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RESUMO

O problema de isomorfismo de grafos pode ser aplicado em vários problemas da vida real.
Este trabalho é sobre um algoritmo que resolve o problema utilizando conceitos da teoria espectral
de grafos. O problema em questão é considerado para que umaversão otimizada do método de
potência seja proposta para o cálculo da centralidade de autovetor, bem como a sua aplicação no
algoritmo espectral original.
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Teoria e Algoritmos em Grafos

ABSTRACT

The graph isomorphism problem can be applied to many real-life issues. This work is about
an algorithm for solving the problem using some concepts of spectral graph theory. The concerned
problem is considered so that an optimized power method for computing the eigenvector centrality
is proposed, as well as its application in the original spectral algorithm.

KEYWORDS. Graph Isomorphism Problem. Eigenvector Centrality. Eigenvector
Computing.
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1 Introduction

The Graph Isomorphism Problem (GIP) can be applied in many real-life problems, for example,
those involving pattern recognition (Conte et al. (2004)) and identification of structural similarities
in chemical compounds (Oliveira & Greve (2005); Fortin (1996)). In the latter, it is necessary to
determine whether or not a molecule has the same structure ofanother before giving it an exclu-
sive name. A possible way of doing it is representing the molecules as graphs where each vertex
represents an atom and the edges represent its chemical bonds. By doing that we can say that the
molecules have a similar structure if their graphs are isomorphic.

Formally two graphsG1 = (V1, E1) andG2 = (V2, E2) of same order and size are isomorphic
if there is a bijectionf : V1 → V2 such that their structural adjacencies are preserved, i.e., ∀a, b ∈
V1, (a, b) ∈ E1 ⇔

(
f(a), f(b)

)
∈ E2. The GIP is to determine if two graphs are isomorphic

(Diestel (2006); Dalcumune (2008)). Although necessary, the conditions of same order and size are
not sufficient to answer if two graphs are isomorphic.

The GIP is one of the few problems that belongs to the class NP,but it is not known whether it
is in class P or NP-complete, though it is not a co-NP problem (Fortin (1996); Jenner et al. (2003)).
The commonly accepted assumption is that it is strictly between the two classes (Arvind & Torán
(2005)).

There are several exact algorithms in the literature to solve the GIP we can highlight for their
efficiency: the Ullmann algorithm (Ullmann (1976)), VF2 (Cordella et al. (2001)), Nauty (McKay
(1981)) and Bliss (Junttila & Kaski (2007)), among others. All of them improve the search for the
GIP solution using different filters.

There are also examples of polynomial time algorithms dedicated to specific classes of graphs
(Sorlin & Solnon (2004); Uehara et al. (2005); Zager (2005);Dharwadker & Tevet (2009)). More-
over, we can cite Xiutang & Kai (2008) as an heuristic algorithm example using the Simulated
Annealing to solve the GIP.

Spectral Graph Theory (SGT) is a field of Discrete Mathematics that treats graph properties us-
ing their matrix representation (adjacency, Laplacian, signless Laplacian, among others) and spec-
trum (Hogben (2009)). Concepts such as the spectrum of a graph and the eigenvector centrality
have been used in graph theory for the identification of relevant information related to graphs. The
SGT has aroused interest in many research groups on the last three decades due its wide application
in several areas, such as chemistry, computer engineering and computer science (Abreu (2005)).

We are motivated with the study of filters for GIP algorithms.Lee (2007) use as a filter the
usual one which is the vertices degree. Santos et al. (2010) present two others different filters using
SGT concepts, proposing two theoretical results about these filters to isomorphism detection, which
are included in a tree-search GIP procedure, originating the algorithm called SAGIP. However,
according to the results presented in that paper, the eigenvector computing required to the use of the
proposed filters, using a available package of linear algebra functions, increases significantly the
algorithm CPU time.

In this work, we propose an adaptation of a well known method from the literature for comput-
ing eigenvectors, called power method (Saad (1992)), in order to improve the CPU time spent by
the SAGIP algorithm proposed in Santos et al. (2010).

The following section introduces some concepts about spectral graph theory. Section 3 explains
the original algorithm (SAGIP). In Section 4 an adaptation to the power method, as well as the
Adapted SAGIP are proposed. Section 5 contains some computational results and in Section 6 we
present the conclusions about this work.
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2 Some basic concepts of Spectral Graph Theory

In this section we present several definitions about SGT thatwill support some issues addressed
in this work. The definitions described here were extracted from Abreu et al. (2007), in which can
also be found the related mathematical proofs.

LetG = (V,E) be an undirected simple graph, withn vertices andm edges. TheAn×n matrix
where the entryauv is 1 if (u, v) ∈ E and is0 otherwise is defined asadjacency matrix of G.

For a graphG with adjacency matrixA(G), thecharacteristic polynomial of G is defined as
pG(λ) = det

(
A(G) − λI

)
, where the rootλ of the polynomial is calledeigenvalueof G. As G

hasn vertices it also hasn eigenvalues, the largest being calledindex of the graph. Also, given a
nonzero vectorv such asA(G)v = λv is aneigenvectorassociated toλ. The eigenvector associated
to the index is calleddominant eigenvector.

Thespectrumof G, denoted byspect(G), is defined as a2×d matrix, having in its first row the
d distinct eigenvalues arranged in descending order and in its second row their respective algebraic
multiplicities. Consequently, the first spectrum entry corresponds toG index, usually denoted by
λ1.

Two graphsG1 andG2 arecospectral graphsif their eigenvalues are the same, i.e.,spect(G1) =
spect(G2). From this definition we conclude that if two graphs are isomorphic they are cospectral,
however the converse is not always true.

Consideringx the eigenvector associated to graph index, the componentxi is theeigenvector
centrality of theith vertex.

3 A Spectral Based Exact Algorithm for GIP

One of the Santos et al. (2010) motivations is the use of the centrality concept as an additional
filter (as it is a graph invariant) in the detection of isomorphic graphs, since results from the literature
state that two vertices of same degree in a graph may have distinct centrality values (Grassi et al.
(2007)). Thus, two theoretical results based on the preservation of centrality in isomorphic graphs
have been proposed and proved in Santos (2010). The first concerns graphs associated to equal
eigenvector centralities with all components distinct from each other are isomorphic. The second
says that isomorphic graphs have proportional eigenvectorcentralities. Both theorems are used as
filters in their algorithm, which contains three phases. In the first phase the graphs eigenvector
centralities are computed. The purpose of computing these eigenvectors is to gather the vertices in
groups of centrality, thus the associations are restrictedto vertices of the same group. Until in this
stage, the second result cited above is checked. In the second phase, the first result is verified and
in the last, the centrality groups produced in phase 1 are used as a filter to the solution tree built
according to the exactbacktrackingalgorithm presented in Lee (2007). When the tree search endsin
a leaf, a feasible association is found and the algorithm halts concluding the graphs are isomorphic.
Otherwise, the solution tree search is exhausted ending in the tree root, no feasible association is
found and the algorithms halts concluding the graphs are notisomorphic. The algorithm called
SAGIP (Spectral Algorithm for the Graph Isomorphism Problem) is reproduced in Algorithm 1.

4 Computing The Eigenvector Centrality

As seen in previous section the proposed algorithm builds vertex association groups using their
eigenvector centralities. So a crucial issue is finding an efficient method to do that, i.e., to calculate
the dominant eigenvector of a graph adjacency matrix. The method proposed here is an adapted
version of the power method (Saad (1992)) for graphs adjacency matrices.
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Algorithm 1 : The Spectral Algorithm for the Graph Isomorphism Problem (SAGIP)
Input : The adjacency matricesA(G1) andA(G2) from graphsG1 andG2

Output : true (ifG1 ≃ G2) or false (otherwise)
begin1

Compute the centrality eigenvectors~x1, ~x2 of G1, G2 ; // Phase 12

Order~x1 and~x2 components in ascending order3

if ~x1 6= k~x2, k ∈ R
∗ then4

returnfalse5

else6

if ~xi = (xi1, ..., x
i
n), such asxij 6= xik,7

j, k = 1, . . . , n, j 6= k and i = 1, 2 ; // Phase 28

then9

returntrue10

else11

Executebacktrackingusing vertices grouped by centrality ; // Phase 312

if found a feasible solution13

then14

returntrue15

else16

returnfalse17

end18

4.1 The Power Method

The power method is probably the simplest known iterative eigenvector computing method. It
computes a sequence ofk Akvo vectors wherev0 is a nonzero initial vector andA is an×n matrix.
Those vectors converge1 to the eigenvector associated with the largest modulus eigenvalue2 (Saad
(1992)). The power method algorithm is presented in Algorithm 2.

Algorithm 2 : The Power Method.
Input : A: n× n matrix,v0 initial solution
Output : λ1: the eigenvalue,vλ1 : the eigenvector
begin1

for i← 1 to k do2

wi = Avi−1 ; // product: n2 floating operations3

αi = max(wi) ; // find max: n floating comparisons4

vi = wi/αi ; // normalization: n floating operations5

λ1 = αk ; // the eigenvalue6

v
λ1 = vk ; // the eigenvector7

end8

The normalization factorαi is the component ofAvi−1 of which has the maximum modulus.
The algorithm does not converge if the dominant eigenvalue is complex and both the original matrix
and the initial vector are real. At thekth iteration thevk vector is generated as:

1givenǫ > 0, |vk − vk−1| < ǫ
2which is the graph indexλ1 if taken its adjacency matrix.
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vk =
1

αk

Avk−1 =
1

αk

1

αk−1
A2vk−2 =

1

α1α2 · · ·αk−1αk
︸ ︷︷ ︸

normalization factor

Akv0 (1)

The Figure 1 exemplifies the computed sequence of vectors.
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Figure 1: An example of some of the power method iterations.

The normalization step is important because (a) it preventsthe unlimited growth of thevi com-
ponents – reducing its maximum modulus component to1 – and (b) afterk iterationsαi converges
to theλ1 eigenvalue (Saad (1992)).

4.2 The Adapted Power Method

According to the conclusions presented in Santos et al. (2010), the authors observed that one of
the principle bottlenecks of its algorithm CPU time is the eigenvector computing required to the use
of filters. In that work, this computing is performed by functions of CLAPACK, a C programming
language version of the LAPACK (Linear Algebra PACKage) a library of Fortran 77 subroutines for
solving most commonly occurring problems in numerical linear algebra (Anderson et al. (1999)).

However, for the purpose of detecting graph isomorphism, weneed only the eigenvector as-
sociated to the graph indexλ1, while the set of CLAPACK functions are prepared to calculate in
addition, several other informations related to the matrixspectrum.

Thus, some peculiarities of the graph adjacency matrix and the GIP will now be considered,
hence some optimizations will be formulated for the power method previously presented.

4.2.1 Reducing The Number of Iterations

In section 3 we exposed that the objective of taking the eigenvector centrality is to deter-
mine groups of vertices associated with each distinct valueof eigenvector components, building
the groups of vertices candidates to map with the other graph.

The greater the number of iterations of the power method, themore accurate is the eigenvector
calculated. A first attempt to reduce the CPU time of the powermethod is to decrease its number
of iterations because it has been empirically observed thatthe suitable number of iterations to build
a robust filter over non-regular graph is smaller than the default, specially for large/dense graphs.
For building this filter the eigenvector component values are not relevant, the important issue is
if they are different or not from each other. It allow us to interrupt the power method process of
convergence earlier as long as the same number of iterationsare used for both graphs.

Moreover it is not difficult to conclude that the components of the vectorv1 (resulting from the
the first iteration withv0 = 1) correspond to the graph vertices degree. If they are already known
we can use them as the initial vector, saving an iteration (Figure 2).
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4.2.2 Skipping Normalization Step

Another optimization considered for the power method in theGIP context is to ignore thevi
vector normalization step. This would save usn floating point comparisons andn floating point
operations on every iteration (see line 5 and 6 respectivelyof Algorithm 2). It would even allow us
to use just integer values for thevi vectors and upon this, easier arithmetic operations.

The first consequence of this optimization is letting thevi vectors components grow unlimited.
As seen in section 4.2.1 the number of iterations has been significantly reduced for the proposed
method. Therefore the growth of the vectors components is not a problem, at least for some quite
iterations3. The other consequence is not computing the eigenvalue which is not a problem either
because the proposed GIP algorithm does not really need it. Hence we can substitute the original
method floating point vectors by integer vectors, since theystill represent the eigenvector without
the normalization factor (Eq. 1). The Figure 2 shows an example of some iterations without the
normalization step.
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Figure 2: An example of some of the modified power method iterations.

4.2.3 Optimized Matrix-vector Product

The adjacency matrices of the graphs related to GIP are binary by definition. It is possible
to consider these matrices always being sparse because if they are not (representing high density
graphs) the GIP may be applied on the complements of both graphs instead. Thus, the matrix-
vector product can be optimized by using the graph adjacencylist representation in place of the
matrix itself. Doing it, the matrix-vector product can be computed withm operations instead of
n2 (line 4 of Algorithm 2). Considering aG = (V,E), for each vertexvi ∈ V , the adjacency list
structure is defined as a list of lists containing the vertices adjacent tovi. Figure 3 exemplifies the
technique. We can observe that for each line from the adjacency matrix, the product operations are
performed only over its nonzero coefficients when considering the adjacency list representation.

(a) using standart matrix representation (b) using adjacency list representation

Figure 3: An example of a matrix-vector product.

Considering the modifications for Algorithm 2 proposed in this section, the adapted power
method is presented in Algorithm 3. The⊙ operator means the product of the adjacency list by

3specially for modern architectures with 32 and 64 bits integers.
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the vector and the functionsdegrees(G) andcountGroups(v) give, respectively, the degree vector
associated toG and the number of different components of vectorv.

Algorithm 3 : The Adapted Power Method
Input : G = (V,E): graph (adjacency list structure)
Output : v: the non-converged centrality eigenvector
begin1

v0 = degrees(G);2

ngroupsold ← countGroups(v0);3

v1 = G1 ⊙ v;4

ngroupsnew ← countGroups(v1);5

i← 2;6

while ngroupsold < ngroupsnew andngroupsnew < |V | do7

ngroupsold ← ngroupsnew;8

vi = G1 ⊙ v;9

ngroupsnew ← countGroups(vi);10

i← i+ 1;11

v = vi;12

end13

The algorithm initializes with the degree vector ofG and its number of different components
(lines 2 and 3). Then this vector is iteratively modified until the number of different components is
unchanged or equal to|V | (lines 4 to 12).

In order to improve the SAGIP (Algorithm 1) CPU time its line 2was substituted by Algorithm 3
originating the Adapted Spectral Algorithm for the Graph Isomorphism Problem (ASAGIP).

5 Computational Results

For the purpose of comparing ASAGIP performance with some well known algorithms of the
literature for GIP resolution, we also executed computational tests for the algorithms SAGIP, Bliss,
Nauty and VF2.

All tests were performed on the same graph instances set usedin Santos (2010), extracted from
the Graph Database CD available in SIVALab (2001). The graphinstances set is composed by
3000 couples of randomly isomorphic connected graphs, divided into three edge density groups
η = 0.01, η = 0.05 andη = 0.1, respectively denoted byr001, r005 andr01. Each group contains
100 pairs of graphs (instances) of sizes20, 40, 60, 80, 100, 200, 400, 600, 800 and1000 vertices,
amounting1000 pairs of graphs in each group. According to the meaning ofη, if n is the total
number of nodes of the graph, the number of its edges will be equal to η

[n(n−1)
2

]
. However, if

this number is not sufficient to obtain a connected graph (i.e. at least n-1 edges), further edges are
suitably added until the graph being generated becomes connected. Besides these instances, a new
edge density group withη = 0.5 was generated using the Nauty random graph generator tool called
genrang. We denoted this new group byd05.

The proposed algorithm was implemented in C Programming Language. The SAGIP used the
function dsyevr from CLAPACK 3.2.1 to calculate the eigenvector centrality. For the experi-
mental tests Bliss and VF2 algorithms were extracted from iGraph 0.5.1 Library and Nauty 2.4 was
used. The functiongettimeofday from time.h C library measured all the algorithms exe-
cution time. The tests were performed on a machine with IntelR© CoreTM2 Duo E4500 2.20GHz
(2MB cache) processor and 2GB of RAM using Linux Ubuntu 10.04OS kernel 2.6.32-30.
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The graphics presented in Figures 4, 5, 6 and 7 show the CPU time average over the100
instances of each graph size in each density groupr001, r005, r01 andd05 respectively, for the five
algorithms compared.

Observing the graphs from Figures 4, 5, 6 and 7, we can conclude that the optimizations pro-
posed here improved significantly the efficiency of the powermethod and, in all tests performed,
the ASAGIP algorithm obtained better results than SAGIP (inaverage it is99% faster). In respect
to all algorithms compared, the ASAGIP also obtained betterresults except by the Nauty Algorithm
on the graph instances groupr001. But even in this case the CPU times achieved were very closed.
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6 Concluding Remarks and Future Work

In this work we proposed an adapted power method for computing the graph eigenvector cen-
tralities as a filter to solve the graph isomorphism problem.It was motivated by the bottleneck for
computing the eigenvector observed on the Spectral Algorithm for GIP (SAGIP) proposed in San-
tos et al. (2010). Considering the problem in question several optimizations were proposed for the
power method originating the Adapted Spectral Algorithm for GIP (ASAGIP).

We concluded in this work that the proposed adaptations for the power method are very efficient,
especially when the graphs becomes larger and denser in which less iterations is needed to classify
the vertices in different groups of centrality.

Another interesting conclusion is about the number of iterations needed for the adapted power
method. For low density graphs (r001) this number was relatively high (average of4.8 iterations)
needing7 iterations for some of the instances. However we observed that this number was much
smaller for denser graphs, e.g. for groupr01 the average iteration number was3.1, needing a
maximum of4 iterations for some of its instances.

As future work we intend to investigate the relation betweenthe eigenvector centralities and the
density of the graphs. It seems that vertices in larger and denser graphs tend to have more distinct
eigenvector centralities. We also intend to study how the method could be applied to regular graphs
as well as optimized for sparse graphs.
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Aplicada e Computacional, 6(1):1–10.

Abreu, N. M. M., Del-Vecchio, R. R., Vinagre, C. T. M., & Stevanović, D. (2007). Introdução à teo-
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