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Resumo

Neste artigo apresentamos o método de ponto proximal para uma classe especial de funções não-
convexas em variedades de Hadamard. É garantida a boa definição das sequência gerada pelo
método de ponto proximal. Além disso, é provado que cada ponto de acumulação da sequência
satisfaz as condições necessárias de otimalidade e, sob hipóteses adicionais, a convergência para
um minimizador é obtida.

Palavras Chave: Método de Ponto Proximal, funções não convexas, variedades de Hadamard.

Área principal: Programação matemática.

Abstract

In this paper we present the proximal point method for a special class of nonconvex function on
a Hadamard manifold. The well definedness of the sequence generated by the proximal point
method is guaranteed. Moreover, it is proved that each accumulation point of this sequence
satisfies the necessary optimality conditions and, under additional assumptions, its convergence
for a minimizer is obtained.

Key words: proximal point method, nonconvex functions, Hadamard manifolds.

Main area: Mathematical programming.
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1 Introduction

The extension of the concepts and techniques of the Mathematical Programming from Eu-
clidean space to Riemannian manifolds occurs naturally and has been frequently done in recent
years, with a theoretical purpose as well as to obtain effective algorithms; see Absil et all [1],
Attouch et all [2], Azagra et all [3], Alvarez et all [4], Bento et all [5], Bento et all [6], Bento et
all [7], Bento et all [8], Barani and Pouryayevali [9] , Barani and Pouryayeval [10], da Cruz Neto
et all [11], da Cruz Neto et all [12], da Cruz Neto et all [13], Ferreira and Oliveira [16], Ferreira
and Oliveira [17], Ferreira and Svaiter [18], Ferreira [19], Ferreira and Silva [20], Ledyaev et all
[25], Li and Wang [26], Li and Wang [27], Li et all [28], Li el all [29], Li et all [30], Nesterov and
Todd [33], Németh [34], Papa Quiroz and Oliveira[35], Papa Quiroz and Oliveira [36], Rapcsák
[37], Rapcsák [38], Smith [43], Tang [44], Wang at all [48], Wang at all [49], Wang at all [50]
and Wang [51]. In particular, we observe that, these extensions allow the solving of some
nonconvex constrained problems in Euclidean space. More precisely, nonconvex problems in
the classic sense may become convex with the introduction of an adequate Riemannian metric
on the manifold (see, for example da Cruz Neto et all [13] and Bento e Melo [7]. The proximal
point algorithm, introduced by Martinet [31] and Rockafellar [39], has been extended to differ-
ent contexts, see Ferreira and Oliveira [17], Li et all [29] and Papa Quiroz and Oliveira[36] and
their references. In Ferreira and Oliveira [17] the proximal point method has been generalized
in order to solve convex optimization problems of the form

(P ) min f(p)
s.t. p ∈M,

(1)

where M is a Hadamard manifold and f : M → R is a convex function (in Riemannian sense).
The method was described as follows:

pk+1 := argminp∈M

{
f(p) +

λk
2
d2(p, pk)

}
, (2)

with p◦ ∈ M an arbitrary point, d the intrinsic Riemannian distance (to be defined later on)
and {λk} a sequence of positive numbers. The authors also showed that this extension is natu-
ral. In Li at all [29] the important notion of maximal monotonicity from a multivalued operator
defined on a Banach space to multivalued vector field defined on a Hadamard manifold has been
extended. Beside the authors present a general proximal point method to finding singularity of
a multivalued vector field. In particular, as an application of the convergence result obtained
for the proposed algorithm, constrained optimization problems have been solved. With re-
gards to Papa Quiroz and Oliveira[36] the authors generalized the proximal point method with
Bregman distance for solving quasiconvex and convex optimization problems on Hadamard
manifolds. In particular, in Spingarn [42] has been developed the proximal point method for
the minimization of a certain class of nondifferentiable and noncovex functions, namely, lower-
C2 functions defined on the Euclidean space, see also Hare and Sagastizábal [22]. Kaplan and
Tichatschke [23] also applied the proximal point method for the minimization of a similar class
of the ones studied in Hare and Sagastizábal [22] and Spingarn [42], namely, the maximum of
continuously differentiable functions.

Our goal is to study the same class objective functions studied in Kaplan and Tichatschke,
[23], in the Riemannian context, applying the proximal point method (2) in order to solve
the problem (1) with the objective function in that class. For this purpose, it is necessary to
study the generalized directional derivative and subdifferential in the Riemannian manifolds
context. Several works have studied such concepts and presented many useful results in the
Riemannian nonsmooth optimization context, see for example Azagra at all [3], Ladyaev at
all[25], Montreanu and Pavel [32] and Thamelt [45] .

The organization of our paper is as follows. In Section 1.1 we define the notations and
list some results of Riemannian geometry to be used throughout this paper. In Section 2,
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we recall some facts of the convex analysis on Hadamard manifolds. In Section 3 we present
some properties of the directional derivative of a convex function defined on a Hadamard
manifold, including a characterization of the directional derivative and of the subdifferential
of the maximum of a certain class of convex functions. Here we also present the definition
for the generalized directional derivative of locally Lipschitz functions (not necessarily convex)
and an important property of the subdifferential of the maximum of differentiable continuously
functions. In Section 4 we present an application of the proximal point method (2) to solve the
problem (1) in the case where the objective function is a real-valued function on a Hadamard
manifold M (not necessarily convex) given by the maximum of a certain class of functions. The
main results are the proof of well definition of the sequence generated by (2), the proof that
each accumulation point of this sequence is a stationary point of the objective function and,
under some additional assumptions, the proof of convergence of that sequence to a solution of
the problem (1).

1.1 Notation and terminology

In this section, we introduce some fundamental properties and notations about Riemannian
geometry. These basics facts can be found in any introductory book on Riemannian geometry,
such as do Carmo [14] or Sakai [41].

Let M be a n-dimentional connected manifold. We denote by TpM the n-dimentional
tangent space of M at p, by TM = ∪p∈MTpM tangent bundle of M and by X(M) the space
of smooth vector fields over M . When M is endowed with a Riemannian metric 〈 , 〉, with the
corresponding norm denoted by ‖ ‖, then M is now a Riemannian manifold. Recall that the
metric can be used to define the length of piecewise smooth curves γ : [a, b]→M joining p to
q, i.e., such that γ(a) = p and γ(b) = q, by:

l(γ) =

∫ b

a
‖γ′(t)‖dt,

and, moreover, by minimizing this length functional over the set of all such curves, we obtain
a Riemannian distance d(p, q) inducing the original topology on M . The metric induces a map
f 7→ grad f ∈ X(M) which, for each function smooth over M , associates its gradient via the
rule 〈grad f,X〉 = df(X), X ∈ X(M). Let ∇ be the Levi-Civita connection associated with
(M, 〈 , 〉). In each point p ∈M , we have a linear map AX(p) : TpM → TpM defined by:

AX(p)v = ∇vX. (3)

If X = grad f , where f : M → R is a twice differentiable function, then AX(p) is the Hessian of
f at p and is denoted by Hess pf . A vector field V along γ is said to be parallel if ∇γ′V = 0. If
γ′ itself is parallel we say that γ is a geodesic. Given that the geodesic equation ∇ γ′γ

′ = 0 is a
second order nonlinear ordinary differential equation, we conclude that the geodesic γ = γv(., p)
is determined by its position p and velocity v at p. It is easy to check that ‖γ′‖ is constant. We
say that γ is normalized if ‖γ′‖ = 1. The restriction of a geodesic to a closed bounded interval
is called a geodesic segment. A geodesic segment joining p to q in M is said to be minimal
if its length is equals d(p, q) and the geodesic in question is said to be a minimizing geodesic.
If γ is a geodesic joining points p and q in M then, for each t ∈ [a, b], ∇ induces a linear
isometry, relative to 〈 , 〉, Pγ(a)γ(t) : Tγ(a)M → Tγ(t)M , the so-called parallel transport along γ

from γ(a) to γ(t). The inverse map of Pγ(a)γ(t) is denoted by P−1γ(a)γ(t) : Tγ(t)M → Tγ(a)M . In
the particular case of γ to be the unique geodesic segment joining p and q, then the parallel
transport along γ from p to q is denoted by Ppq : TpM → TqM .

A Riemannian manifold is complete if the geodesics are defined for any values of t. Hopf-
Rinow’s theorem asserts that if this is the case then any pair of points, say p and q, in M can be
joined by a (not necessarily unique) minimal geodesic segment. Moreover, (M,d) is a complete
metric space so that bounded and closed subsets are compact. From the completeness of the
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Riemannian manifold M , the exponential map expp : TpM →M is defined by exppv = γv(1, p),
for each p ∈M .

We denote by R the curvature tensor defined by R(X,Y ) = ∇X∇Y Z−∇Y∇XZ−∇[Y,X]Z,
with X,Y, Z ∈ X(M), where [X,Y ] = Y X − XY . Moreover, the sectional curvature with
respect to X and Y is given by K(X,Y ) = 〈R(X,Y )Y,X〉/(||X||2||X||2 − 〈X , Y 〉2), where
||X|| = 〈X,X〉2. If K(X,Y ) 6 0 for all X and Y , then M is called a Riemannian manifold of
nonpositive curvature and we use the short notation K 6 0.

Theorem 1.1. Let M be a complete, simply connected Riemannian manifold with nonpositive
sectional curvature. Then M is diffeomorphic to the Euclidean space Rn, n = dimM . More
precisely, at any point p ∈M , the exponential map expp is a diffeomorphism.

Proof. See Lemma 3.2 of do Carmo [14], p. 149 or Theorem 4.1 of Sakai [41], p. 221.

A complete simply connected Riemannian manifold of nonpositive sectional curvature is
called a Hadamard manifold. Thus Theorem 1.1 states that if M is a Hadamard manifold, then
M has the same topology and differential structure of the Euclidean space Rn. Furthermore,
are known some similar geometrical properties of the Euclidean space Rn, such as, given two
points there exists an unique geodesic segment that joins them. In this paper, all manifolds M
are assumed to be Hadamard and finite dimensional.

2 Convexity in Hadamard manifolds

In this section, we introduce some fundamental properties and notations of convex analysis on
Hadamard manifolds. References of the convex analysis, on the Euclidean space Rn may be
found in Hiriart-Urruty [21] and on Riemannian manifolds may be found in da Cruz Neto at
all [12], Ferreira and Oliveira [17], Rapcsák [37], Sakai [41], Smith [43] and Udriste [46].

The set Ω ⊂ M is said to be convex if for any geodesic segment, with end points in Ω, is
contained in Ω. Let Ω ⊂M be an open convex set. A function f : M → R is said to be convex
(respectively, strictly convex) on Ω if for any geodesic segment γ : [a, b] → Ω the composition
f ◦ γ : [a, b] → R is convex (respectively, strictly convex). Moreover, a function f : M → R is
said to be strongly convex on Ω with constant L > 0 if, for any geodesic segment γ : [a, b]→ Ω,
the composition f ◦ γ : [a, b]→ R is strongly convex with constant L‖γ′(0)‖2. Take p ∈M . A
vector s ∈ TpM is said to be a subgradient of f at p, if:

f(q) ≥ f(p) + 〈s, exp−1p q〉,

for any q ∈M . The set of all subgradients of f at p, ∂f(p), is called the subdifferential of f at
p.

The following result provides a characterization of convexity in the case of differentiable
functions.

Proposition 2.1. Let Ω ⊂M be an open convex set and f : M → R a differentiable function
on Ω. We say that f is convex on Ω if, and only if, for any p ∈ Ω:

f(q)− f(p) ≥ 〈grad f(p), exp−1p q〉, ∀q ∈ Ω.

Proof. See Theorem 5.1 of Udriste [46], page 78.

The most important consequence of the previous proposition is that with f being convex,
any of its critical points are global minimum points. In particular, if M is compact, then f
is constant. Moreover, 0 ∈ ∂f(p) if, and only if, p is a minimum point of f in M . See, for
example, [46].
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Definition 2.1. Let Ω ⊂ M be an open convex set and X a vector field defined in M . X is
said to be monotone on Ω, if:〈

exp−1q p , P−1qp X(p)−X(q)
〉
≥ 0, p, q ∈ Ω, (4)

where Pqp is the parallel transport along the geodesic joining q to p. If (4) is satisfied with
strict inequality for all p, q ∈ Ω, p 6= q, then X is said to be strictly monotone. Moreover, X
is strongly monotone if there exists λ > 0 such that:〈

exp−1q p , P−1qp X(p)−X(q)
〉
≥ λd2(p, q) p, q ∈ Ω. (5)

Remark 2.1. In the particular case that M = Rn with the usual metric, inequality (4) and
(5) becomes, respectively:

〈p− q , X(p)−X(q)〉 ≥ 0, 〈p− q , X(p)−X(q)〉 ≥ λ‖p− q‖2,

because exp−1q p = p − q and P−1qp = I. Therefore the Definition 2.1 extends the concept of
monotone operators from Rn to Riemannian manifolds.

Now we present an important example of strong monotone vector field being particularly
useful in the remainder of this work.

Take p ∈ M and let exp−1p : M → TpM be the inverse of the exponential map. Note that
d(q , p) = ||exp−1p q||, the map d2( . , p) : M → R is C∞ and

grad
1

2
d2(q, p) = −exp−1q p,

(M is a Hadamard manifold). See, for example, Proposition 4.8 of [41], p. 108.

Proposition 2.2. Take p ∈M . The gradient vector field grad(d2( . , p)/2) is strongly monotone
with λ = 1.

Proof. See da Cruz Neto at all [12].

Proposition 2.3. Let Ω ⊂M be an open convex set and f : M → R a differentiable function
on Ω.

(i) f is convex on Ω if and only if grad f is monotone on Ω;

(ii) f is strictly convex on Ω if and only if grad f is strictly monotone on Ω;

(iii) f is strongly convex on Ω if and only if grad f is strongly monotone on Ω.

Proof. See da Cruz Neto at all [12].

Remark 2.2. Take p ∈ M . From Propositions 2.2 and 2.3 it follows that the map d2( . , p)/2
is strongly convex.

Proposition 2.4. Let Ω ⊂M be a convex set and T ⊂ R a compact set. Let ψ : M × T → R
be a continuous function on Ω × T such that ψτ := ψ(., τ) : M → R is strongly convex on Ω
with constant L > 0 for all τ ∈ T . Then, φ : M → R defined by:

φ(p) := maxτ∈T ψ(p, τ),

is strongly convex on Ω with constant L. In particular, if ψτ is convex for all τ ∈ T then φ is
convex on Ω.

Proof. See Bento at all [8].
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Definition 2.2. Let Ω ⊂ M be an open convex set. A function f : M → R is said to be
Lipschitz on Ω if there exists a constant L := L(Ω) ≥ 0 such that

|f(p)− f(q)| ≤ Ld(p, q), p, q ∈ Ω. (6)

Moreover, if for each p0 ∈ Ω there exists L(p0) ≥ 0 and δ = δ(p0) > 0 such that inequality (6)
holds with L = L(p0) for all p, q ∈ Bδ(p0) := {p ∈ Ω : d(p, p0) < δ}, then f is called locally
Lipschitz on Ω.

Definition 2.3. Let Ω ⊂M be an open convex set and f : M → R a continuously differentiable
function on Ω. The gradient vector field of f , grad f , is said to be Lipschitz with constant Γ ≥ 0
on Ω whenever:

‖ grad f(q)− Ppq grad f(p)‖ ≤ Γd(p, q), p, q ∈ Ω,

where Ppq is the parallel transport along the geodesic joining p to q.

Proposition 2.5. Let Ω ⊂ M be an open convex set and f : M → R a twice continuously
differentiable function on Ω. If Hess pf is bounded on Ω, then the gradient vector field grad f
is Lipschitz on Ω.

Proof. The proof is an immediate consequence of the fundamental theorem of calculus for
vector fields, see for example Ferreira and Svaiter [18].

3 Directional derivatives

In this section we present some properties of the directional derivative of a convex function
defined on a Hadamard manifold, including a characterization of the directional derivative and
of the subdifferential of the maximum of a certain class of convex functions. We also give a
definition of the generalized directional derivative of a locally Lipschitz function (not necessarily
convex), see Azagra et.all [3], and an important property of the subdifferential of the maximum
of continuously differentiable functions.

3.1 Directional derivatives of convex functions

In this subsection we present the definition of the directional derivative of a convex function
defined on a Hadamard manifold and some properties involving its subdifferential, which allow
us to obtain an important property of the subdifferential of the maximum of a certain class of
convex functions.

Let Ω ⊂ M be an open convex set and f : M → R a convex function on Ω. Take p ∈ Ω,
v ∈ TpM and δ > 0 and let γ : [−δ , δ] → Ω be the geodesic segment such that γ(0) = p and
γ′(0) = v. Due to the convexity of f ◦ γ : [−δ , δ]→ R, the function qγ : (0 , δ]→ R, given by

qγ(t) :=
f(γ(t))− f(p)

t
, (7)

is nondecreasing. Moreover, since f is locally Lipschitzian, it follows that qγ is bounded near
zero. This leads to the following definition:

Definition 3.1. Let Ω ⊂ M be an open convex set and f : M → R a convex function on Ω.
Then the directional derivative of f at p ∈ Ω in the direction of v ∈ TpM is defined by

f ′(p, v) := lim
t→0+

qγ(t) = inf
t>0

qγ(t), (8)

where δ > 0 and γ : [−δ , δ]→ Ω is the geodesic segment such that γ(0) = p and γ′(0) = v.

Proposition 3.1. Let Ω ⊂M be an open convex set and f : M → R a convex function on Ω.
Then, for each fixed p ∈ Ω, the subdifferential ∂f(p) is convex.
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Proof. See Theorem 4.6 of Udriste [46], p. 74.

Proposition 3.2. Let Ω ⊂M be an open convex set and f : M → R a convex function on Ω.
Then, for each point fixed p ∈ Ω, the following statement holds:

i) f ′(p, v) = maxs∈∂f(p)〈s, v〉, for all v ∈ TpM ;

ii) ∂f(p) = {s ∈ TpM : f ′(p, v) ≥ 〈s, v〉, v ∈ TpM}.

Proof. See da Cruz Neto at all [11].

Proposition 3.3. Let T be a compact set, Ω ⊂ M an open convex set and h : M × T → R
a continuous function on Ω × T such that h(. , τ) : M → R is convex on Ω for all τ ∈ T . If
f : M → R is given by f(p) = maxτ∈T h(p, τ), then f is convex on Ω and

f ′(p, v) = maxτ∈T (p) h
′(p, τ, v), p ∈ Ω, v ∈ TpM,

where T (p) = {τ ∈ T : f(p) = h(p, τ)}. Moreover, if h(., τ) is differentiable on Ω for all τ ∈ T
and gradp h(p, .) is continuous for all p ∈ Ω, then:

∂f(p) = conv
{

gradp h(p, τ) : τ ∈ T (p)
}
.

Proof. See Bento at all [8].

Corollary 3.1. Let Ω ⊂ M be a open convex set and hi : M → R a differentiable convex
function on Ω for i ∈ I := {1, ...,m}. If h : M → R is defined by h(p) := maxi∈I hi(p), then:

∂h(p) = conv{gradhi : i ∈ I(p)} =

y ∈ TpM : y =
∑
i∈I(p)

αi gradhi(p),
∑
i∈I(p)

αi = 1, αi ≥ 0

 ,

where I(p) := {i ∈ I : h(p) = hi(p)}. In particular, p minimizes h on Ω, if and only if, there
exist αi ≥ 0, i ∈ I(p), such that:

0 =
∑
i∈I(p)

αi gradhi(p),
∑
i∈I(p)

αi = 1.

Proof. It follows directly from Proposition 3.3.

3.2 Directional derivatives of locally Lipschitz functions

In the sequel we present the definition of generalized directional derivative of a locally Lips-
chitz function (not necessarily convex) and an important property of the subdifferential of the
maximum of continuously differentiable functions.

Definition 3.2. Let Ω ⊂M be an open convex set and f : M → R a locally Lipschitz function
on Ω. The generalized directional derivative of f at p ∈ Ω in the direction v ∈ TpM is defined
by:

f◦(p, v) := lim sup
t↓0 q→p

f(expq t(D(expp)exp−1
p qv))− f(q)

t
. (9)

It is worth noting that an equivalent definition has appeared in [3].

Remark 3.1. The generalized directional derivative is well defined. Indeed, let Lp > 0 be the
Lipschitz constant of f in p and δ = δ(p) > 0 such that

|f(expq t(D expp)exp−1
p qv)− f(q)| ≤ Lp d(expq t(D expp)exp−1

p qv, q), q ∈ Bδ(p), t ∈ [0, δ).

Since d(expq t(D expp)exp−1
p qv, q) = t‖(D expp)exp−1

p qv‖, the above inequality becomes:

|f(expq t(D expp)exp−1
p qv)− f(q)| ≤ Lp t‖(D expp)exp−1

p qv‖, q ∈ Bδ(p), t ∈ [0, δ).

Since limq→p (D expp)exp−1
p qv = v, our statement follows from the latter inequality.
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Remark 3.2. Note that, if M = Rn then exppw = p+ w and

D(expp)exp−1
p qv = v.

In this case, (9) becomes:

f◦E(p, v) = lim sup
t↓0 q→p

f(q + tv)− f(q)

t
,

which is the Clarke’s generalized directional derivative in the Euclidean case, see Clarke [15].
Therefore, the generalized differential derivative on Hadamard manifolds is a natural extension
of the Clarke’s generalized differential derivative.

Next we generalize the definition of subdifferential for locally Lipschitz functions defined
on Hadamard manifolds, see Proposition 3.2 item ii.

Definition 3.3. Let Ω ⊂M be an open convex set and f : M → R a locally Lipschitz function
on Ω. The generalized subdifferential of f at p ∈ Ω, denoted by ∂◦f(p), is defined by:

∂◦f(p) := {w ∈ TpM : f◦(p, v) ≥ 〈w, v〉 for all v ∈ TpM}.

Remark 3.3. If f is convex on Ω, then f◦(p, v) = f ′(p, v) (respectively, ∂◦f(p) = ∂f(p)) for all
p ∈ Ω, i.e., the directional derivatives (respectively, subdifferential) for Lipschitz functions is a
generalization of the directional derivatives (respectively, subdifferential) for convex functions.
See Azagra at all [3] Claim 5.4 in the proof of Theorem 5.3.

Definition 3.4. Let Ω ⊂M be an open convex set and f : M → R a locally Lipschitz function
on Ω. A point p ∈ Ω is a stationary point of f if 0 ∈ ∂◦f(p).

Lemma 3.1. Let Ω ⊂M be an open set. If f : M → R is locally Lipschitz on Ω and g : M → R
is continuously differentiable on Ω, then:

(f + g)◦(p, v) = f◦(p, v) + g′(p, v) p ∈ Ω, v ∈ TpM. (10)

As a consequence,
∂◦(f + g)(p) = ∂◦f(p) + grad g(p), p ∈ Ω. (11)

Proof. See Bento at all [8].

It is possible to prove that the next result holds with equality. However we will prove just
the inclusion needed to prove our main result.

Proposition 3.4. Let Ω ⊂M be an open convex set and I = {1, ...,m}. Let fi : M → R be a
continuously differentiable function on Ω for all i ∈ I and f : M → R defined by

f(p) := maxi∈I fi(p).

Then f is Lipschitz locally on Ω and for each p ∈ Ω conv{grad fi(p) : i ∈ I(p)} ⊂ ∂◦f(p),
where I(p) := {i ∈ I : fi(p) = f(p)}.

Proof. See Bento at all [8].
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4 Proximal Point Method for Nonconvex Problems

In this section we present an application of the proximal point method to minimize a real-valued
function (not necessarily convex) given by the maximum of a certain class of continuously
differentiable functions. Our goal is to prove the following theorem:

Theorem 4.1. Let Ω ⊂M be an open convex set, q ∈M and I = {1, ...,m}. Let fi : M → R
be a continuously differentiable function on Ω, for all i ∈ I, and f : M → R defined by

f(p) := maxi∈I fi(p).

Assume that −∞ < infp∈M f(p), grad fi is Lipschitz on Ω with constant Li for each i ∈ I and

Lf (f(q)) = {p ∈M : f(p) ≤ f(q)} ⊂ Ω, inf
p∈M

f(p) < f(q).

Take 0 < λ̄ and a sequence {λk} satisfying maxi∈I Li < λk ≤ λ̄ and p̂ ∈ Lf (f(q)). Then the
proximal point method

pk+1 := argminp∈M

{
f(p) +

λk
2
d2(p, pk)

}
, k = 0, 1, . . . , (12)

with starting point p0 = p̂ is well defined, the generated sequence {pk} rest in Lf (f(q)) and
satisfies only one of the following statements

i) {pk} is finite, i.e., pk+1 = pk for some k and, in this case, pk is a stationary point of f ,

ii) {pk} is infinite and, in this case, any accumulation point of {pk} is a stationary point of
f .

Moreover, assume that the minimizer set of f is non-empty, i. e.,

h1) U∗ = {p : f(p) = infp∈M f(p)} 6= ∅.

Let c ∈ (infp∈M f(p), f(q)). If, in addition, the following assumptions hold:

h2) Lf (c) is convex, f is convex on Lf (c) and fi is continuous on Ω̄ the closure of Ω for
i ∈ I;

h3) For all p ∈ Lf (f(q)) \ Lf (c) and y(p) ∈ ∂◦f(p) we have ‖y(p)‖ > δ > 0,

then the sequence {pk} generated by (12) with

maxi∈I Li < λk ≤ λ̄, k = 0, 1, . . . (13)

converge to a point p∗ ∈ U∗.

Proof. See Bento at all [8].

Remark 4.1. The continuity of each function fi on Ω̄ in h2 guarantees that the level sets of
the fuction f , in particular the solution set U∗, are closed in the topology of the manifold.

In the next remark we show that if Ω is bounded and fi is convex on Ω and continuous on
Ω̄ for all i ∈ I, then f satisfies the assumptions h2 and h3.

Remark 4.2. If fi is also a convex function on Ω for each i ∈ I then by the Proposition 2.4,
the function f is convex on Ω and the assumption h2 is satisfied for all c ≤ f(q). Moreover,
from Remark 3.3,

∂f◦(p) = ∂f(p), ∀ p ∈ Ω. (14)
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Take c ∈ (infp∈M f(p), f(q)) and let us suppose that h1 hold and Ω is a bounded set. Then,
we have

0 < sup {d(p∗, p) : p∗ ∈ U∗, p ∈ Lf (f(q)) \ Lf (c)} = ε < +∞. (15)

Let p∗ ∈ U∗ be fixed, p ∈ Lf (f(q)) \ Lf (c) and y(p) ∈ ∂f(p). The convexity of f on Ω implies
that:

〈y(p) , − exp−1p p∗〉 ≥ f(p)− f(p∗).

Since ‖y(p)‖‖ exp−1p p∗‖ ≥ 〈y(p),− exp−1p p∗〉, d(p∗, p) = ‖ exp−1p p∗‖, p ∈ Lf (f(q)) \ Lf (c)
and U∗ is a proper subset of Lf (c), from the above inequality, we obtain ‖y(p)‖d(p∗, p) >
c − f(p∗) > 0. Thus, from (15) and latter inequality ‖y(p)‖ε > c − f(p∗) > 0. Therefore,
choosing δ = (c− f(p∗))/ε, we have: ‖y(p)‖ > δ > 0, which, combined with (14), shows that f
satisfies h3.

Proof. See Bento at all [8].
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