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Abstract

In a recent paper, Birgin, Floudas and Martı́nez introduced a novel Augmented Lagrangian
method for global optimization. In their approach, Augmented Lagrangian subproblems are
solved using theαBB method and convergence to global minimizers was obtained assuming
feasibility of the original problem. In the present research, the algorithm mentioned above will
be improved in several crucial aspects. On one hand, feasibility of the problem will not be re-
quired. Possible infeasibility will be detected in finite time by the new algorithms and optimal
infeasibility results will be proved. On the other hand, finite termination results that guarantee
optimality and/or feasibility up to any required precision will be provided.

Key words: deterministic global optimization, Augmented Lagrangians, nonlinear program-
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1 Introduction

Many practical models require to solve global optimization problems involving continuous func-
tions and constraints. Algorithms for solving non-trivial optimization problems are always iterative.
Sometimes, for practical purposes, one only needs optimality properties at the limit points. In many
other cases, one wishes to find an iteratexk for which it can be proved that feasibility and optimality
hold up to some previously established precision. Moreover, in the case that no feasible point exists,
a certificate of infeasibility could also be required. In simple-constrained cases, several well-known
algorithms accomplish that purpose. This is the case of theαBB algorithm Adjiman et al. (1996,
1998a,b), Androulakis et al. (1995), that has been used in Birgin et al. (2010) as subproblem solver
in the context of an Augmented Lagrangian method.

The numerical algorithm introduced in Birgin et al. (2010) for constrained global optimization
was based on the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian approach. An im-
plementation in which subproblems were solved by means of theαBB method was described and
tested in Birgin et al. (2010). The convergence theory assumed that the nonlinear programming
problem is feasible and it was proved that limit points of sequences generated by the algorithm are
ε-global minimizers, whereε is a given positive tolerance. However, a test for verifyingε-optimality
at an iteratexk was not provided. As a consequence, the stopping criterion employed in the numeri-
cal implementation was not directly related withε-optimality and relied on heuristic considerations.
This gap will be closed in the present paper. On one hand, we will not restrict the range of appli-
cations to feasible problems. Infeasible cases may also be handled by the methods analyzed in our
present contribution, where we will prove that possible infeasibility can be detected in finite time
by means of a computable test. On the other hand, we will introduce a practical stopping criterion
that guarantees that, at the approximate solution provided by the algorithm, feasibility holds up to
some prescribed tolerance and the objective function value is the optimal one up to toleranceε.

Global optimization theory also clarifies practical algorithmic properties of “local” optimiza-
tion algorithms, which use to converge quickly to stationary points. We recall that the Augmented
Lagrangian methodology based on the PHR approach has been successfully used for defining prac-
tical nonlinear programming algorithms Andreani et al. (2007, 2008), Birgin et al. (2005), Conn
et al. (2000). In the local optimization field, which requires near-stationarity (instead of near global
optimality) at subproblems, convergence to KKT points was proved using the Constant Positive
Linear Dependence constraint qualification Andreani et al. (2005). Convergence results involving
sequential optimality conditions that do not need constraint qualifications at all were presented in
Andreani et al. (2010, 2011).

The Algencan code, available inwww.ime.usp.br/∼egbirgin/ and based on the theory pre-
sented in Andreani et al. (2007), has been improved several times in the last few years and, in
practice, has been shown to converge to global minimizers more frequently than other Nonlinear
Programming solvers. There exist many global optimization techniques for nonlinear program-
ming. The main appeal of the Augmented Lagrangian approach in this context is that the structure
of this method makes it possible to take advantage of global optimization algorithms for simpler
problems. In Birgin et al. (2010) and the present paper we exploit the ability ofαBB for solving
linearly constrained global optimization problems, which has been corroborated in many applied
papers. In order to take advantage of theαBB potentialities, Augmented Lagrangian subproblems
are “over-restricted” by means of linear constraints that simplify subproblem resolutions and do not
affect successful search of global minimizers. Because of the necessity of dealing with infeasible
problems, the definition of the additional constraints has been modified in the present contribution
with respect to the one given in Birgin et al. (2010).

Notation. If v ∈ IRn, v = (v1, . . . ,vn), we denotev+ = (max{0,v1}, . . . ,max{0,vn}). If K =
(k1,k2, . . .) ⊆ IN (with k j < k j+1 for all j), we denoteK⊂

∞
IN. The symbol‖ · ‖ will denote the
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Euclidian norm.

2 Algorithm

The problem considered in this paper is:

Minimize f (x)
subject to h(x) = 0

g(x)≤ 0
x∈Ω,

(1)

whereh : IRn→ IRm,g : IRn→ IRp, f : IRn→ IR are continuous andΩ⊂ IRn is compact. In general,Ω
is defined by “easy” constraints such as linear constraints and box constraints. Since all the iterates
xk generated by our methods will belong toΩ, the constraints related with this set may be called
“non-relaxable” in the sense of Audet and Dennis (2009).

The Augmented Lagrangian function will be defined by:

Lρ(x,λ,µ) = f (x)+
ρ
2

{ m

∑
i=1

[

hi(x)+
λi

ρ

]2

+
p

∑
i=1

[

max

(

0,gi(x)+
µi

ρ

)]2}

(2)

for all x∈Ω,ρ > 0,λ ∈ IRm,µ∈ IRp
+.

At each (outer) iteration, the algorithm considered in this section minimizes the Augmented
Lagrangian, with precisionεk, on the setΩ∩Pk, wherePk ⊆ IRn is built in order to facilitate the
work of a subproblem solver likeαBB. The assumptions required for the tolerances{εk} and the
auxiliary sets{Pk} are given below.

Assumption A1. The sequence of positive tolerances{εk} is bounded.

Assumption A2. The setsPk are closed and the set of global minimizers of (1) is contained inPk

for all k∈ IN.

The sequence{εk} may be defined in an external or an internal way, in different implementa-
tions. In the external case, the sequence is given as a parameter of the algorithm. If one decides for
an internal definition, each toleranceεk+1 is defined only after the computation ofxk as a result of
the process evolution. Except in the case that one of the setsΩ∩Pk is found to be empty, we will
consider that the algorithm defined here generates an infinite sequence{xk} and we will prove the-
oretical properties of this sequence. Later, we will see that the generated sequence may be stopped
satisfying stopping criteria that guarantee feasibility and optimality, or, perhaps, infeasibility. Ob-
serve that the existence of global minimizers is not guaranteed at all, since the feasible set could
be empty. In this case Assumption A2 is trivially satisfied. In Birgin et al. (2010) the existence of
a global minimizer was an assumption on the problem and the setsPk were assumed to contain at
least one global minimizer.

Algorithm 2.1

Let λmin < λmax, µmax> 0, γ > 1, 0< τ < 1. Let λ1
i ∈ [λmin,λmax], i = 1, . . . ,m, µ1

i ∈ [0,µmax], i =
1, . . . ,p, andρ1 > 0. Initializek← 1.

Step 1.1 If Ω∩Pk is found to be empty, stop the execution of the algorithm.
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Step 1.2 Findxk ∈Ω∩Pk suchthat:

Lρk(x
k,λk,µk)≤ Lρk(x,λ

k,µk)+ εk (3)

for all x∈Ω∩Pk.

Step 2. Define

Vk
i = min

{

−gi(x
k),

µk
i

ρk

}

, i = 1,. . . , p.

If k= 1 or
max{‖h(xk)‖∞,‖V

k‖∞} ≤ τ max{‖h(xk−1)‖∞,‖V
k−1‖∞}, (4)

defineρk+1 = ρk. Otherwise, defineρk+1 = γρk.

Step 3. Computeλk+1
i ∈ [λmin,λmax], i = 1, . . . ,m andµk+1

i ∈ [0,µmax], i = 1, . . . ,p. Setk← k+1
and go to Step 1.

Algorithm 2.1 has been presented above without a stopping criterion, except in the case in which
emptiness ofΩ∩Pk is detected. Therefore, in this ideal form, the algorithm generally generates an
infinite sequence. The solvability of the subproblems (3) is guaranteed, ifΩ∩Pk is a bounded
polytope, employing global optimization algorithms asαBB.

Although infinite-sequence properties do not satisfy our requirements of getting feasibility and
optimality certificates in finite time, results concerning the behavior of the infinite sequence poten-
tially generated by the algorithm help to understand its practical properties.

Theorem 2.1.Assume that{xk} is an infinite sequence generated by Algorithm 2.1. Let K⊂
∞

IN and

x∗ ∈ Ω be such thatlimk∈K xk = x∗. (Such subsequence exists sinceΩ is compact.) Then, for all
z∈Ω such that z is a limit point of{zk}k∈K , with zk ∈Ω∩Pk for all k ∈ K, we have:

‖h(x∗)‖2+‖g(x∗)+‖ ≤ ‖h(z)‖
2+‖g(z)+‖

2. (5)

In particular, if the problem (1) is feasible, every limit point of an infinite sequence generated by
Algorithm 2.1 is feasible.

Proof. In the case that{ρk} is bounded, we have, by (4), that limk→∞ ‖h(xk)‖+ ‖g(xk)+‖ = 0.
Taking limits fork∈ K this implies that‖h(x∗)‖+‖g(x∗)+‖= 0, which trivially implies (5).

Consider now the case in whichρk→ ∞. Let z∈Ω, K1⊂
∞

K be such that

lim
k∈K1

zk = z,

with zk ∈Ω∩Pk for all k∈ K1. By (3), we have:

Lρk(x
k,λk,µk)≤ Lρk(z

k,λk,µk)+ εk

for all k∈ K1. This implies that, for allk∈ K1,

ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤
ρk

2

[∥

∥

∥

∥

h(zk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(zk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk+ f (zk)− f (xk).

Therefore,
∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2

≤

[∥

∥

∥

∥

h(zk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(zk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+
2(εk+ f (zk)− f (xk))

ρk
.
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Since{εk} is bounded,ρk tends to infinity, andΩ is compact, the inequality (5) follows, taking
limits for k∈ K1, by the continuity off ,h, andg. �

In the case thatΩ⊆ Pk for all k, Theorem 2.1 says that any limit point is a global minimizer of
the infeasibility measure‖h(x)‖2+‖g(x)+‖2 ontoΩ. In particular, if the problem is feasible, every
limit point is feasible. It is interesting to observe that the tolerancesεk do not necessarily tend to
zero, in order to obtain the thesis of Theorem 2.1. Moreover, although in the algorithm we assume
that λk andµk are bounded, in the proof we only need that the quotientsλk/ρk andµk/ρk tend to
zero asρk tends to infinity.

In the following theorem we prove that infeasibility can be detected in finite time. Let us define,
for all k∈ IN, ck > 0 by:

| f (z)− f (xk)| ≤ ck for all z∈Ω∩Pk. (6)

Note thatck may be computed using interval calculations as in theαBB algorithm. Clearly, sincef
is continuous andΩ is bounded, the sequence{ck} may be chosen to be bounded.

Theorem 2.2.Assume that{xk} is a sequence generated by Algorithm 2.1 and, for all k∈ IN, the
setΩ∩Pk is non-empty. Then, the problem (1) is infeasible if and only if there exists k∈ IN such
that

ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk

2

[

∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2
]

+ εk <−ck. (7)

Proof. Suppose that the feasible region of (1) is non-empty. Then there exists a global minimizerz
such thatz∈Ω∩Pk for all k∈ IN. Therefore,

f (xk)+
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f (z)+
ρk

2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk.

Thus,

ρk

2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

−
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≥ f (xk)− f (z)−εk.

(8)
Sinceh(z)= 0 andg(z)≤ 0, we have:

∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

.

Then,by (8),

ρk

2

[∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2]

−
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≥ f (xk)− f (z)− εk.

Therefore,by (6),

ρk

2

[∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2]

−
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+ εk ≥−ck

for all k∈ IN. This means that the infeasibility test (7) fails to be fulfilled for allk∈ IN.
Reciprocally, suppose that problem (1) is infeasible. In this caseρk tends to infinity. This

implies that the sequence{xk} admits an infeasible limit pointx∗ ∈ Ω. So, for some subsequence,
the quantity‖h(xk)+λk/ρk‖

2+‖(g(xk)+µk/ρk)+‖
2 is bounded away from zero. Since

−

[∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2]

−
2(εk+ck)

ρk
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tends to zero, it turns out that, fork large enough, the test (7) is fulfilled. �

In the following theorem we prove another asymptotic convergence result, this time connected
with optimality, instead of feasibility.

Theorem 2.3.Assume that{xk} is an infinite sequence generated by Algorithm 2.1,limk→∞ εk = 0,
and problem (1) is feasible. Then, every limit point of{xk} is a global solution of (1).

Proof. Let K⊂
∞

IN andx∗ ∈ Ω be such that limk∈K xk = x∗. Since the feasible set is non-empty and

compact, problem (1) admits a global minimizerz∈ Ω. By Assumption A2,z∈ Pk for all k ∈ IN.
We consider two cases:ρk→ ∞ and{ρk} bounded.
Case 1 (ρk→ ∞): By the definition of the algorithm:

f (xk)+
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f (z)+
ρk

2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk

(9)
for all k∈ IN. Sinceh(z) =0 andg(z)≤ 0, we have:

∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

.

Therefore,by (9),

f (xk)≤ f (xk)+
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f (z)+
‖λk‖2

2ρk
+
‖µk‖2

2ρk
+ εk.

Taking limits fork∈ K, using that limk∈K ‖λk‖2/ρk = limk∈K ‖µk‖2/ρk = 0, and limk∈K εk = 0, by
the continuity off and the convergence ofxk, we get:

f (x∗)≤ f (z).

Sincez is a global minimizer, it turns out thatx∗ is a global minimizer, as we wanted to prove.

Case 2 ({ρk} bounded): In this case, we have thatρk = ρk0 for all k ≥ k0. Therefore, by the
definition of Algorithm 2.1, we have:

f (xk)+
ρk0

2

[∥

∥

∥

∥

h(xk)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

≤ f (z)+
ρk0

2

[∥

∥

∥

∥

h(z)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

+εk

for all k≥ k0. Sinceg(z)≤ 0 andµk/ρk0 ≥ 0,

∥

∥

∥

∥

(

g(z)+
µk

ρk0

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk0

∥

∥

∥

∥

2

.

Thus,sinceh(z) =0,

f (xk)+
ρk0

2

[∥

∥

∥

∥

h(xk)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

≤ f (z)+
ρk0

2

[∥

∥

∥

∥

λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk0

∥

∥

∥

∥

2]

+ εk (10)

for all k≥ k0. Let us take nowε > 0 arbitrarily small. Suppose, for a moment, thatgi(x∗)< 0. Since
limk→∞ min{−gi(xk),µk

i /ρk0}= 0, we have that

lim
k∈K

µk
i /ρk0 = 0. (11)
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This implies that(gi(xk)+µk
i /ρk0)+ = 0 for k∈ K large enough. Therefore, fork∈ K large enough,

∑p
i=1(gi(xk)+µk

i /ρk0)
2
+ = ∑gi(x∗)=0(gi(xk)+µk

i /ρk0)
2
+. Thus, by (10), fork ∈ K large enough we

have:

f (xk)+
ρk0

2

[ m

∑
i=1

(

hi(x
k)+

λk
i

ρk0

)2

+ ∑
gi(x∗)=0

(

gi(x
k)+

µk
i

ρk0

)2

+

]

≤ f (z)+
ρk0

2

[ m

∑
i=1

(

λk
i

ρk0

)2

+ ∑
gi(x∗)=0

(

µk
i

ρk0

)2

+ ∑
gi(x∗)<0

(

µk
i

ρk0

)2]

+ εk.

By (11), we deduce that, fork∈ K large enough,

f (xk)+
ρk0

2

[ m

∑
i=1

(

hi(x
k)+

λk
i

ρk0

)2

+ ∑
gi(x∗)=0

(

gi(x
k)+

µk
i

ρk0

)2

+

]

≤ f (z)+
ρk0

2

[ m

∑
i=1

(

λk
i

ρk0

)2

+ ∑
gi(x∗)=0

(

µk
i

ρk0

)2]

+ εk+ ε. (12)

For k∈ K large enough, by the boundedness ofλk
i /ρk0 and the fact thath(xk)→ 0, we have that

ρk0

2

m

∑
i=1

[

hi(x
k)2+2hi(x

k)
λk

i

ρk0

]

≥−ε.

Therefore, by (12),

f (xk)+
ρk0

2

[ m

∑
i=1

(

λk
i

ρk0

)2

+ ∑
gi(x∗)=0

(

gi(x
k)+

µk
i

ρk0

)2

+

]

≤ f (z)+
ρk0

2

[ m

∑
i=1

(

λk
i

ρk0

)2

+ ∑
gi(x∗)=0

(

µk
i

ρk0

)2]

+εk+2ε.

Thus,there existsk1≥ k0 such that for allk∈ K such thatk≥ k1, we have that

f (xk)+
ρk0

2

[

∑
gi(x∗)=0

(

gi(x
k)+

µk
i

ρk0

)2

+

]

≤ f (z)+
ρk0

2

[

∑
gi(x∗)=0

(

µk
i

ρk0

)2]

+ εk+2ε. (13)

Define
I = {i ∈ {1, . . . ,p} |gi(x

∗) = 0}

and
K1 = {k∈ K | k≥ k1}.

For eachi ∈ I , we define
K+(i) = {k∈ K1 | gi(x

k)+µk
i /ρk0 ≥ 0}

and
K−(i) = {k∈ K1 | gi(x

k)+µk
i /ρk0 < 0}.

Obviously, for alli ∈ I , K1 = K+(i) ∪K−(i). Let us fix i ∈ I . Fork large enough, sincegi(x∗) = 0,
by the continuity ofgi and the boundedness ofµk

i /ρk0, we have that:

ρk0

2

(

gi(x
k)2+

2gi(xk)µk
i

ρk0

)

≥−ε.

Therefore,
ρk0

2

[

gi(x
k)2+

2gi(xk)µk
i

ρk0

+

(

µk
i

ρk0

)2]

≥
ρk0

2

(

µk
i

ρk0

)2

− ε.
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Thus, fork∈ K+(i) large enough,

ρk0

2

(

gi(x
k)+

µk
i

ρk0

)2

+

≥
ρk0

2

(

µk
i

ρk0

)2

− ε. (14)

Now, if k∈K−(i), we have that−gi(xk)> µk
i /ρk0. So, sincegi(xk) tends to zero, fork∈K−(i) large

enough we have that(ρk0/2)(µk
i /ρk0)

2≤ ε. Therefore,

ρk0

2

(

gi(x
k)+

µk
i

ρk0

)2

+

= 0≥
ρk0

2

(

µk
i

ρk0

)2

− ε. (15)

Combining(14) and (15) and takingk large enough, we obtain:

f (xk)+
ρk0

2

[

∑
gi(x∗)=0

(

gi(x
k)+

µk
i

ρk0

)2

+

]

≥ f (xk)+
ρk0

2

[

∑
gi(x∗)=0

(

µk
i

ρk0

)2]

− pε. (16)

Then,by (13) and (16), fork∈ K large enough we have that

f (xk)≤ f (z)+εk+(2+ p)ε.

Since limk∈K εk = 0 andε is arbitrarily small, it turns out that limk∈K f (xk) = f (z) and, so,x∗ is a
global minimizer as we wanted to prove. �

Theorem 2.4.Assume that{xk} is an infinite sequence generated by Algorithm 2.1. Letε∈ IR (note
that ε may be negative) and k∈ IN such that

ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk

2

[

∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε. (17)

Then
f (xk)≤ f (z)+ ε+ εk, (18)

for all feasible point z.

Proof. Let z∈Ω be a feasible point of (1). By the definition of Algorithm 2.1, we have that

f (xk)+
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f (z)+
ρk

2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk

(19)
for all k∈ IN. Moreover, since

∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

, (20)

weobtain:

f (xk)+
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f (z)+
ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

+ εk. (21)

Assumingthat (17) takes place, we have

f (xk)+
ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

− ε≤ f (xk)+
ρk

2

[

∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2
]

. (22)
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Hence, by (22) and (21), we have

f (xk)+
ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

− ε≤ f (z)+
ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

+ εk. (23)

Simplifying the expression (23), we obtain:

f (xk)≤ f (z)+ε+ εk,

as we wanted to prove. �

Theorem 2.5.Assume that{xk} is an infinite sequence generated by Algorithm 2.1. Suppose that
(1) is feasible andlimk→∞ εk = 0. Letε be an arbitrary positive number. Then, there exists k∈ IN
such that

ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk

2

[

∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε. (24)

Proof. By the compactness ofΩ, there existsK⊂
∞

IN andx∗ ∈ Ω such that limk∈K xk = x∗ and, by

Theorem 2.1,x∗ is feasible. Suppose thatρk tends to infinity. Note that the left-hand side of (24) is
bounded by(‖λk‖2+ ‖µk‖2)/(2ρk) that tends to zero, by the boundedness ofλk andµk. Thus, we
obtain (24) fork large enough.

Consider now the case in which{ρk} is bounded. For alli = 1, . . . ,mwe have that(ρk/2)[hi(xk)+
λk

i /ρk]
2 = (ρk/2)[hi(xk)2 + 2hi(xk)λk

i /ρk + (λk
i /ρk)

2]. Sinceρk is bounded,λk is bounded, and
hi(xk)→ 0 there existsk0(i) ∈ K such that(ρk/2)[hi(xk)+λk

i /ρk]
2≥ (ρk/2)(λk

i /ρk)
2− ε/m for all

k∈ K, k≥ k0(i). Takingk0 = max{k0(i)} we obtain that, for allk∈ K,k≥ k0, i = 1, . . . ,m,

ρk

2

(

λk
i

ρk

)2

−
ρk

2

(

hi(x
k)+

λk
i

ρk

)2

≤
ε
m
. (25)

Assumethatgi(x∗)< 0. Then, as in Case 2 of the proof of Theorem 2.3, since limk→∞ min{−gi(xk),µk
i /ρk}=

0, we have that limk∈K µk
i /ρk = 0. Thus, there existsk1(i) ≥ k0 such that(gi(xk)+µk

i /ρk)+ = 0 for
all k∈ K,k≥ k1(i). Therefore, sinceµk

i /ρk→ 0, there existsk2(i) ≥ k1(i) such that

ρk

2

(

µk
i

ρk

)2

−
ρk

2

(

gi(x
k)+

µk
i

ρk

)2

+

≤
ε
p

(26)

for all k ∈ K,k≥ k2(i). Takingk2 = max{k2(i)}, we obtain that (26) holds for allk ∈ K,k≥ k2

whenevergi(x∗)< 0.
Now, as in the proof of Theorem 2.3, define

I = {i ∈ {1, . . . ,p} |gi(x
∗) = 0}

and
K1 = {k∈ K | k≥ k2}.

For eachi ∈ I , we define

K+(i) = {k∈ K1 | gi(x
k)+µk

i /ρk ≥ 0}

and
K−(i) = {k∈ K1 | gi(x

k)+µk
i /ρk < 0}.
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Let us fixi ∈ I . Fork large enough, sincegi(x∗) = 0, by the continuity ofgi and the boundedness
of µk

i /ρk, we have that:
ρk

2

(

gi(x
k)2+

2gi(xk)µk
i

ρk

)

≥−
ε
p
.

Therefore,
ρk

2

[

gi(x
k)2+

2gi(xk)µk
i

ρk
+

(

µk
i

ρk

)2]

≥
ρk

2

(

µk
i

ρk

)2

−
ε
p
.

Thus,for k∈ K+(i) large enough,

ρk

2

(

µk
i

ρk

)2

−
ρk

2

(

gi(x
k)+

µk
i

ρk

)2

+

≤
ε
p
. (27)

Now, if k∈ K−(i), we have that−gi(xk) > µk
i /ρk. So, sincegi(xk) tends to zero, fork∈ K−(i)

large enough we have that(ρk/2)(µk
i /ρk)

2≤ ε/p. Therefore,

ρk

2

(

µk
i

ρk

)2

−
ρk

2

(

gi(x
k)+

µk
i

ρk

)2

+

≤
ε
p
. (28)

.
By (26), (27), and (28),

ρk

2

(

µk
i

ρk

)2

−
ρk

2

(

gi(x
k)+

µk
i

ρk

)2

+

≤
ε
p

(29)

for all i = 1, . . . ,p.
Taking the summation fori = 1, . . . ,m in (25) and fori = 1, . . . ,p in (29) we obtain the desired

result. �

Due to the results proved above, we are able to define a variation of Algorithm 2.1, for which
we can guarantee finite termination with certificates of infeasibility or optimality up to given preci-
sions. For defining Algorithm 2.2, we assume thatε f eas> 0 andεopt > 0 are user-given tolerances
for feasibility and optimality respectively. On the other hand, we will maintain Assumptions A1
and A2, which concern boundedness of{εk} and the inclusion property for the setsPk.

Algorithm 2.2

Let λmin < λmax, µmax> 0, γ > 1, 0< τ < 1. Let λ1
i ∈ [λmin,λmax], i = 1, . . . ,m, µ1

i ∈ [0,µmax], i =
1, . . . ,p, andρ1 > 0. Assume that{ε̄k} is a bounded positive sequence and initializek← 1.

Step 1 Solve the subproblem

Solve, using global optimization on the setΩ∩Pk, the subproblem

Minimize Lρk(x,λ
k,µk) subject to x∈Ω∩Pk. (30)

If, in the process of solving (30), the setΩ∩Pk is detected to be empty, stop the execution
of Algorithm 2.2 declaringInfeasibility . Otherwise, definexk ∈ Ω∩Pk as an approximate
solution of (30) that satisfies (3) for someεk ≤ ε̄k.

Step 2 Test Infeasibility

Computeck > 0 such that| f (xk)− f (z)| ≤ ck for all z∈Ω∩Pk and define

γk =
ρk

2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk

2

[

∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2
]

.
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If
γk+ εk <−ck,

stopthe execution of the algorithm declaringInfeasibility .

Step 3 Test Feasibility and optimality

If
‖h(xk)‖+‖g(xk)+‖ ≤ εfeas and γk+ εk ≤ εopt,

stop the execution of the algorithm declaringSolution found.

Step 4 Update penalty parameter

Define

Vk
i = min

{

−gi(x
k),

µk
i

ρk

}

, i = 1,. . . , p.

If k= 1 or
max{‖h(xk)‖∞,‖V

k‖∞} ≤ τ max{‖h(xk−1)‖∞,‖V
k−1‖∞},

defineρk+1 = ρk. Otherwise, defineρk+1 = γρk.

Step 5. Update multipliers

Computeλk+1
i ∈ [λmin,λmax], i = 1, . . . ,mandµk+1

i ∈ [0,µmax], i = 1, . . . ,p. Setk← k+1 and
go to Step 1.

Theorem 2.6.Assume that Algorithm 2.1 is executed with the condition that,limk→∞ εk = 0. Then,
the execution finishes in a finite number of iterations with one of the following diagnostics:

1. Infeasibility , which means that, guaranteedly, no feasible point of (1) exists;

2. Solution found, in the case that the final point xk is guaranteed to satisfy

‖h(xk)‖+‖g(xk)+‖ ≤ εfeas

and
f (xk)≤ f (z)+εopt

for all z∈Ω such that h(z) =0 and g(z)≤ 0.

Proof. The proof follows straightforwardly from Theorems 2.2, 2.4, and 2.5. �

Numerical experiments showing how the new algorithm and results are related to practical com-
putations can be found in Birgin et al. (2012), as well as a variation of the method presented here
that allows the Augmented Lagrangian subproblems to be solved without requiring unnecessary
potentially high precisions in the intermediate steps of the method.
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