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RESUMO

O problema de isomorfismo de grafos pode ser aplicado erosvaroblemas da vida real.
Este trabalho & sobre um algoritmo que resolve o probleitizantdo conceitos da teoria espectral
de grafos. O problema em questao & considerado para quears@ otimizada do método de
poténcia seja proposta para o calculo da centralidadeitdeetor, bem como a sua aplicagao no
algoritmo espectral original.

PALAVRAS CHAVES. Problema de Isomorfismo de Grafos. Centraldade de Autovetor.
Calculo de Autovetor.

Teoria e Algoritmos em Grafos
ABSTRACT

The graph isomorphism problem can be applied to many realdsues. This work is about
an algorithm for solving the problem using some conceptpetsal graph theory. The concerned
problem is considered so that an optimized power methoddimptiting the eigenvector centrality
is proposed, as well as its application in the original séetigorithm.
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1 Introduction

The Graph Isomorphism Problem (GIP) can be applied in maaiylife problems, for example,
those involving pattern recognition (Conte et al. (20040 alentification of structural similarities
in chemical compounds (Oliveira & Greve (2005); Fortin (@99 In the latter, it is necessary to
determine whether or not a molecule has the same structuaratfier before giving it an exclu-
sive name. A possible way of doing it is representing the mdés as graphs where each vertex
represents an atom and the edges represent its chemica. lBydioing that we can say that the
molecules have a similar structure if their graphs are igpimo.

Formally two graphg7; = (V1, E1) andG2 = (V,, E5) of same order and size are isomorphic
if there is a bijectionf : V1 — V4 such that their structural adjacencies are preservedyueh €
Vi,(a,b) € Ey & (f(a), f(b)) € Es. The GIP is to determine if two graphs are isomorphic
(Diestel (2006); Dalcumune (2008)). Although necessaiyconditions of same order and size are
not sufficient to answer if two graphs are isomorphic.

The GIP is one of the few problems that belongs to the clasbMm is not known whether it
is in class P or NP-complete, though it is not a co-NP probleartin (1996); Jenner et al. (2003)).
The commonly accepted assumption is that it is strictly leetwthe two classes (Arvind & Toran
(2005)).

There are several exact algorithms in the literature toestite GIP we can highlight for their
efficiency: the Ullmann algorithm (Ullmann (1976)), VF2 (@ella et al. (2001)), Nauty (McKay
(1981)) and Bliss (Junttila & Kaski (2007)), among otherdl. ohthem improve the search for the
GIP solution using different filters.

There are also examples of polynomial time algorithms dedit to specific classes of graphs
(Sorlin & Solnon (2004); Uehara et al. (2005); Zager (20@)arwadker & Tevet (2009)). More-
over, we can cite Xiutang & Kai (2008) as an heuristic aldgoritexample using the Simulated
Annealing to solve the GIP.

Spectral Graph Theory (SGT) is a field of Discrete Mathersdtiat treats graph properties us-
ing their matrix representation (adjacency, Laplaciagnisiss Laplacian, among others) and spec-
trum (Hogben (2009)). Concepts such as the spectrum of d gnag the eigenvector centrality
have been used in graph theory for the identification of eeeinformation related to graphs. The
SGT has aroused interest in many research groups on therestdecades due its wide application
in several areas, such as chemistry, computer enginearthganputer science (Abreu (2005)).

We are motivated with the study of filters for GIP algorithmsee (2007) use as a filter the
usual one which is the vertices degree. Santos et al. (20&6¢pt two others different filters using
SGT concepts, proposing two theoretical results abouetfiksrs to isomorphism detection, which
are included in a tree-search GIP procedure, originatirgalorithm called SAGIP. However,
according to the results presented in that paper, the edgémvcomputing required to the use of the
proposed filters, using a available package of linear algéilonctions, increases significantly the
algorithm CPU time.

In this work, we propose an adaptation of a well known methothfthe literature for comput-
ing eigenvectors, called power method (Saad (1992)), ieraimimprove the CPU time spent by
the SAGIP algorithm proposed in Santos et al. (2010).

The following section introduces some concepts about sglegiaph theory. Section 3 explains
the original algorithm (SAGIP). In Section 4 an adaptatiorthie power method, as well as the
Adapted SAGIP are proposed. Section 5 contains some cotigmatresults and in Section 6 we
present the conclusions about this work.
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2 Some basic concepts of Spectral Graph Theory

In this section we present several definitions about SGTwhksupport some issues addressed
in this work. The definitions described here were extractethfAbreu et al. (2007), in which can
also be found the related mathematical proofs.

Let G = (V, E) be an undirected simple graph, withvertices andn edges. Thel,, ,, matrix
where the entry.,,, is 1 if (u,v) € E and isO otherwise is defined ajacency matrix of G.

For a graphGG with adjacency matrixd(G), thecharacteristic polynomial of G is defined as
pa(A) = det(A(G) — ), where the roof\ of the polynomial is calletigenvalueof G. As G
hasn vertices it also hag eigenvalues, the largest being calledex of the graph. Also, given a
nonzero vector such asd(G)v = Av is aneigenvectorassociated ta. The eigenvector associated
to the index is callediominant eigenvector

Thespectrumof G, denoted bypect(G), is defined as @ x d matrix, having in its first row the
d distinct eigenvalues arranged in descending order and seitond row their respective algebraic
multiplicities. Consequently, the first spectrum entryresponds td~ index, usually denoted by
Al.

Two graphg; andG- arecospectral graphsf their eigenvalues are the same, igect(G1) =
spect(Gs). From this definition we conclude that if two graphs are isgoh@ they are cospectral,
however the converse is not always true.

Consideringr the eigenvector associated to graph index, the companédstthe eigenvector
centrality of thei” vertex.

3 A Spectral Based Exact Algorithm for GIP

One of the Santos et al. (2010) motivations is the use of thgaléy concept as an additional
filter (asitis a graph invariant) in the detection of isontagographs, since results from the literature
state that two vertices of same degree in a graph may haveadtlisentrality values (Grassi et al.
(2007)). Thus, two theoretical results based on the pratiervof centrality in isomorphic graphs
have been proposed and proved in Santos (2010). The firsewengraphs associated to equal
eigenvector centralities with all components distincnireach other are isomorphic. The second
says that isomorphic graphs have proportional eigenveeoiralities. Both theorems are used as
filters in their algorithm, which contains three phases. Ha tirst phase the graphs eigenvector
centralities are computed. The purpose of computing thigemeectors is to gather the vertices in
groups of centrality, thus the associations are restritiaertices of the same group. Until in this
stage, the second result cited above is checked. In thed@t@mse, the first result is verified and
in the last, the centrality groups produced in phase 1 aré ase filter to the solution tree built
according to the exabtiacktrackingalgorithm presented in Lee (2007). When the tree searchiends
a leaf, a feasible association is found and the algorithris lsahcluding the graphs are isomorphic.
Otherwise, the solution tree search is exhausted endirfgeitrée root, no feasible association is
found and the algorithms halts concluding the graphs areseotorphic. The algorithm called
SAGIP (Spectral Algorithm for the Graph Isomorphism Pratlés reproduced in Algorithm 1.

4 Computing The Eigenvector Centrality

As seen in previous section the proposed algorithm buildexeassociation groups using their
eigenvector centralities. So a crucial issue is finding &inieft method to do that, i.e., to calculate
the dominant eigenvector of a graph adjacency matrix. Thinadeproposed here is an adapted
version of the power method (Saad (1992)) for graphs ad@cemtrices.

2634



‘Q XLIII Simpésio Brasileiro de PESQUISA OPERACIONAL

15a18
agosto de 2011
Ubatuba/SP

Algorithm 1: The Spectral Algorithm for the Graph Isomorphism Problem (SAGIP)
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Input: The adjacency matrice4(G) and A(G2) from graphsz; andGo
Output: true (if G; ~ G>) or false (otherwise)
begin
Compute the centrality eigenvectats, 22 of G1, G ; /1 Phase 1
Orderz! and#? components in ascending order
if 1 # kx?, k € R* then

| returnfalse
else
if #* = (a1, ..., 2},), such ast’, # 1,

G k=1,....,n,j#*kandi=1,2; /!l Phase 2

then

| returntrue
else

Executebacktrackingusing vertices grouped by centrality; // Phase 3
if found a feasible solution
then

| returntrue
else

| returnfalse

end

4.1 The Power Method

The power method is probably the simplest known iteratigemiector computing method. It
computes a sequence/ofd*v, vectors wherey is a nonzero initial vector and is an x n matrix.
Those vectors convergéo the eigenvector associated with the largest modulusieidiee? (Saad
(1992)). The power method algorithm is presented in Algoni2.

Algorithm 2: The Power Method.

Input: A: n x n matrix, vg initial solution
Output: \;: the eigenvaluey : the eigenvector

begin
for i<+ 1to kdo
wi = Avi_1 ; /1 product: n? floating operations
a; = max(wi) ; /1 find max: n floating conparisons
vi = Wi/ ; /1 normalization: n floating operations
A =g, /1 the eigenval ue
v = vy /1 the eigenvector
end

an

The normalization factow; is the component ofiv; _; of which has the maximum modulus.
The algorithm does not converge if the dominant eigenvaweinplex and both the original matrix

d the initial vector are real. At thé" iteration thev;, vector is generated as:

1givene >0, |k —vp—1] < €
2which is the graph indeX; if taken its adjacency matrix.
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Qg Qf Q1 a1 - 10

normalization factor

The Figure 1 exemplifies the computed sequence of vectors.

[011000] 1.0] [0.6671 [0.8577 [0.813] [0.842] [0.843]
101010 1.0 1.000 1.000 1.000 1.000 1.000
110100 1.0 1.000 0.857 1.000 0.921 0.967
001000(" [1.0 0.333 0.429 0.375 0421 ~~~ |0.414
010001 1.0 0.667 0.571 0.563 0.526 0.525

l000010| [1.0] [0.333] [0.286] [0.259] |0.237] 10.225 |

A Vo V1 V2 (OR3 V4 R Vk

Figure 1: An example of some of the power method iterations.

The normalization step is important because (a) it previsetsinlimited growth of the;; com-
ponents — reducing its maximum modulus component+tand (b) aftek iterationsq; converges
to the\; eigenvalue (Saad (1992)).

4.2 The Adapted Power Method

According to the conclusions presented in Santos et alQ)2@ie authors observed that one of
the principle bottlenecks of its algorithm CPU time is thgegivector computing required to the use
of filters. In that work, this computing is performed by fuiocis of CLAPACK, a C programming
language version of the LAPACK (Linear Algebra PACKageYadry of Fortran 77 subroutines for
solving most commonly occurring problems in numericaldinalgebra (Anderson et al. (1999)).

However, for the purpose of detecting graph isomorphismneed only the eigenvector as-
sociated to the graph inde¥, while the set of CLAPACK functions are prepared to calauliat
addition, several other informations related to the matp&ctrum.

Thus, some peculiarities of the graph adjacency matrix aedaIP will now be considered,
hence some optimizations will be formulated for the powethoeé previously presented.

4.2.1 Reducing The Number of Iterations

In section 3 we exposed that the objective of taking the eigetor centrality is to deter-
mine groups of vertices associated with each distinct vafueigenvector components, building
the groups of vertices candidates to map with the other graph

The greater the number of iterations of the power methodiibie accurate is the eigenvector
calculated. A first attempt to reduce the CPU time of the pawethod is to decrease its number
of iterations because it has been empirically observedhlesguitable number of iterations to build
a robust filter over non-regular graph is smaller than thawgfspecially for large/dense graphs.
For building this filter the eigenvector component values @ot relevant, the important issue is
if they are different or not from each other. It allow us toeimtpt the power method process of
convergence earlier as long as the same number of iteratienssed for both graphs.

Moreover it is not difficult to conclude that the componenitshe vectory; (resulting from the
the first iteration withvg = 1) correspond to the graph vertices degree. If they are afrkaown
we can use them as the initial vector, saving an iteratiogufféi 2).
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4.2.2 Skipping Normalization Step

Another optimization considered for the power method in@&iP context is to ignore the;
vector normalization step. This would saveru$loating point comparisons and floating point
operations on every iteration (see line 5 and 6 respectiviegorithm 2). It would even allow us
to use just integer values for the vectors and upon this, easier arithmetic operations.

The first consequence of this optimization is letting theectors components grow unlimited.
As seen in section 4.2.1 the number of iterations has beeifisantly reduced for the proposed
method. Therefore the growth of the vectors componentstig pooblem, at least for some quite
iterations. The other consequence is not computing the eigenvaluehvidicot a problem either
because the proposed GIP algorithm does not really neeceiticéiwe can substitute the original
method floating point vectors by integer vectors, since #tilyrepresent the eigenvector without
the normalization factor (Eq. 1). The Figure 2 shows an exarmpsome iterations without the
normalization step.

[011000] 1 2 6 13 [32]
101010 1 3 7 16 38
110100 1 3 6 16 35
001000 |1 1 3 6 16
010001 1 2 4 9 20
1000010] 1] 11 12 L4] L9

A 0 v V9 V3 Uy

Figure 2: An example of some of the modified power method titana.

4.2.3 Optimized Matrix-vector Product

The adjacency matrices of the graphs related to GIP areybmadefinition. It is possible
to consider these matrices always being sparse becauseyifith not (representing high density
graphs) the GIP may be applied on the complements of botthgrimstead. Thus, the matrix-
vector product can be optimized by using the graph adjacésicyepresentation in place of the
matrix itself. Doing it, the matrix-vector product can bengmuted withm operations instead of
n? (line 4 of Algorithm 2). Considering & = (V, E), for each vertew; € V, the adjacency list
structure is defined as a list of lists containing the vestiadjacent ta;. Figure 3 exemplifies the
technique. We can observe that for each line from the adigcertrix, the product operations are
performed only over its nonzero coefficients when considgtine adjacency list representation.

01 1000 V1 v + U3 {2,3} v vy + 3
101 010 () V1 + v3 + U5 {1,3,5} () V1 + v3 + U5
1101 00 vs|  |v1+v2+ g {1,2,4} U3 V1 + v + Vg
00100 0| | vs E) I B P e Vs
01 0001 Vs Vo + Vg {2, 6} Us V9 + Vg
00 0O010 Ve Vs {5} Ve Vs

(a) using standart matrix representation (b) using adjacency list representation

Figure 3: An example of a matrix-vector product.

Considering the modifications for Algorithm 2 proposed iisthection, the adapted power
method is presented in Algorithm 3. Tl operator means the product of the adjacency list by

3specially for modern architectures with 32 and 64 bits iateg
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the vector and the functionkgrees(G) andcountGroups(v) give, respectively, the degree vector
associated t6: and the number of different components of veator

Algorithm 3: The Adapted Power Method
Input: G = (V, E): graph (adjacency list structure)
Output: v: the non-converged centrality eigenvector
1 begin
vg = degrees(G);
ngroupsoklé—-count(?roups(voﬁ
vy =GO,
NGgrouPSpew countGroups(vl);
14— 2;
while ngroups,q < ngroupspey aNAngroups,ye, < |V| do
NGroupsid <— NGroupsnpew;
v; = G1 O
NGroupspey — countGroups(v;);
141+ 1;

© 00 N o o b~ WwDN

=
[

12 V= V;,
13 end

The algorithm initializes with the degree vector@fand its number of different components
(lines 2 and 3). Then this vector is iteratively modified Litite number of different components is
unchanged or equal t&| (lines 4 to 12).

In order to improve the SAGIP (Algorithm 1) CPU time its lin&2s substituted by Algorithm 3
originating the Adapted Spectral Algorithm for the Grapbn®rphism Problem (ASAGIP).

5 Computational Results

For the purpose of comparing ASAGIP performance with somi kmewn algorithms of the
literature for GIP resolution, we also executed computaticests for the algorithms SAGIP, Bliss,
Nauty and VF2.

All tests were performed on the same graph instances sefuSatos (2010), extracted from
the Graph Database CD available in SIVALab (2001). The giaptances set is composed by
3000 couples of randomly isomorphic connected graphs, divideo three edge density groups
n = 0.01, n = 0.05 andn = 0.1, respectively denoted by01, 005 andr01. Each group contains
100 pairs of graphs (instances) of siz& 40, 60, 80, 100, 200, 400, 600, 800 and 1000 vertices,
amounting1000 pairs of graphs in each group. According to the meaning,df » is the total
number of nodes of the graph, the number of its edges will tnmlempn[@]. However, if
this number is not sufficient to obtain a connected graph éitéeast n-1 edges), further edges are
suitably added until the graph being generated becomesct®th Besides these instances, a new
edge density group with = 0.5 was generated using the Nauty random graph generator téed ca
genrang We denoted this new group 5.

The proposed algorithm was implemented in C Programmingyuage. The SAGIP used the
functiondsyevr _ from CLAPACK 3.2.1 to calculate the eigenvector centralifor the experi-
mental tests Bliss and VF2 algorithms were extracted fromi@ 0.5.1 Library and Nauty 2.4 was
used. The functiomet ti meof day fromti me. h C library measured all the algorithms exe-
cution time. The tests were performed on a machine with @t€lore’™2 Duo E4500 2.20GHz
(2MB cache) processor and 2GB of RAM using Linux Ubuntu 1@®tkernel 2.6.32-30.
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The graphics presented in Figures 4, 5, 6 and 7 show the CP& dirarage over th&00
instances of each graph size in each density gréop, »005, 01 andd05 respectively, for the five
algorithms compared.

Observing the graphs from Figures 4, 5, 6 and 7, we can coac¢hat the optimizations pro-
posed here improved significantly the efficiency of the pomethod and, in all tests performed,
the ASAGIP algorithm obtained better results than SAGIPagiarage it i99% faster). In respect
to all algorithms compared, the ASAGIP also obtained begsults except by the Nauty Algorithm
on the graph instances grou@01. But even in this case the CPU times achieved were very closed

r001
10 T T
SAGIP —
ASAGIP -------
Nauty -------- :
Bliss —
1 / ]
0.1
2
o 0.01
£
=
—
0.001 g e
7/ U
e et R
1e-05
20 40 60 80 100 200 400 600 800 1000
Graph size
Figure 4: Result graphic for r001 class.
r005
10 . . q
SAGIP — ]
ASAGIP -------
Nauty -------- b
Bliss
1 VE -
0.1
=
o 0.01
£
'_
e N RS
0.001 T
0.0001 p— ——foooooo .~
1e-05
20 40 60 80 100 200 400 600 800 1000
Graph size

Figure 5: Result graphic for r005 class.
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Figure 6: Result graphic for rO1 class.
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Figure 7: Result graphic for dO5 class.
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6 Concluding Remarks and Future Work

In this work we proposed an adapted power method for comgditie graph eigenvector cen-
tralities as a filter to solve the graph isomorphism problénivas motivated by the bottleneck for
computing the eigenvector observed on the Spectral Alyorior GIP (SAGIP) proposed in San-
tos et al. (2010). Considering the problem in question sd\aatimizations were proposed for the
power method originating the Adapted Spectral AlgorithmGaoP (ASAGIP).

We concluded in this work that the proposed adaptationdéopbwer method are very efficient,
especially when the graphs becomes larger and denser i Vesis iterations is needed to classify
the vertices in different groups of centrality.

Another interesting conclusion is about the number of itens needed for the adapted power
method. For low density graphs(01) this number was relatively high (average4of iterations)
needing? iterations for some of the instances. However we observatttis number was much
smaller for denser graphs, e.g. for groupl the average iteration number wad, needing a
maximum of4 iterations for some of its instances.

As future work we intend to investigate the relation betwireneigenvector centralities and the
density of the graphs. It seems that vertices in larger andategraphs tend to have more distinct
eigenvector centralities. We also intend to study how ththotecould be applied to regular graphs
as well as optimized for sparse graphs.
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