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ABSTRACT 
The oil industry is increasingly interested in improving the planning of their operations 

due to the dynamic nature of this business. Decisions made at the oil chain differ in the activity 
range (spatial integration) and planning horizon (temporal integration). This paper purpose is to 
address the spatial integration under uncertainty in the oil chain at the tactical planning level and 
proposes a mathematical model to maximize the profit of this chain. The model is formulated as 
two-stage stochastic program, where uncertainty is incorporated in price and demand parameters. 
An industrial scale study from the Brazilian industry was conducted. The Expected Value of 
Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS) – 1.55% and 13.76% 
of the wait-and-see solution – indicated the benefit of incorporating uncertainty in the planning 
and demonstrates the effectiveness of the proposed approach. The centralized coordination 
(spatial integrated) provided a better utilization of the available resources. 

 

KEYWORDS. Two-stage stochastic optimization. Tactical planning. Oil chain.  

P&G –OR in the Oil & Gas area.  
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1. Introduction 

The uncertain nature and high economic incentives of the refining business are driving 
forces for improvements in the refinery planning process. This requires a high level of decision-
making not only on a single facility scale but also on an enterprise-wide scale (Chopra and 
Meindl, 2004). Planning for this kind of operation should be carried out centrally, thus allowing 
for proper integration among all operating facilities and, consequently, an efficient utilization of 
available resources (Al-Qahtani and Elkamel, 2008). Decisions made at the oil chain differ 
mainly in the range of activities coordinated in the supply chain (spatial integration) and in the 
coordination of decisions across different time scales (temporal integration). The understanding 
of such integration benefits has attracted attention in the research area of supply chain planning 
(Kogut and Kulatilaka, 1994; Huchzermeier and Cohen, 1996; Smith and McCardle, 1998; 
Harrison and Van Mieghem, 1999; Cachon, 2002). Planning is basically an activity in which 
production targets are set and market forecasts, resource availability, and inventories are 
considered. In general, planning is categorized into three time frames: strategic (long term), 
tactical (medium term), and operational (short term). Strategic planning determines the structure 
of the supply chain. Tactical planning is concerned with decisions such as the assignment of 
production targets to facilities and the transportation from facilities to distribution centers. On the 
other hand, operational planning determines the assignment of tasks to units at each facility, 
considering resource and time constraints (Maravelias and Sung, 2009). This paper covers the 
tactical planning level and addresses de problem of spatial integration at the oil chain.  

Although planning in the oil industry was traditionally developed with well established 
deterministic models, these models have been extended to include uncertainties in parameters. In 
fact, Ben-Tal and Nemirovski (2000) stress that optimal solutions of deterministic models may 
become infeasible even if the nominal data is only slightly perturbed. This idea is supported by 
Sen and Higle (1999), who affirmed that under uncertainty the deterministic formulation, in 
which uncertain random variables are replaced by their expected values, may not provide a 
solution that is feasible with respect to the random variables. Thus, uncertainties are inevitable in 
mathematical modeling and also in enforcing the planning model to realistic solutions.  

Uncertainties can be categorized as short-term, mid-term, or long-term. Short-term 
uncertainties refer to unforeseen factors in internal processes such as operational variations and 
equipment failures (Subrahmanyam et al., 1994). Alternatively, long-term uncertainties represent 
external factors, such as supply, demand, and price fluctuations, that impact the planning process 
over a long period of time. Mid-term uncertainties include both short-term and long-term 
uncertainties (Gupta and Maranas, 2003). Jonsbraten (1998) classified uncertainties as external 
(exogenous) uncertainties and internal (endogenous) uncertainties, according to the point-of-view 
of process operations. As indicated by the name, external uncertainties are exerted by outside 
factors that impact the process. On the other hand, internal uncertainties arise from deficiencies in 
the complete knowledge of the process. Thus, mid-term and long-term uncertainties can also be 
classified as external uncertainties, whereas short-term uncertainties are internal uncertainties. 

In regard of tactical models, Liu and Sahinidis (1996) developed a two-stage stochastic 
model and a fuzzy model for process planning under uncertainty. A method was proposed for 
comparing the two approaches. Overall, the comparison favored stochastic programming. 
Escudero et al. (1999) worked in the supply, transformation, and distribution planning problem 
that accounted for uncertainties in demands, supply costs, and product prices. As the 
deterministic treatment for the problem provided unsatisfactory results, they applied the two-
stage scenario analysis based on a partial recourse approach. Dempster et al. (2000) formulated 
the tactical planning problem for an oil consortium as a dynamic recourse problem. A 
deterministic multi-period linear model was used as basis for implementing the stochastic 
programming formulation. Hsieh and Chiang (2001) developed a manufacturing-to-sale planning 
system and adopted fuzzy theory for dealing with demand and cost uncertainties. Li et al. (2004) 
proposed a probabilistic programming model to deal with demand and supply uncertainties in the 
tactical problem. Kim et al. (2008) worked on the collaboration among refineries manufacturing 
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multiple fuel products at different locations. Khor et al. (2008) treated the problem of medium-
term planning of a refinery operation by using stochastic programming (a two-stage model) and 
stochastic robust programming. Al-Othman et al. (2008) have proposed a two-stage stochastic 
model for multiple time periods to optimize the supply chain of an oil company installed in a 
country that produces crude oil. Finally, Guyonnet et al. (2009) considered oil uploading and 
product distribution problems in their tactical formulation. Despite of these significant 
contributions, only four (4) of these nine (9) works represent actual applications and most of 
them still present very simplified models that exclude important aspects of a real refinery 
operation, such as constraints for the specification of final products.  

Therefore, the refinery tactical planning problem under uncertainty is still an open 
issue, which is relevant for both mathematical modeling and actual applications. In this context, 
the main contribution of this work is to tackle an important topic from both theory and practice 
stand points, investigating the spatial integration of the oil supply chain through a two-stage 
stochastic model characterized by price and demand uncertainties. The purpose of the present 
paper is, then, to address the problem of integration and coordination under uncertainty in the oil 
supply chain at the tactical level. A tactical programming model is proposed with the objective of 
maximizing the expected total profit over a given time horizon. Uncertainties in demand for 
refined products, oil prices, and product prices (exogenous uncertainty factors) account for 
economic risk at the tactical level. The problem has been formulated as two-stage stochastic 
linear program with a finite number of realizations. In this approach, decision variables are cast 
into two groups, first and second stage variables (Dantzig, 1955). The first stage variables are 
decided prior to the actual realization of the random parameters. Once the uncertain events have 
unfolded, further operational adjustments can be made through values of the second stage.  

The remainder of this paper is organized as follows. An overview of the refining 
industry is presented in section 2. Section 3 presents the tactical model for oil chain planning 
under uncertainty. Section 4 offers results and discussions in the context of a case study using 
real data from the Brazilian oil industry. Finally, some conclusions are drawn in section 5. 

2. Refining Industry Overview 

The oil chain covers stages from oil exploitation to product distribution including a 
complex logistic network and several transformation processes that take place in refineries. The 
petroleum supply chain is illustrated in Figure 1. The activities that comprise the oil chain are 
divided into three major segments: upstream, midstream, and downstream. The upstream segment 
includes the exploitation and oil production. The midstream is an intermediate segment and 
consists of the refining activity which includes the transportation of oil from the production site 
to refineries. The logistical tasks necessary to move the refined products from the refinery to the 
consumer points are in the downstream segment. 

Petroleum may be produced in exploitation fields of the company itself or be supplied 
from international sources. The domestic oil is sent by pipeline or oil tankers to terminals from 
where the oil meets the demand of the refineries or is exported. Crude oil obtained from 
international sources is transported by pipeline or oil tankers to the terminals. The domestic 
terminals are in charge of receiving and forwarding oils and refined products, whereas 
international terminals represent points of offer and demand for foreign oils and products. The oil 
terminals are then connected to refineries through a pipeline network. Crude oil is converted to 
refined products at refineries which can be connected to each other in order to take advantage of 
each refinery design within the network. A planning model for oil refineries must allow for the 
proper selection of oil blending and consider an appropriate manipulation of intermediary streams 
to obtain the final products in the desired quantities and qualities. The refined products can be 
moved along the logistic network by road, water, rail, and pipeline modes. Crude oil and refined 
products are often transported to distribution centers through pipelines. From this level on, 
products can be transported either through pipelines or trucks, depending on consumer demand 
points. In some cases, products are also transported through vessels or by train.  
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Figure 1. Oil supply chain (adapted from Ribas et al., 2010) 

 
As a result of the complexity of the oil chain, planning of the oil chain must be aided by 

decision-making systems, especially those that employ mathematical programming – for 
example, RPMS - Refinery and Petrochemical Modeling System (Bonner and Moore, 1979), 
OMEGA - Optimization Method for the Estimation of Gasoline Attributes (Dewitt et al., 1989), 
and PIMS - Process Industry Modeling System (Bechtel, 1993). In this way, mathematical 
programming plays a crucial role to assist the decision-making process in the oil supply chain. 

3. Tactical Planning of the Oil Supply Chain under Uncertainty 

The tactical planning model proposed in this paper maximizes the total revenue of the 
supply chain allocating the production of the different products to the various refineries in each 
time period, while taking into account inventory holding costs and transportation costs. The 
optimization model is based on a scenario analysis approach, and is linear. Following Pongsakdi 
et al. (2006), many nonlinear features were simplified in order to gain computation speed, which 
allows the decision-maker to better explore the uncertainty issues in the model.  

The associated prices, costs, and demands are assumed to be externally imposed in the 
planning. The modeling considers a fixed market, i.e. the model ensures the total fulfillment of 
the market demand. It is assumed that the physical settings in the supply chain have already been 
established, the configuration of the chain is given, and the number of facilities at each stage is 
known. It is also assumed a discrete planning horizon divided into a finite number of periods. The 
models have been formulated as two-stage stochastic programs with fixed recourse (Dantzig, 
1955). Uncertainties are discretely represented by SC possible realization scenarios and modeled 
as a scenario tree. A scenario is a path from the root to a leaf of the tree. The probability that the 

sc-th scenario will occur is represented by psc (
1

0, 1
SC

sc sc

sc

p p

=

≥ =∑ , sc SC∈ ). Based on these 

assumptions, the stochastic models this paper proposes can be represented as follows: 

( ) T T

sc sc sc
x

sc SC

Max z x c x p q y
∈

 
= + 

 
∑  subject to Ax b≤ ,  

sc scWy h Tx≤ − , 0x ≥ , 0 scy ≥ sc SC∈  

(1) 

First-stage decisions are assumed to be made before the realization of random variables 
(here-and-now decisions), represented by a vector x, while second-stage decisions, denoted by 

scy , are made under complete information about the realization of sc . 
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The objective function in Equation (1) contains a deterministic term Tc x , which 
models the oil purchase decisions concerned with oil supply by long-term contracts. The second 

term of Equation (1) contains the expected value of the second-stage objective 
T

sc sc sc

sc SC

p q y
∈

∑   

which models the stochastic operational profit due to the first-stage decision.  A set of 

deterministic inequalities ( Ax b≤ ) is used to model decisions related to oil purchase. Stochastic 

constraints ( sc scWy h Tx≤ − ) are used to represent refinery operation and to model all operative 

relations between the inputs (or different petroleum types) and the outputs (or final products) and 
the necessary network flows through the installed transportation network. Uncertainty is 
introduced through the product prices, oil prices, and market demand for final products.  

In order to properly evaluate the added-value of including uncertainty in the problem 
parameters, the models can be evaluated using the Expected Value of Perfect Information (EVPI) 
and the Value of the Stochastic Solution (VSS) (Birge and Louveaux, 1997). The EVPI measures 
the loss of profit due to the presence of uncertainty which is also the measure of the maximum 
amount the decision maker is willing to pay in order to get accurate information on the future. As 
stated by the constraint (2), the EVPI results show the expected profit difference between the 
solution obtained by the agent able to make the perfect prediction (wait-and-see - WS) and the 
one obtained by the agent that solved the problem under uncertainty (recourse problem - RP).  

EVPI WS RP= −  (2) 

A solution based on perfect information would yield optimal first stage decisions for 
each realization of the random parameters (Madansky, 1960). So, assuming that the uncertainty is 

represented by a finite number of scenarios and that ζ is a random variable set of scenarios, the 

problem associated with each scenario of ξ  can be defined as: 

( ) { }
}{

, max | , 0

        : , 0

T T

x
Max z x c x q y Wy h Tx y

X x Ax b x

ξ = + ≤ − ≥

= ≤ ≥
 (3) 

 

It is assumed that for all ξ  there is at least one feasible solution nx R∈ . Let ( )*
x ξ  an 

optimal solution to the problem (3) and ( )( )* ,z x ξ ξ  the optimal objective function value for a 

scenario ξ . The wait-and-see solution corresponds to the optimal value when the future 

realization of ξ  is known, i.e., the decision maker can wait and see the future before deciding. 

The expected value of the wait-and-see solution is: 

( ) ( )( )*max , ,
x X

WS E z x E z xξ ξξ ξ ξ
∈

   = =   
 (4) 

 
The recourse problem (RP) solution is also known as here-and-now decision, because 

the solution the first stage is decided without knowing the future realization of ξ , i.e., at the 

decision epoch the future scenario is known only probabilistically. So, the RP corresponds to the 
two-stage problem defined by the model (1) and can be written as: 

( ) ( )( )*max , ,
x X

WS E z x E z xξ ξξ ξ ξ
∈

   = =   
 (5) 

The VSS, on the other hand, is defined by the difference between the stochastic solution 
(RP) and the average solution of the expected value problem (replacing the random events by 
their means - EEV) - constraint (6). The VSS can be interpreted either as the benefit expected by 
the agent that has taken uncertainty into account or as the loss expected by the agent that opted 
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for deterministic modeling using the average stochastic parameters ( [ ]E ξ ξ=  ). 

VSS RP EEV= −  (6) 

 
In order to quantify the VSS, first it is necessary to calculate the expected value 

solution (EV) which is defined by the solution of the problem to the expected scenario (expected 

value of ξ ). Let  [ ]Eξ ξ=  and ( )*x ξ  the optimal solution to EV, so:  

( )max ,
x

EV z x ξ=  (7) 

 
Then by fixing the first stage variables from the EV problem, the expectation of EV 

(EEV) can be obtained by allowing the optimization problem to choose the second stage 
variables with respect to different realizations:  

( )( )* ,EEV E z xξ ξ ξ =   
 (8) 

 
The model formulation proposed in this work is presented in the next section. 

3.1. Tactical planning model 

This section presents the stochastic formulation for tactical planning of oil refineries. 
This formulation is adapted from the model proposed by Ribas et al. (2010) by excluding all 
elements related to investment decisions which must only be considered in a strategic planning 
model. The proposed linear programming model aims to maximize the expected profit of the oil 
chain and consider the following factors that affect the domestic supply: configuration of refining 
park; refinery operations and transportation costs; import of oil; import and export of refined 
products; requirements for refined products defined by regulatory organizations; production of 
crude oil; domestic consumption of refined products; and prices of oil and refined. 

The model decisions on oil refining determines the oil blending to each refinery, the 
production level at each process unit, and the operational mode  for each unit at each period to 
meet the demand and respect the quality standards on the refined products. An operational mode 
is characterized by a set of operation patterns to prioritize the production of a specific product set. 
With respect to the logistic network, the model must define the minimum cost flow combination 
for the refinery supply and the refined products distribution. Definitions of parameters, sets, and 
variables are provided in Tables 1 and 2 which are followed by mathematical formulation.  

 

 
Table 1. Parameters of the tactical model 

Operational cost Oil field production

Transportation capacity Own consumption

Transportation cost Minimum proportion

Distillation unit yield Maximum proportion

Process unit yield Oil price - internal distribution

Minimum capacity

Maximum capacity Probability of scenario sc
t 

Sulfur quantity - entry product Domestic product demand

Maximum sulphur Product price - domestic market

Viscosity blending index Product export price

Minimum viscosity Product import price

Oil import price

Parameters

Stochastic parameters

,

,

tn sc

in poPPE
,

,

tn sc

in po
PPI

,

,

tn sc

in oOPI

,

n

r uOC

atCT

at
TC

, , , ,r u c o poYDU

, , , ,r u c p i poY P U

,
,

tn sc

b poPPBR

, , ,

n

r u pi cPRPL

,r uUCL

,r uUCU
n

pi
SIO

n

poSPOU
n

pB I
n

po
VPOL

,

,

t
n sc

b poPD

t
scP

1,

n

i oFP

, ,r u po
CP

, , ,

n

r u pi c
PRPU

,

n

r oOPBR
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Table 2. Sets and variables of the tactical model 

Set of nodes  (i1, i2) I

Set of process units (u, u') U Oil purchase

Set of operational modes (c) C

Set of products (pi, po) PR Blending

Set of oils (o) O Distillation unit load

Set of transport modes (m) M Other process unit load

Set of transport arcs (at) AT Oil import

Time periods {n  | n  = 1,..., NT } N Product export

Set of tactical scenarios (sc
t
) SC

t
Product import

Refinery (r) R        I Transported flow - entering the refinery

Natural gas producers (ng) NG        I Oil flow

International nodes  (in) IN        I Transported flow - leaving the refinery

Terminals  (tr) TR        I Product flow

Bases (b) B        I Stock level of oil o  at refinery r 

Oil Field (of) OF        I

Transportation arcs available for

transportation of po from i1 to i2

by the mode m

ATA      AT

Sets Variables

First stage variables

Second stage variables

⊂

⊂

⊂

⊂

⊂

⊂

⊂

,

, ,

t
n sc

r pi po
b

,

, , ,

tn sc

r u c o
qdu

,

, , ,

tn sc

r u c piqpu
,

,

tn sc

in ooimp
,

,

t
n sc

in popexp
,

,

t
n sc

in popimp
,

,

t
n sc

r poir
,

,

t
n sc

at oot
,

,

t
n sc

r po
or

,

,

t
n sc

at po
pt

,
n

r oqocf

,
,

tn sc
r ovot

 
 

Model Formulation 

 

( )

( )

( )

( )

, ,

, ,

, ,

, , , ,

, , , ,

, ,

, ,

t t t

t t

t t t t

t t

n n

r o r o

r R o O n N

sc n sc n sc

b po b po

b B po P n Nsc SC

n sc n sc n sc n sc

in po in po in po in po

n N in I po P

n sc n sc

in o in o

n in I o O

Maximize

OPBR qocf

P PPBR PD

PPE pexp PPI pimp

TM
OPI oimp

∈ ∈ ∈

∈ ∈ ∈∈

∈ ∈ ∈

∈ ∈ ∈

−


+ 



+ −

=
−

∑∑∑

∑ ∑∑ ∑

∑∑ ∑

∑∑

, ,

, , , , , , , ,

, ,

, ,

t t

t t

N

n n sc n n sc

r u r u o c r u r u pi c

n N r R u U o O c C n N r R u U pi P c C

n sc n sc

at po at at o at

at AT n N po P at AT n N o O

OC qdu OC qpu

pt TC ot TC

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

 
 
 
 
 
 
 
 
 
 
 
    − −       
 

 
− − 

 

∑

∑∑∑ ∑∑ ∑∑∑ ∑∑

∑ ∑ ∑ ∑ ∑∑ 

 

(9) 

Refining balance 

( )1, , ,
, , , , , ,

t t t
n n sc n sc n sc

r o r o r u c o r o

u U c C

qocf vot qdu vot−

∈ ∈

+ = +∑∑    , , ,
t t

r R o O n N sc SC∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

 
(10) 

, , ,

, , , , , , , , , , , , , , , ,

, , , ,

, , , , , , , , , , ,

t t t

t t t t

n sc n sc n sc

r u c o r u c o po r u c pi r u c pi po r pi po

u U c C o O u U c C pi P pi P

n sc n sc n sc n sc

r po r po pi r u c po r u c pi r u po

pi P u U c C u U c C pi P

qdu YDU qpu YPU b

ir b qpu qpu CP or

∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

+ +

+ = + + +

∑∑∑ ∑∑∑ ∑

∑ ∑∑ ∑∑∑ ,

,

tn sc

r po

 

                                                                                   , , ,
t t

r R po PR n N sc SC∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  

(11) 

Refining operation constraints 
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, , ,

, , , , , , , , , , , , , , ,

t t tn n sc n sc n n sc

r u pi c r u pi c r u pi c r u pi c r u pi c

pi P pi P

PRPL qpu qpu PRPU qpu
∈ ∈

≤ ≤∑ ∑    

                                                            , , , , ,
t t

r R u U pi PR c C n N sc SC∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

 

(12) 

, ,

, , , , , , , ,

t tn sc n sc

r u r u o c r u pi c r u

o O c C pi P c C

UCL qdu qpu UCU
∈ ∈ ∈ ∈

≤ + ≤∑∑ ∑∑ , , ,
t t

r R u U n N sc SC∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  

                                                                                                                                                                                  

(13) 

Environmental legislation requirements 

, ,

, , , , , , , , , , , , , ,

t t
n sc n n sc n

r u c pi pi r u c pi po r u c pi r u c pi po po

u U pi P c C u U c C pi P

qpu SIO YPU qpu YPU SPOU
∈ ∈ ∈ ∈ ∈ ∈

 
≤  
 

∑∑∑ ∑∑∑    

                                                                                   , , ,
t t

r R po PR n N sc SC∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

 

(14) 

( ), , ,

, , , , , , , , , , , , , , , ,

, , ,

, , , , , , , , , , , ,

t t t

t t

n sc n n sc n sc n

r pi po pi r u c o r u c o po r u c pi r u c pi po po

pi P u U c C o O u U c C pi P

n n sc n sc n

po r pi po r u c o r u c o po r u c pi

pi P u U c C o O

b BI qdu YDU qpu YPU BI

VPOL b qdu YDU qpu

∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

 
+ + 
 

≤ + +

∑ ∑∑∑ ∑∑∑

∑ ∑∑∑ , , , ,

t
sc

r u c pi po

u U c C pi P

YPU
∈ ∈ ∈

 
 
 

∑∑∑

 

                                                                                , , ,
t t

r R po PR n N sc SC∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                                                                                 

(15) 

Logistic balance 

( ) ( )

, , , , ,

, 1, 1, , 1,

, 2, , 2,

                                                                      1 , , ,

t t t t tn sc n sc n sc n sc n sc

at po i po i po at po i po

at i m ATA at i m ATA

t t
i R TR OF po PR n N

pt or PD pt ir

sc SC

∈ ∈

∀ ∈ ∀ ∈ ∀ ∈ ∀

+ = + +

∈

∑ ∑

U U

 (16) 

( ) ( )

, ,

, 1, 1, ,

, 2, , 2,

 

                                                                        1 , , ,   

t t
n sc n n n sc

at o i o i o at o

at i m ATA at i m ATA

t t
i R B TR NG OF o O n N

ot FP qocf ot

sc SC

∈ ∈
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+ = +

∈

∑ ∑

U U U U

                                                                                            (17) 

Logistic capacity constraints 
, ,

, ,

t tn sc n sc

at po at o at

po P o O

pt ot CT
∈ ∈

+ ≤∑ ∑                            , ,
t t

at AT n N sc SC∀ ∈ ∀ ∈ ∀ ∈  
(18) 

, , , , , , , , , ,
, , , , , , , , , , , , , , , ,, , , , , , , , , ,

t t t t t t t t t t
n n sc n sc n sc n sc n sc n sc n sc n sc n sc n sc

r o r pi po r u c o r u c po in o in po in po r po at o r po at poqocf b dfr pfr oimp pexp pimp ir ot or pt +∈ℜ                                                                                             (19) 

 
The objective function (9) maximizes the expected tactical margin. This margin 

includes the revenue from the product sales and the product exports, minus the raw material 
costs, the oil and product imports, the refining operation costs, and the transportation costs. The 

oil purchase ( ,

n

r oqocf ) represents the first stage decisions. The second-stage decisions are the 

amount of product and oil transported ( ,

,

tn sc

at popt  and ,
,

t
n sc

at oot ), the amount of oil imported 

( ,

,

tn sc

in ooimp ), and the amount of imported product and exported product ( ,

,

t
n sc

in po
pimp  and 

,

,

tn sc

in po
pexp ). 

Equation (10) and (11) represent the oil balance and the product balance, respectively. 
For them, the sum of the entry flows must be equal to the sum of the output flows. Equation (12) 
establishes the proportion between the entry flows (pi) and the total process unit (u) loading. The 
maximum and minimum capacities of the process unit u in period n are limited by equation (13). 

Equations (14) and (15) limit the sulfur content (
n

piSIO ) and the viscosity (
n

piBI ) of the 

final products. Final product properties must be within a range established by environmental 
regulations. Property calculations yield a set of nonlinear constraints (Moro and Pinto, 2004) 
where the nonlinear terms arise from the multiplication between the products’ properties and their 
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volumes. These terms can be linearized by estimating the properties of intermediate products. At 
the tactical level it is possible to estimate the sulfur content SIOpi,n and the viscosity BIpi,n of the 
intermediate products with sufficient accuracy, making the constraint that controls the final 
products’ properties linear. The tactical model controls only these two properties because they are 
the ones that affect most tactical decisions such as oil purchase and oil blending.   

Logistic balance constraints (equations 16 and 17) determine that the sum of the input 
flows must be equal to the sum of the output flows for each node (i), product (po) or oil (o), 
period of time (n) and scenario (sc

t). ATA represents the set of transportation arcs (at) for a 
product (po) from an origin node (i1) to a destination node (i2) by a transportation mode (m). 
Equation (18) limits the maximum volume transported by the transportation arc (at) in the period 
n. Finally, constraints (19) define the non-negativity of the variables. 

4. Numerical Example 

An industrial scale study using real data from the Brazilian industry was used to 
evaluate the performance of the proposed model in optimizing large-scale problems. The refining 
system includes 3 refineries (named R1, R2, and R3) and represents a general system that can be 
found in many industrial sites around the world. The refineries are coordinated centrally, the 
feedstock oil supply is shared, and the refineries collaborate to meet a given market demand. The 
refineries are supplied by 8 groups of national oils produced in 2 exploitation fields, and 1 group 
of foreign oils. The refineries process up to 50 intermediate products to produce 10 final products 
associated to the local market demand. The logistic network includes 2 domestic and 4 
international terminals, 2 distribution bases, and 73 transportation arcs relative to road, water, 
rail, and pipeline modes. The time horizon in the tactical level covers 6 monthly periods.  

R1 is a small and low complex refinery which focuses on the production of lubricants, 
asphalt, and fuel oils. This refinery is supplied by 1 group of oil (group A). R2 can also be 
considered a low complexity refinery that aims at the production of solvents and fuels and 
processes 3 groups of oils (groups C, D, and E). Finally, R3 is a medium complexity refinery and 
processes 7 groups of oils (groups A, B, C, E, F, G, and H) with the focus on the production of 
naphtha, but also has significant production of jet fuel, diesel, and gasoline.  

The method used to create the scenarios of the stochastic model was based on data 
collection and direct contraposition of primary (data obtained from the oil Brazilian oil industry) 
and secondary research (historical economic data available online). Developing methodologies 
for scenario generation is beyond the scope of this paper, and the interested reader can refer to the 
work by Kouwenberg (2001), for example.  As it is essential to test the proposed models, the 
scenario generation with the associated probabilities was arbitrated in consistency with the real 
problem and validated with experts of the oil industry. Table 3 shows the probability of each 
possible realization of the stochastic uncertainty.  The demand for refined products, oil prices, 
and product prices are mid-term uncertainties which are considered in the tactical planning. 

 
Table 3.  Probabilities of the stochastic parameters 

Model Stochastic Parameter Realizations Probability 

Tactical 

Demand 
High 25% 

Base 50% 

Low 25% 

Price 

High 25% 

Base 50% 

Low 25% 
 
Each stochastic parameter at the tactical level (price and demand) has three possible 

realizations (high, medium, and low). Assuming that the random variables are independent, these 
two parameters were combined to create the nine scenarios presented in Figure 2. For a given 
stochastic parameter, it is assumed complete dependence for all products - for example, one 
scenario of high demand for one product implies in high demand to the other products. Similar 

2266



pattern is presented to oil and product prices. The base case (scenario 5) used data from the 
current planning system of Brazilian refineries. This system addresses only a deterministic case 
which was used to generate the base case. The other scenarios were constructed based on the 
expertise of employees of the industry under study. 

 

 

Low 

High 

Base 

Low 

High 

Base 

Low 

High 

Base High

Low

Base

1  6,25%         

2 12,5% 

3 6,25%         

4 12,5% 

5 25,0% 

6 12,5% 

7 6,25%         

8 12,5% 

9 6,25%         

        Demand                                   Price            Scenarios    Probabilities 

 
Figure 2. Scenario tree 

 

4.1. Computational results and discussion 

The model was implemented in the Advanced Integrated Multidimensional Modeling 
Software – AIMMS and solved using the CPLEX 12.1. Table 4 summarizes the model statistics: 

 
Table 4.  Model Statistics 

#Variables #Constraints #Non zeros Solving time (s) E[margin] (million $) 
96,899 119,105 218,286 0.78 707.9 

 
As shown in Figure 3a, the best results for the model were found in the scenarios with 

high prices. This finding indicates the model’s sensitivity to the uncertain parameters and that the 
prices uncertainty had a greater impact on total profit than the demands uncertainty had. 
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Figure 3a. Tactical margin solutions by scenarios 
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Figure 3b. Tactical oil purchase decisions 

Figure 3. Tactical model solutions 
 

 
The tactical oil purchase decisions for the 6 periods of planning (n), defined by the first 

stage variable ,

n

r oqocf , are presented at Figure 3b. The legend represents the refinery/ group of oil 

allocated to the refinery. Refinery R3 is responsible by 83.90% of the total oil purchases 
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presented in Figure 4. Two groups of oils are allocated to R3. This refinery processes the entire 
amount available of the oil F and completes the maximum capacity level with oil (H). In addition, 
13.76% of total oil quantity is allocated to the oil family C at refinery R2. Finally, the tactical 
model attributes the last 2.34% of oil to the family A for the lubricant production at R1.  

In this numerical study, the EVPI reached a maximum of 1.55% of the wait-and-see 
(WS) solution – 11.16 million $. The EVPI result shows the difference between the solution of 
the problem in which the oil purchase decisions are postponed until that the uncertainty is 
unfolded (WS) and the solution of the stochastic problem (recourse problem - RP). The lower the 
EVPI, the better the stochastic models accommodate uncertainties as the stochastic objective 
function value was not so far from the result obtained by the WS solution. So, the result indicates 
the benefit of incorporating uncertainty in the different model parameters of the oil chain. 
However, since acquiring perfect information is not viable, the value of the stochastic solution 
(VSS) can be considered as a more realistic result. The VSS result, 98.95 million $ (13.76% of 
the WS solution), shows that the stochastic model provided a good solution, as an expressive gain 
was obtained by the inclusion of uncertainty into the problem. 

5. Conclusions 

The purpose of this paper was to discuss the problem of spatial integration and 
coordination in the tactical planning level of the oil chain. A stochastic mathematical 
programming model was developed to improve the tactical planning of oil refineries considering 
uncertainties in demand and prices. The model was applied to an actual refining system in Brazil. 
The values obtained for the Expected Value of Perfect Information (EVPI) and the Value of the 
Stochastic Solution (VSS) – 1.55% and 13.76% of the wait-and-see solution, respectively – 
indicated the benefit of incorporating uncertainty in the dominant random parameters of the 
tactical planning. The optimization results are suitable to the real planning activities of the oil 
chain. The centralized coordination (spatial integrated) and the shared feedstock oil supply 
provided a better utilization of the available resources in meeting a given market demand. 
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