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Abstract

In a recent paper, Birgin, Floudas and Maez introduced a novel Augmented Lagrangian
method for global optimization. In their approach, Augmented Lagrangian subproblems are
solved using theBB method and convergence to global minimizers was obtained assuming
feasibility of the original problem. In the present research, the algorithm mentioned above will
be improved in several crucial aspects. On one hand, feasibility of the problem will not be re-
quired. Possible infeasibility will be detected in finite time by the new algorithms and optimal
infeasibility results will be proved. On the other hand, finite termination results that guarantee
optimality and/or feasibility up to any required precision will be provided.

Key words: deterministic global optimization, Augmented Lagrangians, nonlinear program-
ming.
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1 Introduction

Marny practical models require to solve global optimization problems involving continuous func-
tions and constraints. Algorithms for solving non-trivial optimization problems are always iterative.
Sometimes, for practical purposes, one only needs optimality properties at the limit points. In many
other cases, one wishes to find an itesdtor which it can be proved that feasibility and optimality

hold up to some previously established precision. Moreover, in the case that no feasible point exists,
a certificate of infeasibility could also be required. In simple-constrained cases, several well-known
algorithms accomplish that purpose. This is the case o8B algorithm Adjiman et al. (1996,
1998a,b), Androulakis et al. (1995), that has been used in Birgin et al. (2010) as subproblem solver
in the context of an Augmented Lagrangian method.

The numerical algorithm introduced in Birgin et al. (2010) for constrained global optimization
was based on the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian approach. An im-
plementation in which subproblems were solved by means af Bi# method was described and
tested in Birgin et al. (2010). The convergence theory assumed that the nonlinear programming
problem is feasible and it was proved that limit points of sequences generated by the algorithm are
e-global minimizers, whereis a given positive tolerance. However, a test for verifygngptimality
at an iteratex was not provided. As a consequence, the stopping criterion employed in the numeri-
cal implementation was not directly related wétoptimality and relied on heuristic considerations.
This gap will be closed in the present paper. On one hand, we will not restrict the range of appli-
cations to feasible problems. Infeasible cases may also be handled by the methods analyzed in our
present contribution, where we will prove that possible infeasibility can be detected in finite time
by means of a computable test. On the other hand, we will introduce a practical stopping criterion
that guarantees that, at the approximate solution provided by the algorithm, feasibility holds up to
some prescribed tolerance and the objective function value is the optimal one up to toferance

Global optimization theory also clarifies practical algorithmic properties of “local” optimiza-
tion algorithms, which use to converge quickly to stationary points. We recall that the Augmented
Lagrangian methodology based on the PHR approach has been successfully used for defining prac-
tical nonlinear programming algorithms Andreani et al. (2007, 2008), Birgin et al. (2005), Conn
et al. (2000). In the local optimization field, which requires near-stationarity (instead of near global
optimality) at subproblems, convergence to KKT points was proved using the Constant Positive
Linear Dependence constraint qualification Andreani et al. (2005). Convergence results involving
sequential optimality conditions that do not need constraint qualifications at all were presented in
Andreani et al. (2010, 2011).

The Algencan code, available waw. i ne. usp. br/ ~egbi rgi n/ and based on the theory pre-
sented in Andreani et al. (2007), has been improved several times in the last few years and, in
practice, has been shown to converge to global minimizers more frequently than other Nonlinear
Programming solvers. There exist many global optimization techniques for nonlinear program-
ming. The main appeal of the Augmented Lagrangian approach in this context is that the structure
of this method makes it possible to take advantage of global optimization algorithms for simpler
problems. In Birgin et al. (2010) and the present paper we exploit the abiliyB&f for solving
linearly constrained global optimization problems, which has been corroborated in many applied
papers. In order to take advantage of tH&B potentialities, Augmented Lagrangian subproblems
are “over-restricted” by means of linear constraints that simplify subproblem resolutions and do not
affect successful search of global minimizers. Because of the necessity of dealing with infeasible
problems, the definition of the additional constraints has been modified in the present contribution
with respect to the one given in Birgin et al. (2010).

Notation. If ve R", v= (vi,...,vy), we denotev; = (max{Oyvi},...,max{0O,vy}). If K=
(ki,k2,...) € N (with k; < kj41 for all j), we denoteK CN. The symbol| - || will denote the
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Euclidian norm.

2 Algorithm

The problem considered in this paper is:

Minimize f(x)
subject to h(x)
9(x)

xeQ,

0
0 (1)

X
X

IA

whereh: R"— R™ g: R"— RP, f : R" — Rare continuous an@ C R" is compact. In generaf
is defined by “easy” constraints such as linear constraints and box constraints. Since all the iterates
x€ generated by our methods will belong@ the constraints related with this set may be called
“non-relaxable” in the sense of Audet and Dennis (2009).

The Augmented Lagrangian function will be defined by:

Lo(x A ) = F(x) + g{i_i o+ Ap‘r+i [max(o,gi<x>+‘;)]z} @

forallxe Q,p>0A € R™ pecR".

At each (outer) iteration, the algorithm considered in this section minimizes the Augmented
Lagrangian, with precisiorg, on the seQ N R, wherePx C R" is built in order to facilitate the
work of a subproblem solver likeBB. The assumptions required for the toleran¢ag and the
auxiliary sets{R} are given below.

Assumption Al. The sequence of positive tolerandeg} is bounded.

Assumption A2. The set$ are closed and the set of global minimizers of (1) is containdg in
forallk € N.

The sequencéex} may be defined in an external or an internal way, in different implementa-
tions. In the external case, the sequence is given as a parameter of the algorithm. If one decides for
an internal definition, each tolerangg ; is defined only after the computation xf as a result of
the process evolution. Except in the case that one of thelsets, is found to be empty, we will
consider that the algorithm defined here generates an infinite seq{»énhand we will prove the-
oretical properties of this sequence. Later, we will see that the generated sequence may be stopped
satisfying stopping criteria that guarantee feasibility and optimality, or, perhaps, infeasibility. Ob-
serve that the existence of global minimizers is not guaranteed at all, since the feasible set could
be empty. In this case Assumption A2 is trivially satisfied. In Birgin et al. (2010) the existence of
a global minimizer was an assumption on the problem and theéPgetere assumed to contain at
least one global minimizer.

Algorithm 2.1

Let Amin < Amax Hmax > 0,¥> 1, 0< 1 < 1. LetAl € Amin,Amax,i = 1,...,m, 1! € [0, max,i =
1,...,p,andpy > 0. Initializek + 1.

Step 1.1 If QNP is found to be empty, stop the execution of the algorithm.
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Step 1.2 Findx€ € Q NP suchthat:
ka(xkaAkaHk) < ka(XaAkaHk) + & 3)
forallxe QNPFx.
Step 2. Define
VK = min{ —gi(xk),“‘k},i =1,...,p.
Pk

Ifk=1or
max{||n&<)[eo, [V¥[leo} < T max{||nE ) [, [VE oo}, (4)

definepy:1 = pk. Otherwise, defin@y;1 = Ypk-

Step 3. ComputeA** € Amin, Amax,i = 1,...,mand* € [0,umad,i = 1,...,p. Setk « k+1
and go to Step 1.

Algorithm 2.1 has been presented above without a stopping criterion, except in the case in which
emptiness of2 N P is detected. Therefore, in this ideal form, the algorithm generally generates an
infinite sequence. The solvability of the subproblems (3) is guarante€diP is a bounded
polytope, employing global optimization algorithmsceB3B.

Although infinite-sequence properties do not satisfy our requirements of getting feasibility and
optimality certificates in finite time, results concerning the behavior of the infinite sequence poten-
tially generated by the algorithm help to understand its practical properties.

Theorem 2.1.Assume thafx} is an infinite sequence generated by Algorithm 2.1. LetlK and

x* € Q be such thatimyck X< = x*. (Such subsequence exists sifcés compact.) Then, for all
z€ Q such that z is a limit point of 2} ek, with 2 € QN P for all k € K, we have:

IR 1+ [lg(x )+ < @12+ 19 @) II°. (5)

In particular, if the problem (1) is feasible, every limit point of an infinite sequence generated by
Algorithm 2.1 is feasible.

Proof. In the case tha{py} is bounded, we have, by (4), that lim, ||h(x)|| + [|g(x*) .| = O.
Taking limits fork € K this implies that|h(x*)|| +|/g(x*)+ || = 0, which trivially implies (5).
Consider now the case in whiglf — «. Letze Q, K; CK be such that

lim 2=z,
keKy

with 2 € QN R for all k € K;. By (3), we have:
ka(xkv)\ka Uk) < ka(zk7)\k7 Ilk) + &

for all k € K. This implies that, for alk € Ky,

02 ] 2T o). o
Therefore,
o o) re 3| () ]2
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Since{&} is bounded,px tends to infinity, andQ is compact, the inequality (5) follows, taking
limits for k € K1, by the continuity off , h, andg. O

In the case tha® C P for all k, Theorem 2.1 says that any limit point is a global minimizer of
the infeasibility measurgh(x)||? + ||g(X)+ || ontoQ. In particular, if the problem is feasible, every
limit point is feasible. It is interesting to observe that the tolerargeto not necessarily tend to
zero, in order to obtain the thesis of Theorem 2.1. Moreover, although in the algorithm we assume
that Ak and X are bounded, in the proof we only need that the quotidfitg, andp*/py tend to
zero agy tends to infinity.

In the following theorem we prove that infeasibility can be detected in finite time. Let us define,
forallk € N, ¢ > 0 by:

|f(z)— f(X)| < forall ze QNPA.. (6)

Note thatcy may be computed using interval calculations as intB& algorithm. Clearly, sincéd
is continuous an@ is bounded, the sequen€e(} may be chosen to be bounded.

Theorem 2.2. Assume thafx¥} is a sequence generated by Algorithm 2.1 and, for allld, the
setQ NP is non-empty. Then, the problem (1) is infeasible if and only if there existblksuch
AT A

that X
Pk K Mk>
‘Pk Pk ] 2[ Pk ‘(g( ) Pk/ 4

Proof. Suppose that the feasible region of (1) is non-empty. Then there exists a global mirimizer
such thaz € QNP for all k € N. Therefore,

2
+

k 2

Pk

2

2
’ + & < —Ck. @)

'h(xk) +

o8 o o) [ o) [
Thus,
o) -3 s ) -

(8)

Sinceh(z) =0 andg(z) < 0, we have:

k12 k12 k 2 K112
Hh(z)+)\ :')\ and‘(g(z)Jru) <'“
Pk Pk Pk/ + Pk
Then,by (8),
el R e e R (RN I R
— = —I | == |||h(X)+—=]|| + X+ — > (X)) — f(z)—&x.
S5 5 =% o+ 5+ (o0t 5) [T] = 691021
Therefore py (6),
- e 2T G+ ).
— = —I | == [|lhX")+—]|| + X))+ — +& > —C
Z[pk Pk 2 M b g()pk+ K=

for all k € N. This means that the infeasibility test (7) fails to be fulfilled forladt N.

Reciprocally, suppose that problem (1) is infeasible. In this gasends to infinity. This
implies that the sequende} admits an infeasible limit point* € Q. So, for some subsequence,
the quantity]| h(x<) +AK/pi||? + || (g(x¥) + 1¥/px)+ ||? is bounded away from zero. Since

T2

Ta

Px

)\k

2
ol |

4592



Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

tends to zero, it turns out that, flalarge enough, the test (7) is fulfilled. d

In the following theorem we prove another asymptotic convergence result, this time connected
with optimality, instead of feasibility.

Theorem 2.3.Assume thafx¥} is an infinite sequence generated by Algorithm By ,..gx = 0,
and problem (1) is feasible. Then, every limit poin{®f} is a global solution of (1).

Proof. Let K ¢ N andx* € Q be such that ligex X< = x*. Since the feasible set is non-empty and

compact, praoblem (1) admits a global minimizez Q. By Assumption A2z € R for all k € N.
We consider two casepi — o and{px} bounded.
Case 1 (p — ). By the definition of the algorithm:

i) [lererg]

2
for all k € N. Sinceh(z) =0 andg(z) < 0, we have:

(G

AK 2 k
‘h(x") +— + H <g(xk) + “)
Pk Px/ 4

K

Pk
f(X)+ = —
(X)+2[ Pk

Ak 2
'h(xk)+ :| + &k
Pk

(o).
©

2

’h(z)+

2
and

2 )\k 2

LK

Px

)\k
_i_i
Px

Pk

@

{

Thereforepy (9),

2 k2 k|2
A U

+ &k.

£ < f(xk)+F;({

Taking limits fork € K, using that limex ||A¥[|2/pk = limyek [[4€][2/pk = 0, and limkek &« = 0, by
the continuity off and the convergence f, we get:

f(x") < f(2).

Sincezis a global minimizer, it turns out that is a global minimizer, as we wanted to prove.

Case 2 ({p} bounded): In this case, we have thak = py, for all k > ko. Therefore, by the
definition of Algorithm 2.1, we have:
2 k
o (sw=30)
Pro / +

).

for all k > ko. Sinceg(z) < 0 andp¥/py, > 0,

[(s0+32).

o) [T 15

for all k > ko. Let us take nove > 0 arbitrarily small. Suppose, for a moment, tgdk*) < 0. Since
limy e min{—gi (X), ¥ /pk, } = 0, we have that

im b /pr, = 0. (11)

f(xk)+%‘°[Hh(xk)+ 2] < f(z)+p2"0[Hh(z)+ T + &

)\k
Pro

)\k
Pro

2 2

Ts

Pko

{

Thus,sinceh(z) =0,

2 2
f(xk)+pk°[Hh(xk)+ +H”k ]+sk (10)
2 Pio

)\k
Pro
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This implies that g;(x¥) + p}‘/pko)+ = 0 fork € K large enough. Therefore, farc K large enough,
F21(9(X) + K/ pro) % = T g x)=0(Gi (X) + U/pio)? . Thus, by (10), fork € K large enough we

have: o KA 2 k\ 2
f(X<) + %‘0 [; <hi (X) + :)\Ilo> +gi ()%:0 (gi (X9 + :(O> J

PG s ) s ()]
<f(2)+—+ — | + — | + — | | T&-
A i; Pko g(x*z):o Pko gi<x*z><o Pko ‘

By (11), we deduce that, fdr< K large enough,

f(X6) + %‘0 [.—i (hi (X) + F)’\Ii>2+gi(>%_o (gi (X + ::))j

Pro [ (A2 W2
<t %5 (0) Q%_o(pk) | raure 42

For k € K large enough, by the boundednesQ\i‘tﬁpkO and the fact thali(xX) — 0, we have that

pgoii [hi (xk)2+2h(xk);\li] > —¢.

Therefore, by (12),

Thus,there existk; > kg such that for alk € K such thak > k;, we have that

(gi(x")Jr“}()z] < f(z)+p7"° [gi(xz)_o (lll()z] +e+2e (13)

Pko
f (XK +[
o) 2 Pro/ + Pko

gi(x*)=0
Define
I={ie{1,...,p} |gi(X") =0}
and
Ki={keK|k>ki}.

For each € |, we define

Ko (i) = {k € Ky | 6i(X) + 1/ py, > 0}
and
K_(i) = {k € Kq | gi(X) + H/pk, < O}

Obviously, for alli € I, Ky = K, (i) UK_(i). Let us fixi € |. Fork large enough, sincg(x*) =0,
by the continuity ofg; and the boundedness idf/py,, we have that:

Ky K
p"O(gi(Xk)2+ 2G (¥ ) - e
2 Pio

Therefore,

s e B0 ()] ()
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Thus, fork € K, (i) large enough,

oo if) 25 () - @

Now, if k € K_(i), we have that-g;(x¢) > 1¥/py,. S0, sinceg;(x¥) tends to zero, fok € K_ (i) large
enough we have thdpy,/2) (1K/pk,)> < €. Therefore,

Pre M-k>2 pko<H'k)2_
(g.() B) —oxfe(B) (15)

Combining(14) and (15) and takinglarge enough, we obtain:
k\ 2 k\ 2
(0948 5 (aodr i) |8 s (K)]pe g
gi(x)=0 Pro/ + g (=0 \Pko
Then,by (13) and (16), fok € K large enough we have that
f(XK) < f(z) +ec+ (2+ ple.

Since limek €k = 0 ande is arbitrarily small, it turns out that ligag f(xk) = f(z)and, sox* is a
global minimizer as we wanted to prove. a

Theorem 2.4.Assume thafx*} is an infinite sequence generated by Algorithm 2.1 gleR (note
thate may be negative) and& N such that

[ ] [l oo+ 2.
[pk +’pk _Zl‘h(X)+pk IO o) ] = ¢
Then
f(X) < f(z2)+e+s, (18)

for all feasible point z.

Proof. Let z€ Q be a feasible point of (1). By the definition of Algorithm 2.1, we have that

)\k 2 k 2 )\k 2 k 2
f(x")+p"Hh(x")+ +H(g(x")+“> }gf(z)+pth(z)+ +”<g(z)+”> :|+€k
2 Pk/ 2 Pk Px/ .
(19
for all k € N. Moreover, since
k|2 k|2 K 2 K12
Hh(z)+)\ ='A and‘(g(z)+u> g'” , (20)
Pk Pk Pk/ + Pk
we obtain:
AK|[2 iy P P AR |2
fx"+pthxk+ +H< x"+> }<fz+ — +‘ +&. (21
()2()pk g()pk+_()2pk or k- (21)
Assumingthat (17) takes place, we have
}\k k(12 }\k 2 k 2
f(X )—l—pk U +' Ll ] —e< f(x")+& ‘h(x")+ +H<g(xk)+“> . (22)
Pk Pk 2 Pk P/ ¢
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Hence, by (22) and (21), we have

2 2

k k

f(Xk)JrF;(”;\:: 2 ‘Sk zl_sgf(z)Jrg‘U;\:: +’gk + & (23)
Simplifying the expression (23), we obtain:
f(X) < f(z) +&+&,
as we wanted to prove. O

Theorem 2.5. Assume thafx¥} is an infinite sequence generated by Algorithm 2.1. Suppose that
(1) is feasible andimy_,., &k = 0. Lete be an arbitrary positive number. Then, there exists K

such that
2 -2 2T o),

Proof. By the compactness @, there exist& € N andx* € Q such that limek X = x* and, by

Theorem 2.1x" is feasible. Suppose thgi tends to infinity. Note that the left-hand side of (24) is
bounded by(||AX||2 + ||]|?)/(2px) that tends to zero, by the boundednesa'oandpX. Thus, we
obtain (24) fork large enough.

Consider now the case in whi¢py} is bounded. Forall=1,...,mwe have thatpy/2) [h;(xX) +
AK/p? = (pr/2) i (X€)2 4- 2h (X)AK /pic 4 (AR /pi)?]. Sincepy is boundedAX is bounded, and
hi(X¥) — O there exist&o(i) € K such that py/2)[hi (x¥) +AK/pi]2 > (pk/2) (A/pk)? — g/mfor all
ke K, k>ko(i). Takingko = max{ko(i) } we obtain that, for alk € K,k > ko, i =1,...,m,

P (NN P MY
2<pk> > h,(X)Jrpk gm. (25)

Assumethatg; (x*) < 0. Then, as in Case 2 of the proof of Theorem 2.3, since ligmin{—g; (xX), 1&/px} =
0, we have that lingk </px = 0. Thus, there existe (i) > ko such thatg; (xX) + p¢/px)+ = 0 for
all k € K,k > kq(i). Therefore, sincg/px — 0, there exist&,(i) > ky (i) such that

Pk H-k)z pk< ) u“)z £
O} _E g+ ) <= 26
2(pk 2\ P/, P (20)

for all k € K,k > ky(i). Takingk, = max{k(i)}, we obtain that (26) holds for ak € K,k > k
wheneveg;(x*) < 0.
Now, as in the proof of Theorem 2.3, define

I :{I 6{17"'7p} |gI(X*):O}

Ta

Px

)\k

2
Px ’

‘h(xk)+;\::

2
] <e. (24)

and
Ki={keK|k>ky}.

For each € |, we define
Ky (i) = {k € K | gi(X) + 1/ pi > 0}

and
K- (i) = {k € Ky | Gi(X€) + 1/ p < O}
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Let us fixi € |. Fork large enough, sinag(x*) = 0, by the continuity of; and the boundedness

of u&/pk, we have that:
2g (XK) K
F;(<gi(xk)2+ g(X )“1 > > _E'
Px

B[ g2, 2800 (Ivhk)}pk@)z_s
2[gl(x)+ Pk * Pk — 2 \ P p’

Thus,for k € K (i) large enough,

k\ 2 kY 2
p;(:fk) —"2k<gi<xk>+p“k> <& (27)
+

©

Therefore,

o
Now, if k € K_(i), we have that-g;(x) > 1/pk. So, sincegj(x¥) tends to zero, fok € K_ (i)
large enough we have thgiy/2) (1K/pk)? < €/p. Therefore,

P H—k)z_pk<. ‘ M—k>2 e

2<Pk 2 g,(x)+pk +§I0' (28)
By (26), (27), and (28),

P M-k>2_pk<. ’ wk>2 e

2<pk 2 g,(x)+pk +SP (29)

foralli=1,...,p.
Taking the summation far=1,...,min (25) and fori = 1,...,pin (29) we obtain the desired
result. O

Due to the results proved above, we are able to define a variation of Algorithm 2.1, for which
we can guarantee finite termination with certificates of infeasibility or optimality up to given preci-
sions. For defining Algorithm 2.2, we assume thaks> 0 andeqp: > 0 are user-given tolerances
for feasibility and optimality respectively. On the other hand, we will maintain Assumptions Al
and A2, which concern boundedness af} and the inclusion property for the séis

Algorithm 2.2

Let Amin < Amax Hmax > 0,Y> 1, 0< T < 1. LetAl € [Amin,Amax,i = 1,...,m, ii* € [0, max,i =
1,...,p, andp; > 0. Assume thafei} is a bounded positive sequence and initiakze 1.

Step 1 Solve the subproblem
Solve, using global optimization on the 2t P, the subproblem

Minimize Ly, (x, A%, ) subject to x € Q NPk (30)

If, in the process of solving (30), the s@tN P is detected to be empty, stop the execution
of Algorithm 2.2 declaringnfeasibility. Otherwise, define® € QN R as an approximate
solution of (30) that satisfies (3) for sorae< &.

Step 2 Test Infeasibility
Computecy > 0 such thatf(x¢) — f(z)| < ¢ for all ze QN R and define

e - 3 o T -2,

2
Pk ‘

L
Px

|
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Yk + & < —Cx,
stopthe execution of the algorithm declarihgfeasibility .

Step 3 Test Feasibility and optimality

If
||h(xk)|| + ||g(xk)+|| < €eas aNd Yk + & < Eopt,

stop the execution of the algorithm declari@glution found.

Step 4 Update penalty parameter
Define

Hk
Vik:min{—gi(xk),},i =1,...,p.
Pk

Ifk=1or
max{||n&)[eo, [V¥[leo} < T max{||nE ) [, [VE oo},

definepy.1 = pk. Otherwise, defin@x1 = Ypx.

Step 5. Update multipliers

Compute\s" € [Amin, Amad,i = 1,...,mandilt? € [0, pmay,i = 1,...,p. Setk« k+1 and
go to Step 1.

Theorem 2.6.Assume that Algorithm 2.1 is executed with the condition timag, ... ex = 0. Then,
the execution finishes in a finite number of iterations with one of the following diagnostics:

1. Infeasibility , which means that, guaranteedly, no feasible point of (1) exists;

2. Solution found, in the case that the final point is guaranteed to satisfy

IR+ 19 0¢)+ 1| < Ereas

and
f(X) < f(2) +€opt

)
forall ze Q such that hz) =0and gz) <0

Proof. The proof follows straightforwardly from Theorems 2.2, 2.4, and 2.5. O

Numerical experiments showing how the new algorithm and results are related to practical com-
putations can be found in Birgin et al. (2012), as well as a variation of the method presented here
that allows the Augmented Lagrangian subproblems to be solved without requiring unnecessary
potentially high precisions in the intermediate steps of the method.
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