connected by 9 flights, yielding a dilation of 2.08

The more general version of the problem, when the subgraph does not need to have exactly
n−1 edges is a problem from the Combinatorial Optimization area, and has been proven to belong

1825

to the class of N P-hard problems by Klein and Kutz (2007). The other version of the problem
(i.e. MDGSTP), when the number of connections must be exactly the number of points minus 1,
is also in the N P-hard class, as has been proven by Cheong et al. (2008).

Problems from the N P-hard class are unlikely to be solved with a polynomial algorithm,
so that other techniques, such as the one developed here, are needed to provide good solutions in a
feasible amount of time.

This text is organized in the following way: section 2 has an introduction to the GRASP

metaheuristic and section 3 presents a formal definition of the problem with its graph modeling.
Next, in section 4 the details of the GRASP used for MDGSTP are shown, with the presentation of
the steps to devise a good neighborhood for the local search. After that, in section 5, there is the
comparison of the many steps of the algorithm, and how the solutions improve with each technique
used. Real instances were used, and figures of the plotted solutions are shown. Finally, section 6
has some concluding remarks about this work.

2 The GRASP method

A metaheuristic is a method that guides simple heuristics so that a good solution may be
found. One of the paradigms for metaheuristic development is GRASP. Among the heuristic algo-
rithms, those based on the GRASP paradigm have been a good tool for solving hard combinatorial
problems. In spite of not being able to guarantee the quality of the solution for a generic instance,
many studies have shown successful applications of this method when solving complex combina-
torial problems (e.g. Resende and Ribeiro (2009b)), demonstrating that it is capable of producing
high quality solutions within a reasonable amount of computational time.

The term GRASP, from Resende and Ribeiro (2009a), is an acronym for Greedy Random-
ized Adaptive Search Procedure. The procedure is divided in two stages: a construction stage and
an improvement or local search stage.

A greedy criteria for the construction of solutions is defined in the first stage. Despite the
criteria being fixed, thanks to the introduction of randomness to process, it is not possible to know
ahead of time the solution that is being generated. Hence, by repeating this step many times, a
greater number of distinct solutions may be obtained, increasing the variety of the solutions created.
In the construction of a solution, on each iteration a new element is inserted in the current partial
solution using the greedy strategy alongside with the random process.

It is easy to imagine situations in which this greedy randomized construction does not
guarantee even the local optimality of the produced solution. That is why GRASP has a second
stage, when a local search algorithm is applied to the solution provided by the first step. It is based
on the concept of the neighborhood of a solution s, here denoted by V (s).

Once a set of rules is specified for the modification of a solution, V (s) is defined as the
set of all solutions obtained from s by applying these rules. The local search of GRASP starts with
s as the solution produced by the construction phase. Next, a solution s′ with better cost than s is
searched for in V (s). If it is found, s is updated with s′ and the process is repeated until the search
fails.

The definition of V (s) is the most delicate part in the design of the local search stage
of GRASP. Simpler neighborhoods tend to make the search faster and, therefore, more solutions
may be visited. Yet, these solutions might not be of such a high quality. On the other hand,
larger neighborhoods are more expensive to be explored, but may lead to solutions of much better
cost. Hence the need of many experiments to evaluate the different alternatives of neighborhood
implementation.

Another GRASP characteristic is that the steps of construction and local search are re-
peated for a pre-specified number of iterations (a parameter of the method that must be stipulated),
and the final solution returned by the heuristic is that of best value found during the execution.

1826

There are many ways to improve the basic GRASP method above summarized. One of
them is based on the storing of the best solutions found during the iterations, called elite solutions.
These solutions are used pairwise by the technique known as path relinking, which tries to generate
solutions of even better quality. A detailed study about path relinking was done by Ribeiro, in
Ribeiro and Resende (2010).

3 Problem Definition

Let P = {p1, p2, . . . , pn} be a set of points in the plane. We define the geometric graph
G(P) associated with P as the undirected weighted complete graph of n vertices in which the weight
of an edge corresponds to the euclidean distance between the two points represented by its end-
points. Given a connected subgraph G, spanner of G(P)3, for any two points, pu and pv, of P, we
denote by πG(u,v) the length of a shortest path from vertex u to v on the graph G where, for every
i ∈ {1, . . . ,n}, the vertex i of G (or G(P)) represents the point pi of P. Note that the length of a path
is given by the sum of the edge weights on the path.

From the above definitions, the dilation of u,v in the subgraph G is defined as:

δG(u,v) =
πG(u,v)
|uv|

,

where |uv| denotes the euclidean distance between points pu and pv of P. The dilation of the graph
G is given by:

δ (G) = max
u6=v∈E

πG(u,v)
|uv|

The dilation of G in the literature is sometimes called the stretch factor of G.
Another way to put it is that, if G(P) = (V,E) and G = (V,F) (F a subset of E), we say

that the subgraph G is a t-spanner if the graph’s dilation if less or equal to t. From this definition it
is obvious that if t ′ > t and G is a t− spanner, then G is also a t ′-spanner.

Problems involving t-spanners are a recurring topic in Computational Geometry, mainly
due to its applications in many fields, as mentioned by Eppstein (2000).

In the Minimum Dilation Geometric Tree Problem (MDGSTP), given the geometric
graph G(P) of a set P of n points in the plane, the goal is to find a subgraph G of G(P) with
n−1 edges with minimum dilation. From the number of edges, it is clear that G must be a spanning
tree.

By these definitions, it should be clear that MDGSTP is related to problems involving
t-spanners of geometric graphs.

4 A GRASP for MDGSTP

The first part of a GRASP is the construction phase. This is when a solution is produced
for later further improvement. The main characteristics of the algorithms used for this purpose are
that they should be greedy and randomized. Greedy means that it should not take much time to take
decisions looking for a optimal solution, it should just take the best local option and continue. This
strategy yields solutions for the next stage a lot faster. The second rule is the randomness of the
algorithm, which instead of going for the absolute local optimum, also considers pieces within a
certain distance from the optimum. Executing this algorithm many times should produce different
solutions, delivering the crucial variety for the improvement phase.

A solution should be correct before improvement. That is, it must have all the properties
of a solution as required by the problem. For example, the solutions for MDGSTP are connected

3G is a spanning subgraph of G(P) if G and G(P) have the same set of vertices

1827

graphs, so the final result from the construction stage should be a graph with only one connected
component. Basically, the result should be a spanning tree. When the topic is spanning trees, one
quickly thinks about Prim’s minimum spanning tree algorithm. It is a greedy algorithm, which is
exactly what is needed here, (e.g. Cormen et al. (2001)). The problem is that it always generates
the same solution, it is not random, so some modifications should be made to randomize the results.

A little more elaboration on the details of the algorithm is necessary to understand the
modifications. The basic idea of the algorithm is to maintain a connected component and augment
it with new vertices by a greedy decision, taking the vertex whose distance to a vertex from the
connected component is minimal. The modification consists of creating a Restricted Candidate List
(RCL) of vertices that are eligible to be inserted into the connected component at each step. Among
the vertices in the RCL, the decision of which one is taken is arbitrary.

To construct the RCL a parameter α is used. Calling dm the distance of the vertex that is
the closest one to the connected component, the one that the original Prim’s algorithm would use,
the RCL has all the vertices not yet inserted in the connected component whose distances are in
the range [(1−α)dm,dm]. So for different values of α the size of the RCL may be different. For
instance, when α = 0 the RCL has only one element, the best one. When α = 1, RCL has all the
vertices and the algorithm is purely random. Before each iteration of the GRASP construction phase,
a new value for α is randomly selected from {0.0,0.1, ...,1.0} with equal probabilities.

The second part of the GRASP algorithm is the improving stage. That is where the solution
just constructed is improved by local search. The neighborhood of solutions to be investigated is
defined by the modifications that transform a solution into its neighbors. Such a modification should
not cost too much to be applied, allowing more solutions to be visited within the same time limit.
The biggest issue with the MDGSTP is that a single edge modification could change the dilation of
many vertex pairs and of course the dilation of the whole graph. It is hard to predict which pairs of
vertices will have their dilation affected by an arbitrary modification. This leads to the recalculation
of the dilations for every pair, which is very time consuming.

A good neighborhood, therefore, should have the property that it will not affect the dila-
tion of every single pair of vertices. Instead, it should provide an easy way to know which pairs are
indeed altered, allowing the algorithm to update only the necessary pairs.

A neighborhood was devised keeping these considerations in mind. It is called Triangle-
Search, and the reason will soon be clear.

Let (u,v) be the pair of vertices with the maximum dilation in the graph. Also, let r be
another vertex defined as the tree root, πG(u,r) the shortest path from vertex u to the root r and
πG(v,r) the shortest path from vertex v to the root r. We call z the first vertex of the intersection of
πG(u,r) and πG(v,r). It might happen that z is the root r. We defined a as the last vertex before z in
the path πG(u,r) and b as the analog in πG(v,r). Figure 2 helps locating each vertex.

From this state, two other states (neighbors) are reachable:

• Substitute edge (a,z) by (a,b), as in figure 3

• Substitute edge (b,z) by (a,b), as in figure 4

These permutations can only decrease the dilation of vertices u and v. This is easy to
prove as the path goes from using two edges of a triangle to take a shortcut through only one edge.
Since the graph is geometric (edge weights are euclidean distances), the triangle inequality holds,
and so the final path must be shorter. Because the euclidean distance from u to v does not change,
the dilation decreases.

It is obvious that these changes may increase the dilation of other pairs of vertices. Let
A be the set of vertices of the subtree with root in a, B the ones of the subtree with root in b and Z
all the other vertices that are not in A nor B. So, in the first case, for the permutation of figure 3,

1828

z

ba

u v

r

z

ba

u v

r

z

ba

u v

r

1

Figure 2: Illustration of the significant vertices for the neighborhood TriangleSearch

z

ba

u v

r

z

ba

u v

r

z

ba

u v

r

1
Figure 3: Substitution of edge (a,z) by (a,b) in the

graph of figure 2

z

ba

u v

r

z

ba

u v

r

z

ba

u v

r

1

Figure 4: Substitution of edge (b,z) by (a,b) in the
graph of figure 2

dilation changes only among pairs of vertices of A×Z and A×B. Analogously in the second case,
for the permutation of figure 4, the changes occur among pair of vertices from B×Z and B×A.

These observations make it easier to verify how to recalculate the distances between the
vertices after the permutation without having to analyze all the vertices pair from the graph again.
In the first case, the length of the path between the pairs of vertices from A×Z and A×B may be
updated using the nested loops of the algorithm 1. The update for the second case is analog.

The dilation between a pair of vertices i∈ A and j ∈ Z always increases, since dist[a][b]+
dist[b][z] > dist[a][z]. The expectation is that this value may be lower than the dilation of u and v,
therefore leading to an improvement of the tree dilation.

A question then rises: which case is better? That is, which permutation creates the lowest
dilation? Testing both might be to high of a cost, thus the adopted method is totally greedy. It
removes the biggest edge, trying to minimize the increase of dilation between the vertices from set
Z and those affected by the change, A or B.

As shown, this neighborhood has the desired property of ease to update the distances after
a modification. The problem is that there are only two neighbors, the cases from figure 4 and 3.
Variety is an important thing for local searching, so we want to increase the number of neighbors,
trying to maintain the good properties.

Suppose now that, instead of finding a single triangle traversing the tree from u and v to
the root, we use the path from u to v. Each vertex in the path could be used as if it was vertex z from
figure 2 and with its two neighbors a triangle can be defined. If there are n vertices in this path (not

1829

Algorithm 1 Updating the distances between pair of vertices during TriangleSearch

for all i ∈ A do
for all j ∈ Z do

dist[i][j]← dist[i][j]−dist[a][z]+dist[a][b]+dist[b][z]
end for
for all j ∈ B do

dist[i][j]← dist[i][j]−dist[a][z]−dist[b][z]+dist[a][b]
end for

end for

counting the endpoints u and v), then there are n triangles. Figure 5 shows an example with n = 3,
the dotted lines represent the 3 possible shortcuts for the 3 distinct triangles. There is also the result
from taking the shortcut from u to b and disconnecting a and b. From now on this neighborhood
will be called PathTriangle.

Figure 5: An example of the possible shortcuts for a path with 3 vertices and the result after one move

When faced with many possible moves it is important to have a strategy for choosing the
one to go with. Two strategies are readily available, first improvement and best improvement. The
former tests alternatives until it finds one that improves the solution, and then proceeds, while the
latter investigates all the neighbors to find the best one, which is then chosen for the next step.

An improvement to the GRASP strategy is Path Relinking. The key idea is to use a pair of
solutions and transform one into another through a series of moves. The hypothesis is that a better
solution may be found while doing this. In order to transform a tree into another one, edges may
be added and removed. Let S be the starting tree and X the goal tree. Since they are different, there
must be some edge in X that is not in S and inserting this edge into S a cycle is created.There are
no cycles in X , therefore some edge of this new cycle is not in X . After the removal of such an
edge, the cycle is broken and the new tree S1 is one step closer to X . After step t, the original tree S
will have been transformed into St , and each one of these trees St are candidates for having a better
dilation than both S and X .

5 Computational Results

The randomized construction, when repeated long enough, is expected to produce better
solutions than an algorithm that always yields the same result. One should ask how better are the
solutions from the randomized Prim algorithm when compared to the non stochastic results. For this
purpose, 20 instances of the problem were randomly generated with 10 to 200 vertices. The ran-
domized construction was executed 1000 times, and the best result was reported. The comparison
with the dilation of the minimum spanning trees is shown in the graph from figure 6.

The graph also has the α that yielded the best solution for the randomized construction.
One should notice that the value that generated the most best solutions is α = 0.8. The improvement

1830

Instancia MST Randomized Prim alpha Melhora
10/0.3
20/0.1
30/0.3
40/0.5
50/0.8
60/0.6
70/0.6
80/0.5
90/0.9

100/0.3
110/0.9
120/0.7
130/0.7
140/0.6
150/0.8
160/0.4
170/0.8
180/0.8
190/0.8
200/0.8

2.2 2.12 0.3 3.64
4.19 3.74 0.1 10.74
10.03 5.46 0.3 45.56
8.12 5.65 0.5 30.49
7.1 6.62 0.8 6.79
9.58 6.96 0.6 27.35
16.13 10.54 0.6 34.66
14.85 10.17 0.5 31.52
9.6 9.22 0.9 4.04

14.88 9.81 0.3 34.07
16.76 9.83 0.9 41.35
18.46 12.9 0.7 30.12
26.05 13.64 0.7 47.64
18.53 13.56 0.6 26.82
25.61 14.37 0.8 43.89
28.06 14.27 0.4 49.14
21.97 16.84 0.8 23.35
23.97 14.23 0.8 40.63
17.13 14.71 0.8 14.13
19.44 14.4 0.8 25.93

0

3

6

9

12

15

18

21

24

27

30

10/0.3 20/0.1 30/0.3 40/0.5 50/0.8 60/0.6 70/0.6 80/0.5 90/0.9 100/0.3 110/0.9 120/0.7 130/0.7 140/0.6 150/0.8 160/0.4 170/0.8 180/0.8 190/0.8 200/0.8

D
ila

tio
n

Number of vertices / ! of the best solution

MST
Randomized Prim

Figure 6: Dilation comparison between the Minimum Spanning Tree and the solution from the randomized
algorithm

from the minimum spanning tree to the iterated greedy randomly constructed solutions is easily
noticeable. For instance, the test with 160 vertices shows a decrease of dilation of 49%. The
average reduction is 28.5%.

Fourteen real instances were created to test the implemented algorithms. The coordi-
nates (latitude and longitude) of the k biggest airports in Brazil were obtained from the website
Tageo.com, Tageo.com (2010). To sort the airports, we assumed that the runway length would be a
good approximation for its size.

Every test case was executed with a thousand iterations of the GRASP algorithm, though
some tests only account the construction phase rather than the construction and local search steps.

The first experiment performed is intended to see the improvement from the local search
in comparison to the result of the randomized construction. The problem is that, from the earlier
discussion, there are two basic ways to conduct the local search, and those are first improvement
and best improvement.

The graph from figure 7 allows one to quickly see the improvement that neighborhood
PathTriangle, with both the local search methods, produces in comparison with the randomized
construction by itself.

Number of
airports

Randomized
Prim

PathTriangle First
Improvement

Time PathTriangle
First Improvement

(seconds)

PathTriangle Best
Improvement

Time PathTriangle
Best Improvement

(seconds)

First Improv With
Path Relinking

Time First Improv
With Path
Relinking
(seconds)

Best Improv
With Path
Relinking

Time Best Improv
With Path
Relinking
(seconds)

Improvement from
First Improv to

Best Improv

Increase in time
from First Improv

to Best Improv

Improvement from
Randomized Prim

to PathTriangle
First Improvement

Improvement from
Randomized Prim

to PathTriangle
Best Improvement

Improvement from
PathTriangle Best
Improvement to
PathRelinking

Increase in time from
PathTriangle Best

Improv to
PathRelinking

Improvement from
Randomized Prim to
Best Improvement
with PathRelinking

5
10
20
30
40
50
60
70
80
90

100
150
200
300

1.613 1.533 0.04 1.533 0.06 1.533 0.04 1.533 0.06 0.00% 31.82% 5.01% 5.01% 0.00% 0.00% 5.01%
2.085 2.085 0.07 2.085 0.09 2.085 0.07 2.085 0.09 0.00% 27.14% 0.00% 0.00% 0.00% 2.25% 0.00%
2.723 2.634 0.34 2.634 0.79 2.634 0.36 2.634 0.84 0.00% 132.94% 3.25% 3.25% 0.00% 5.43% 3.25%
3.322 3.087 0.78 3.087 1.52 3.087 1.11 3.087 1.55 0.00% 95.37% 7.05% 7.05% 0.00% 1.97% 7.05%
3.873 3.289 1.55 3.261 3.24 3.212 2.27 3.212 3.51 0.85% 108.71% 15.09% 15.81% 1.49% 8.62% 17.06%
5.910 4.570 2.61 4.654 7.80 4.570 4.20 4.585 9.68 -1.83% 198.85% 22.67% 21.25% 1.48% 24.08% 22.41%
6.826 4.637 3.78 4.613 11.13 4.493 7.48 4.493 13.47 0.52% 194.44% 32.07% 32.42% 2.62% 21.02% 34.19%
6.522 4.716 4.71 4.607 17.20 4.675 5.97 4.558 21.08 2.31% 265.18% 27.69% 29.36% 1.07% 22.56% 30.12%
7.282 5.741 7.21 5.582 26.31 5.690 13.93 5.582 49.89 2.76% 264.91% 21.17% 23.35% 0.00% 89.62% 23.35%
7.717 6.261 10.02 6.217 38.24 6.170 33.31 6.034 78.35 0.70% 281.64% 18.87% 19.44% 2.95% 104.89% 21.81%
9.799 6.549 12.28 6.289 55.68 6.211 18.72 6.076 153.50 3.96% 353.42% 33.17% 35.81% 3.40% 175.68% 37.99%
9.763 7.239 30.98 6.801 179.48 7.156 54.33 6.689 327.11 6.05% 479.34% 25.86% 30.34% 1.64% 82.25% 31.48%
12.351 8.342 57.37 7.921 427.74 7.800 284.30 7.413 1,538.02 5.05% 645.58% 32.46% 35.87% 6.41% 259.57% 39.98%
16.792 11.010 179.84 11.293 1,181.49 10.637 798.65 -2.58% 556.97% 34.44% 32.75% 100.00% -100.00% 100.00%

1.00

10.00

100.00

1,000.00

40 50 60 70 80 90 100 150 200 300

T
im

e
 in

 s
e
c
o

n
d

s

Number of points

First Improvement Best Improvement

0

1.7

3.4

5.1

6.8

8.5

10.2

11.9

13.6

15.3

17.0

5 10 20 30 40 50 60 70 80 90 100 150 200 300

D
ila

ti
o

n

Number of points

Randomized Prim
PathTriangle First Improvement
PathTriangle Best Improvement

Figure 7: Comparison of the results with the randomized construction only and with the local search
PathTriangle

It is easy to notice how better are the solutions after the improvement stage of GRASP,

1831

specially for the larger instances. The biggest decrease in dilation occurs in the instance with 200
airports, with an improvement of almost 40%. The instances with 300 and 100 airports also show
an improvement of about 38%. All tests conducted with local search used as starting solution the
one from the randomized Prim algorithm.

The best improvement strategy is in most cases a little bit better than first improvement.
As we have discussed before, best improvement is also a lot slower, since it evaluates every single
neighbor before deciding on which one to go to. In fact, for some cases, running more iterations of
the first improvement GRASP would produce the same solution in less time. Figure 8 shows how
long each strategy took to execute. The graph is in logarithmic scale, making it easy to see how
much slower best improvement is. Although best improvement provides solutions up to 6% better
than first improvement, the trade-off is that it might take 6 times longer to produce the solutions.

Number of
airports

Randomized
Prim

PathTriangle First
Improvement

Time PathTriangle
First Improvement

(seconds)

PathTriangle Best
Improvement

Time PathTriangle
Best Improvement

(seconds)

First Improv With
Path Relinking

Time First Improv
With Path
Relinking
(seconds)

Best Improv
With Path
Relinking

Time Best Improv
With Path
Relinking
(seconds)

Improvement from
First Improv to

Best Improv

Increase in time
from First Improv

to Best Improv

Improvement from
Randomized Prim

to PathTriangle
First Improvement

Improvement from
Randomized Prim

to PathTriangle
Best Improvement

Improvement from
PathTriangle Best
Improvement to
PathRelinking

Increase in time from
PathTriangle Best

Improv to
PathRelinking

Improvement from
Randomized Prim to
Best Improvement
with PathRelinking

5
10
20
30
40
50
60
70
80
90

100
150
200
300

1.613 1.533 0.04 1.533 0.06 1.533 0.04 1.533 0.06 0.00% 31.82% 5.01% 5.01% 0.00% 0.00% 5.01%
2.085 2.085 0.07 2.085 0.09 2.085 0.07 2.085 0.09 0.00% 27.14% 0.00% 0.00% 0.00% 2.25% 0.00%
2.723 2.634 0.34 2.634 0.79 2.634 0.36 2.634 0.84 0.00% 132.94% 3.25% 3.25% 0.00% 5.43% 3.25%
3.322 3.087 0.78 3.087 1.52 3.087 1.11 3.087 1.55 0.00% 95.37% 7.05% 7.05% 0.00% 1.97% 7.05%
3.873 3.289 1.55 3.261 3.24 3.212 2.27 3.212 3.51 0.85% 108.71% 15.09% 15.81% 1.49% 8.62% 17.06%
5.910 4.570 2.61 4.654 7.80 4.570 4.20 4.585 9.68 -1.83% 198.85% 22.67% 21.25% 1.48% 24.08% 22.41%
6.826 4.637 3.78 4.613 11.13 4.493 7.48 4.493 13.47 0.52% 194.44% 32.07% 32.42% 2.62% 21.02% 34.19%
6.522 4.716 4.71 4.607 17.20 4.675 5.97 4.558 21.08 2.31% 265.18% 27.69% 29.36% 1.07% 22.56% 30.12%
7.282 5.741 7.21 5.582 26.31 5.690 13.93 5.582 49.89 2.76% 264.91% 21.17% 23.35% 0.00% 89.62% 23.35%
7.717 6.261 10.02 6.217 38.24 6.170 33.31 6.034 78.35 0.70% 281.64% 18.87% 19.44% 2.95% 104.89% 21.81%
9.799 6.549 12.28 6.289 55.68 6.211 18.72 6.076 153.50 3.96% 353.42% 33.17% 35.81% 3.40% 175.68% 37.99%
9.763 7.239 30.98 6.801 179.48 7.156 54.33 6.689 327.11 6.05% 479.34% 25.86% 30.34% 1.64% 82.25% 31.48%
12.351 8.342 57.37 7.921 427.74 7.800 284.30 7.413 1,538.02 5.05% 645.58% 32.46% 35.87% 6.41% 259.57% 39.98%
16.792 11.010 179.84 11.293 1,181.49 10.637 798.65 -2.58% 556.97% 34.44% 32.75% 100.00% -100.00% 100.00%

1.00

10.00

100.00

1,000.00

40 50 60 70 80 90 100 150 200 300

T
im

e
 in

 s
e
c
o

n
d

s

Number of points

First Improvement Best Improvement

Figure 8: Time comparison of first and best improvement strategies for instances that take more than one
second to execute

With the results of the GRASP in hands, many experiments with Path Relinking were
conducted, but none of the strategies would yield any improvement to the solutions. This leads to a
belief that the local search is very good, finding solutions that are hard to improve upon. With that
in mind, a local search was deployed for each step solution. This attempt gave some improvements,
as those shown in the graph from figure 9.

The elite solutions used in Path Relinking were the ones that were better than the previous
best during the GRASP iterations. In other words, during the 1000 iterations of GRASP there is
always a best solution, and when another best is found it goes to the elite list. The number of elite
solutions selected this way varied from 4 to 13 in the applied tests. Every pair of solutions was used
to generate the intermediate trees St .

Number
of

airports

Randomized
Prim

PathTriangle
First

Improvement

Time
PathTriangle

First
Improvement

(seconds)

PathTriangle
Best

Improvement

Time
PathTriangle

Best
Improvemen
t (seconds)

First
Improv

With Path
Relinking

Time First
Improv With

Path
Relinking
(seconds)

Best
Improv

With Path
Relinking

Time Best
Improv With

Path
Relinking
(seconds)

Improvement
from First
Improv to

Best Improv

Increase in
time from

First Improv
to Best
Improv

Improvement
from

Randomized
Prim to

PathTriangle
First

Improvement

Improvement
from

Randomized
Prim to

PathTriangle
Best

Improvement

Improvement
from

PathTriangle
Best

Improvement
to

PathRelinking

Increase in
time from

PathTriangle
Best Improv

to
PathRelinking

Improvement
from

Randomized
Prim to Best
Improvement

with
PathRelinking

5
10
20
30
40
50
60
70
80
90

100
150
200
300

1.613 1.533 0.04 1.533 0.06 1.533 0.04 1.533 0.06 0.00% 31.82% 5.01% 5.01% 0.00% 0.00% 5.01%
2.085 2.085 0.07 2.085 0.09 2.085 0.07 2.085 0.09 0.00% 27.14% 0.00% 0.00% 0.00% 2.25% 0.00%
2.723 2.634 0.34 2.634 0.79 2.634 0.36 2.634 0.84 0.00% 132.94% 3.25% 3.25% 0.00% 5.43% 3.25%
3.322 3.087 0.78 3.087 1.52 3.087 1.11 3.087 1.55 0.00% 95.37% 7.05% 7.05% 0.00% 1.97% 7.05%
3.873 3.289 1.55 3.261 3.24 3.212 2.27 3.212 3.51 0.85% 108.71% 15.09% 15.81% 1.49% 8.62% 17.06%
5.910 4.570 2.61 4.654 7.80 4.570 4.20 4.585 9.68 -1.83% 198.85% 22.67% 21.25% 1.48% 24.08% 22.41%
6.826 4.637 3.78 4.613 11.13 4.493 7.48 4.493 13.47 0.52% 194.44% 32.07% 32.42% 2.62% 21.02% 34.19%
6.522 4.716 4.71 4.607 17.20 4.675 5.97 4.558 21.08 2.31% 265.18% 27.69% 29.36% 1.07% 22.56% 30.12%
7.282 5.741 7.21 5.582 26.31 5.690 13.93 5.582 49.89 2.76% 264.91% 21.17% 23.35% 0.00% 89.62% 23.35%
7.717 6.261 10.02 6.217 38.24 6.170 33.31 6.034 78.35 0.70% 281.64% 18.87% 19.44% 2.95% 104.89% 21.81%
9.799 6.549 12.28 6.289 55.68 6.211 18.72 6.076 153.50 3.96% 353.42% 33.17% 35.81% 3.40% 175.68% 37.99%
9.763 7.239 30.98 6.801 179.48 7.156 54.33 6.689 327.11 6.05% 479.34% 25.86% 30.34% 1.64% 82.25% 31.48%
12.351 8.342 57.37 7.921 427.74 7.800 284.30 7.413 1,538.02 5.05% 645.58% 32.46% 35.87% 6.41% 259.57% 39.98%
16.792 11.010 179.84 11.293 1,181.49 10.637 798.65 10.332 4,113.67 -2.58% 556.97% 34.44% 32.75% 8.52% 248.18% 38.47%

1.00

10.00

100.00

1,000.00

40 50 60 70 80 90 100 150 200 300

T
im

e
 in

 s
e
c
o

n
d

s

Number of points

First Improvement Best Improvement

0

1.7

3.4

5.1

6.8

8.5

10.2

11.9

13.6

15.3

17.0

5 10 20 30 40 50 60 70 80 90 100 150 200 300

D
ila

ti
o

n

Number of points

Randomized Prim
PathTriangle First Improvement
PathTriangle Best Improvement

0

3.000

6.000

9.000

12.000

5 10 20 30 40 50 60 70 80 90 100 150 200 300

D
ila

ti
o

n

Number of airports

First Improvement
First Improvement with Path Relinking
Best Improvement
Best Improvement with Path Relinking

1.00

10.00

100.00

1,000.00

10,000.00

40 50 60 70 80 90 100 150 200 300

T
im

e
 in

 s
e
c
o

n
d

s

Number of points

First Improvement!
First Improvement With Path Relinking
Best Improvement
Best Improvement With Path Relinking

Figure 9: Results from local search and Path Relinking with PathTriangle in each step

1832

A noticeable difference appears in the bigger instances. The one with 100 airports has an
improvement of 3.4%, while the 90 points one has a gain in quality of 2.95%. The best improvement
provided by path relinking is at the instance with 200 points, and it is of 6.4%.

Although path relinking will slightly improve a solution, it still is very costly. The time
increase from simple GRASP to doing the same thing and path relinking is noticeable. Figure 10 has
a plotting of the times it took, for both first and best improvement, to run path-relinking. The time
axis is in log scale, and only those instances that took more than one second are shown.

Number
of

airports

Randomized
Prim

PathTriangle
First

Improvement

Time
PathTriangle

First
Improvement

(seconds)

PathTriangle
Best

Improvement

Time
PathTriangle

Best
Improvemen
t (seconds)

First
Improv

With Path
Relinking

Time First
Improv With

Path
Relinking
(seconds)

Best
Improv

With Path
Relinking

Time Best
Improv With

Path
Relinking
(seconds)

Improvement
from First
Improv to

Best Improv

Increase in
time from

First Improv
to Best
Improv

Improvement
from

Randomized
Prim to

PathTriangle
First

Improvement

Improvement
from

Randomized
Prim to

PathTriangle
Best

Improvement

Improvement
from

PathTriangle
Best

Improvement
to

PathRelinking

Increase in
time from

PathTriangle
Best Improv

to
PathRelinking

Improvement
from

Randomized
Prim to Best
Improvement

with
PathRelinking

5
10
20
30
40
50
60
70
80
90

100
150
200
300

1.613 1.533 0.04 1.533 0.06 1.533 0.04 1.533 0.06 0.00% 31.82% 5.01% 5.01% 0.00% 0.00% 5.01%
2.085 2.085 0.07 2.085 0.09 2.085 0.07 2.085 0.09 0.00% 27.14% 0.00% 0.00% 0.00% 2.25% 0.00%
2.723 2.634 0.34 2.634 0.79 2.634 0.36 2.634 0.84 0.00% 132.94% 3.25% 3.25% 0.00% 5.43% 3.25%
3.322 3.087 0.78 3.087 1.52 3.087 1.11 3.087 1.55 0.00% 95.37% 7.05% 7.05% 0.00% 1.97% 7.05%
3.873 3.289 1.55 3.261 3.24 3.212 2.27 3.212 3.51 0.85% 108.71% 15.09% 15.81% 1.49% 8.62% 17.06%
5.910 4.570 2.61 4.654 7.80 4.570 4.20 4.585 9.68 -1.83% 198.85% 22.67% 21.25% 1.48% 24.08% 22.41%
6.826 4.637 3.78 4.613 11.13 4.493 7.48 4.493 13.47 0.52% 194.44% 32.07% 32.42% 2.62% 21.02% 34.19%
6.522 4.716 4.71 4.607 17.20 4.675 5.97 4.558 21.08 2.31% 265.18% 27.69% 29.36% 1.07% 22.56% 30.12%
7.282 5.741 7.21 5.582 26.31 5.690 13.93 5.582 49.89 2.76% 264.91% 21.17% 23.35% 0.00% 89.62% 23.35%
7.717 6.261 10.02 6.217 38.24 6.170 33.31 6.034 78.35 0.70% 281.64% 18.87% 19.44% 2.95% 104.89% 21.81%
9.799 6.549 12.28 6.289 55.68 6.211 18.72 6.076 153.50 3.96% 353.42% 33.17% 35.81% 3.40% 175.68% 37.99%
9.763 7.239 30.98 6.801 179.48 7.156 54.33 6.689 327.11 6.05% 479.34% 25.86% 30.34% 1.64% 82.25% 31.48%
12.351 8.342 57.37 7.921 427.74 7.800 284.30 7.413 1,538.02 5.05% 645.58% 32.46% 35.87% 6.41% 259.57% 39.98%
16.792 11.010 179.84 11.293 1,181.49 10.637 798.65 10.332 4,113.67 -2.58% 556.97% 34.44% 32.75% 8.52% 248.18% 38.47%

1.00

10.00

100.00

1,000.00

40 50 60 70 80 90 100 150 200 300

T
im

e
 in

 s
e
c
o

n
d

s

Number of points

First Improvement Best Improvement

0

1.7

3.4

5.1

6.8

8.5

10.2

11.9

13.6

15.3

17.0

5 10 20 30 40 50 60 70 80 90 100 150 200 300

D
ila

ti
o

n

Number of points

Randomized Prim
PathTriangle First Improvement
PathTriangle Best Improvement

0

3.000

6.000

9.000

12.000

5 10 20 30 40 50 60 70 80 90 100 150 200 300

D
ila

ti
o

n

Number of airports

First Improvement
First Improvement with Path Relinking
Best Improvement
Best Improvement with Path Relinking

1.00

10.00

100.00

1,000.00

10,000.00

40 50 60 70 80 90 100 150 200 300

T
im

e
 in

 s
e
c
o

n
d

s

Number of points

First Improvement!
First Improvement With Path Relinking
Best Improvement
Best Improvement With Path Relinking

Figure 10: Time comparison of simple GRASP and GRASP with path relinking

Figure 11 shows the Minimum Spanning Tree of the instance with 60 airports, which has
a dilation of 9.908. On the other hand figure 12 shows the result of the randomized construction, a
modification of Prim’s algorithm. This last tree has a dilation of 6.463.

The result from the GRASP algorithm with Path Relinking can be seen in figure 13, and
that yielded a dilation of 4.493, an improvement of over 54%. The solutions are plotted on a map
image from Google Maps, GoogleMaps (2011).

Another nice result is the largest one, with 300 airports. The minimum spanning tree and
the solution obtained with GRASP using best improvement and path relinking can be seen in figures
14 and 15, respectively. The total improvement is of over 42%.

As a last example, figure 16 shows the solution for an instance with the 27 state capitals
of Brazil as points. The achieved dilation is 4.206.

6 Concluding Remarks

GRASP can provide good solutions to an N P-hard combinatorial optimization problem
such as MDGSTP, though special characteristics of the problem must be explored in order to design
good neighborhoods for the local search.

The PathTriangle local search we devised is quite efficient. Not only it allows us to update
the data structures easily after exploring each neighborhood, but it also provides improvements of
over 30% when compared to the randomized construction of a feasible solution.

Path Relinking did not yield as large improvements to the solution as the local search did,
and this might be due to the high quality of the proposed neighborhood.

Although we have not found exact solutions in the literature for the MDGSTP that could
be used to assess the results obtained by our heuristic, we are aware that algorithms to produce
lower bounds for the problem are currently being developed by Brandt and de Souza (2011). Thus,
as a future work, it would be interesting to compare the dual bounds reached by these algorithms
with those yielded by the heuristic proposed here.

1833

Figure 11: Minimum Spanning
Tree for the instance with 60

points, dilation 9.908

Figure 12: Tree obtained with the
randomized construction which has

dilation 6.463

Figure 13: Resulting tree from
GRASP and Path Relinking, with

dilation 4.493

Figure 14: Minimum Spanning Tree for the instance
with 300 points, dilation 18.053

Figure 15: Solution from the GRASP with best
improvement and path relinking, dilation 10.332

1834

Figure 16: Solution for an instance with all the 27 capitals of Brazil as points. Dilation 4.206

References

Brandt, A. and de Souza, C. C. (2011). Private communication.

Cai, L. and Corneil, D. (1995). Tree spanners. SIAM Journal on Discrete Mathematics, 8(3):359–
387.

Cheong, O., Haverkort, H., and Lee, M. (2008). Computing a minimum-dilation spanning tree is
NP-hard. Comput. Geom. Theory Appl., 41(3):188–205.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms.
MIT Press, Cambridge, MA, second edition.

Eppstein, D. (2000). Spanning trees and spanners. In Sack, J.-R. and Urrutia, J., editors, Handbook
of computational geometry, chapter 9, pages 425–461. North-Holland Publishing Co., Amsterdam,
The Netherlands.

GoogleMaps (2011). www.google.com/maps.

Klein, R. and Kutz, M. (2007). Computing geometric minimum-dilation graphs is NP-hard. Lec-
ture Notes in Computer Science, 4372:196–207.

Resende, M. G. C. and Ribeiro, C. C. (2009a). GRASP. In Burke, E. and Kendall, G., editors,
Search Methodologies. Springer, second edition.

Resende, M. G. C. and Ribeiro, C. C. (2009b). Greedy randomized adaptive search procedures:
Advances, hybridizations, and applications. In Glover, F. and Kochenberger, G. A., editors, Hand-
book of Metaheuristics, volume 57 of International Series in Operations Research and Management
Science, chapter 8, pages 219–249. Springer, second edition.

Ribeiro, C. and Resende, M. (2010). Path-relinking intensification methods for stochastic local
search algorithms. Computers and Operations Research, 37:498–508.

Tageo.com (2010). www.tageo.com.

1835

