
September 24-28, 2012
Rio de Janeiro, Brazil

AN ITERATED LOCAL SEARCH HEURISTIC FOR OPEN VEHICLE ROUTING PROBLEMS

Puca Huachi Vaz Penna
Instituto do Noroeste Fluminense de Educação Superior - Universidade Federal Fluminense

Rua João Jazbik, s/no., Aeroporto, 28470-000, Santo Antônio de Pádua, RJ
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ABSTRACT

This paper deals with the Open Vehicle Routing Problem (OVRP) with homogeneous and heterogeneous
fleet. The objective is to determine the set of routes that minimize the total costs. When the fleet is homogeneous,
it is commonly assumed that the number of vehicles must be minimized. The proposed algorithm is based on the
Iterated Local Search (ILS) metaheuristic which uses a Variable Neighborhood Descent procedure, with random
neighborhood ordering (RVND), in the local search phase. The developed algorithm was tested in benchmark
instances with up to 480 customers. The results obtained are quite competitive with those found in the literature.
KEYWORDS. Open Vehicle Routing Problem, Heterogeneous Fleet, Metaheuristic, Iterated Local Search.

Main areas: MH - Metaheuristics, CO - Combinatorial Optimization.

RESUMO

Este trabalho trata o Problema de Roteamento de Veı́culos Aberto (PRVA) com frota homogênea e
heterogênea. O objetivo é determinar um conjunto de rotas que minimizem o custo total. Quando a frota é
homogênga, geralmente assume-se que o número de veı́culos deve ser minimizado. O algoritmo proposto é
baseado na metaheurı́stica Iterated Local Search (ILS), que faz uso do método Variable Neighborhood Descent
com uma ordem de vizinhança aleatória (RVND), na fase de busca local. O algoritmo desenvolvido foi testado
em instâncias com até 480 clientes. Os resultados obtidos são bastante competitivos se comparados com os
encontrados na literatura.
PALAVRAS-CHAVE. Problema de Roteamento de Veı́culos Aberto, Frota Heterogênea, Metaheurı́stica,
Iterated Local Search.

Áreas Principais: MH - Metaheurı́sticas, OC - Otimização Combinatória.
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1 Introduction

The Vehicle Routing Problem (VRP) is one of the best known problems in the field of Operations
Research. Inspired by real world applications, several variants were proposed over the years. In this work, our
interest relies on the Open Vehicle Routing Problem (OVRP) and the Heterogeneous Fixed Fleet Open Vehicle
Routing Problem (HFFOVRP). The OVRP is a special case of the Asymmetric Capacitated Vehicle Routing
Problem (ACVRP) where the vehicles need not to return to the depot after visiting the last customer of a given
route. Any OVRP instance can be converted to an ACVRP instance by simply setting ci0 = 0,∀i ∈ V . Most
authors also state that the number of vehicles must be minimized. The HFFOVRP generalizes the OVRP by
allowing vehicles with different capacities, instead of a homogeneous fleet.

Applications of the OVRPs may arise when a company chooses to hire a vehicle fleet to be in charge of
the delivery services and, due to logistic reasons, these vehicles are not forced to return to the company’s depot.
In this case, the distribution costs are generally proportional to the lenght of the routes and/or to the number of
vehicles used by the outsourced company.

Schrage (1981) was the first to address the problem by describing certain characteristics of some real-life
VRPs. One example mentioned by the author is the air express courier, in which aircrafts depart from a depot city,
deliver their cargo to a set of customers geographically spread and then collect the cargo from the same set of
customers by retracing their routes back to the depot. Bodin et al. (1983) have presented a case study of this
type of application at the FedEx Express company. Besides capacity constraints, other restrictions such as time
windows and routes duration were also considered.

The objective of this work is to present a heuristic algorithm, based on the Iterated Local Search (ILS)
metaheuristic and on the Randomized Variable Neighborhood Descent (Subramanian et al., 2010). The proposed
solution approach is an extension of the one proposed by Penna et al. (2011) for the Heterogeneous Fleet Vehicle
Routing Problem (HFVRP).

The remainder of this paper is organized as follows. Section 2 reviews some works related to the OVRP
and HFFOVRP. Section 3 explains the proposed hybrid heuristic. Section 4 contains the results obtained and a
comparison with those reported in the literature. Section 5 presents the concluding remarks of this work.

2 Related Works

After the works of Schrage (1981) and Bodin et al. (1983), the OVRP literature remained practically
unchanged for nearly two decades until it was revisited by Sariklis e Powell (2000). The authors proposed
a cluster-first, route second approach (Bodin e Golden, 1981) where the first phase consists in grouping the
customers according to the capacity constraints, while the second phase consists of a Minimum Spanning Tree
(MST) heuristic that incorporates a penalty procedure.

Letchford et al. (2007) presented an Integer Linear Programming formulation, a set of valid inequalities,
as well as a Branch-and-Cut algorithm that is mainly based on the one described in Lysgaard et al. (2004). Their
procedure is capable of solving to optimality several small and medium-sized instances. This work, along with the
one of Pessoa et al. (2008), are to date the only exact approaches that dealt with the OVRP.

A considerable number of OVRP heuristic algorithms have been published since 2004. Some of these are
based on the Tabu Search (TS) metaheuristic. Brandão (2004) proposed a TS heuristic that makes use of a nearest
neighborhood heuristic and a K-tree based procedure for generating initial solutions, whereas the local search is
performed by shift and swap moves. Tarantilis et al. (2004b) suggested a heuristic that interactively combines
the TS and Adaptive Memory Procedure (AMP) methods. Fu et al. (2005, 2006) developed a TS algorithm that
employs a farthest-first heuristic for constructing an initial solution while shift, swap and 2-opt moves are used in
the local search phase. Derigs e Reuter (2009) proposed a Attribute Based Hill Climber procedure which is similar
to the one presented in Derigs e Kaiser (2007) for the CVRP.
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OVRP algorithms based on other local search metaheuristics were also proposed. Tarantilis et al. (2004a)
presented a threshold accepting approach (Dueck e Scheuer, 1990) that consists of an adaptation of the Simulated
Annealing (SA) procedure in which a worse solution is only accepted if it is within a given threshold. The
same authors (Tarantilis et al., 2005) also proposed another threshold accepting procedure that is integrated in a
single-parameter metaheuristic. Li et al. (2007b) put forward a record-to-record (Dueck, 1993) travel algorithm
that, also as the threshold method, consists of a deterministic variant of the SA. Fleszar et al. (2009) presented
a VNS heuristic whose neighborhood operators are composed by exchanging segments between two routes and
reversing segments of a single route. Zachariadis e Kiranoudis (2010) developed a local search metaheuristic that
explores wide neighborhoods by only evaluating parts of a current solution that have been modified by a previous
move.

Differently from pure local search approches, there are few works containing applications of Evoluti-
onary Strategies (ES) to the OVRP. Li e Tian (2006) presented an Ant Colony (AC) algorithm combined with
local search followed by a post-optimization procedure applied to the best solution obtained. A similar approach
was later developed by Li et al. (2009) where a TS procedure is incorporated into the AC framework. Repoussis
et al. (2010) suggested a heuristic based on ES in which offspring individuals (solutions) are generated through
mutation operators and these intermediate solutions are improved by a procedure based on Guided Local Search
(GLS) and TS.

To our knowledge, the HFFOVRP was proposed by Li et al. (2012). According to the authors, the
HFFOVRP is more realistic in real situations than OVRP. To solve the problem they developed an algorithm
based on multi-start AMP with a modified TS used as an improvement procedure. In the modified TS procedure
infeasible solutions, that violate the vehicle capacity constraint, are allowed.

As mentioned before, most works on OVRP has aimed at minimizing the number of vehicles. However,
this objective was not considered in the HFFOVRP proposed in Li et al. (2012).

3 The MILS-RVND Algorithm

This section describes the proposed heuristic algorithm, called MILS-RVND (see Alg. 1). Let v be the
number of vehicles (or routes), where its value is defined on line 3. The multi-start heuristic executes MaxIter
iterations (lines 5-22), where at each iteration a solution is built using a constructive procedure (line 6). The ILS
procedure (lines 9-17) aims at improving this initial solution by means of a combination between local search
(RVND, line 10) and perturbation (line 15). With respect to the acceptance criterion, it can be observed that
algorithm only perturbs the best current solution (s′) of a particular iteration. The maximum number of consecutive
perturbations allowed without improvements is denote by the parameter MaxIterILS.

The next subsections provide a detailed explanation of the main components of the MILS-RVND
heuristic.

3.1 Estimating the Number of Vehicles

For the OVRP, use is made of a lower bound on the number of vehicles (vmin) which is computed
dividing the sum of the customers demands by the capacity of the vehicle. As for the HFFOVRP, the maximum
number of vehicles of each type is initially considered.

3.2 Constructive Procedure

The initial solutions are built using the following constructive procedure. Firstly, a random seed
customer k from a Candidate List (CL) is randomly selected to be inserted in a route. This step is repeated
until v− 1 vehicles are filled with a single customer. Next, the algorithm generates an initial solution by randomly
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Algorithm 1 MILS-RVND
1: Procedure MILS-RVND(MaxIter,MaxIterILS, v)
2: LoadData( );
3: v← EstimateTheNumberOfVehicles();
4: f∗←∞;
5: for i← 1, . . . ,MaxIter do
6: s← GenerateInitialSolution(v, MaxIter, seed);
7: s′← s;
8: iterILS← 0;
9: while iterILS ≤MaxIterILS do

10: s← RVND(s);
11: if f(s) < f(s′) {or v of s < v of s′ (considered only when v must be minimized)} then
12: s′← s;
13: iterILS← 0;
14: end if
15: s← Perturb(s′, seed);
16: iterILS← iterILS + 1;
17: end while
18: if f(s′) < f∗ then
19: s∗← s′;
20: f∗← f(s′);
21: end if
22: end for
23: return s∗;
24: end MILS-RVND.

selecting an insertion criterion and an insertion strategy. Two insertion criteria were considered: the Modified
Cheapest Feasible Insertion Criterion (MCFIC) and the Nearest Feasible Insertion Criterion. The first consists of
a modification of the well-known Cheapest Insertion Criterion by taking into account an insertion incentive for
those customers located far from the depot. Two insertion strategies were adopted, namely the Sequential Insertion
Strategy (SIS) and the Parallel Insertion Strategy (PIS). In SIS, while there is at least one unrouted customer that
can be added to the current partial solution, each route is filled with a customer selected using the correspondent
insertion criterion. In PIS, all routes are considered while evaluating the least-cost insertion.

3.3 Local Search

The local search is performed using a RVND procedure whose description can be found in Alg. 2.
Firstly, a Neighborhood List (NL) is initialized with a set of inter-route neighborhood structures (line 3). In the
main loop (lines 4-13), a neighborhood N (η) ∈ NL is randomly selected (line 5) and then the best admissible
move is determined (line 6). In case of improvement, the algorithm performs an intra-route local search in the
modifed routes and NL is populated with all the neighborhoods (lines 7-10). Otherwise, N (η) is removed from the
NL (line 12). A set of Auxiliary Data Structures (ADSs) is updated (see Penna et al., 2011) at the beginning of
the procedure (line 2) and whenever a neighborhood search is performed (line 13). Finally, a procedure that tries
to empty a route is applied (line 14).

The intra-route local search works as follows. Define N ′ as the set composed by r′ intra-route
neighborhood structures. Firstly, a neighborhood list NL′ is initialized with all the intra-route neighborhood
structures. Secondly, while NL′ is not empty, a neighborhood N ′(η) ∈ NL′ is selected at random and a local
search is exhaustively performed until no more improvements are found.
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Algorithm 2 RVND
1: Procedure RVND(s)
2: Update ADSs;
3: Initialize the inter-route Neighborhood List (NL);
4: while NL 6= 0 do
5: Choose a neighborhood N (η) ∈ NL at random;
6: Find the best neighbor s′ of s ∈ N (η);
7: if f(s′) < f(s) then
8: s← s′;
9: s← IntraRouteSearch(s);

10: Update NL; {NL in populated with all inter-route neighborhood structures}
11: else
12: Remove N (η) from the NL;
13: end if
14: Update ADSs;
15: end while
16: TryToEmptyRoute(s); {considered only on the Homogeneous fleet OVRP}
17: return s;
18: end RVND.

3.3.1 Inter-Route Neighborhood structures

The following six inter-route neighborhood structures were considered in the local search. Shift(1,0), a
customer k is moved from a route r1 to a route r2. Swap(1,1), permutation between a customer k from a route
r1 and a customer l, from a route r2. Shift(2,0), an arc (k, l) is transferred from a route r1 to a route r2. The
move also examines the transferring of the arc (l, k). Swap(2,1), permutation of an arc (k, l from a route r1 by a
customer k′ from a route r2. As in Shift(2,1), arc (l, k) is also considered. Swap(2,2), permutation between two
an arc (k, l), from a route r1 by another one (k′, l′), belonging to a route r2. All the four possible combinations of
exchanging arcs (k, l) and (k′, l′) are considered. Cross, the arc between adjacent clients k and l, belonging to a
route r1, and the one between k′ and l′, from a route r2, are both removed. Next, an arc is inserted connecting k
and l′ and another is inserted connecting k′ and l.

It is important to emphasize that all possible combinations of the moves mentioned above are examined
but only feasible moves are considered.

3.3.2 Intra-Route Neighborhood structures

Five intra-route neighborhood structures were adopted. The set N ′ is composed by Or-opt, 2-opt and
exchange moves. The computational complexity of these neighborhoods is O(n̄2), where n̄ is the number of
customers of the modified routes. Their description is as follows. Reinsertion, one, customer is removed and
inserted in another position of the route. Or-opt2, two adjacent customers are removed and inserted in another
position of the route. Or-opt3, three adjacent customers are removed and inserted in another position of the route.
2-opt, two nonadjacent arcs are deleted and another two are added in such a way that a new route is generated.
Exchange, permutation between two customers.

3.3.3 Trying to Empty a Route

As stated by most authors, minimizing the number of vehicles is the primary goal in the OVRP. Hence
a greedy randomized procedure was developed for dealing with this issue, as can be observed in Alg. 3. The
idea is to make use of the residual capacity and residual duration of the routes of a given solution s by means of
local search, with a view of decreasing the number of routes of s. The procedure starts by storing a backup of the
solution s in s′ (line 2). Let Route List (RL) be the list composed by the routes of s (line 3). While |RL| is greater
than 1 (lines 4-11), an attempt to empty a route is performed. A route r is selected to be removed from RL (lines
6-7) according to one of the following criteria: (i) route with maximum load; (ii) route with maximum duration;
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(iii) random selection. The route selection criterion is chosen at random (line 5). Next, while it is still possible
to move a customer from any route r′ ∈ RL to r or it is still possible to exchange a customer from any route
r′ ∈ RL with another one in r in such a way that the load of r is increased, a local search is performed between
the route r and those in RL by the neighborhood structures Shift(1,0), Shift(2,0) and Swap(1,1) (lines 9-11). The
best admissible move is considered for each of these three neighborhoods. Moreover, in the case of Shift(1,0) and
Shift(2,0), a move is immediately accepted if a route r′ ∈ RL becomes empty, whereas in the case of Swap(1,1),
a move is only accepted if the vehicle load of r is increased. An intra-route local search is performed in every
modified route using 2-opt and exchange neighborhood structures. If the procedure is not capable of emptying a
route then the current solution is restored (lines 12-13).

Algorithm 3 TryEmptyRoute
1: Procedure TryEmptyRoute(s)
2: s′ ← s
3: Initialize Route List (RL) with the routes of s
4: while |RL| > 1 do
5: Choose a route selection criterion at random;
6: Choose a route r ∈ RL according to the selected criterion;
7: Remove r from RL;
8: while it is still possible to move a customer from any route r′ ∈ RL to r or it is still possible to exchange a customer from any route

r′ ∈ RL with another one in r in such a way that the load of r is increased do
9: s← Shift(1,0);

10: s← Shift(2,0);
11: s← Swap(1,1);
12: end while
13: end while
14: if number of routes of s is equal to the number of routes of s′ then
15: s← s′;
16: end if
17: return s;
18: end TryEmptyRoute.

3.4 Perturbation Mechanisms

A set P of two perturbation mechanisms were considered. Whenever the Perturb() function is called,
one of the following moves is randomly selected. Only feasible perturbation moves are accepted.

Multiple-Swap(1,1) – P (1): Multiple random Swap(1,1) moves are performed in sequence.
Multiple-Shift(1,1) –P (2): Multiple random Shift(1,1) moves are performed in sequence. The Shift(1,1)

consists in transferring a customer k from a route r1 to a route r2, whereas a customer l from r2 is transferred to
r1.

4 Computational Results

The algorithm MILS-RVND was coded in C++ (g++ 4.4.3) and, for the OVRP, the tests were executed
in an Intel R© CoreTM 2 Quad with 2.4 GHz and 4 GB of RAM running under Linux 64 bits (kernel 2.6.27-16).
As for the HFFOVRP the tests were executed in an Intel R© CoreTM i7 with 2.93 GHz and 8 GB of RAM running
under Linux 64 bits (kernel 2.6.32-22). Only a single thread was used in the experiments.

In the tables presented hereafter, Instance denotes the number of the test-problem, n is the number of
customers, BKS represents the best known solution reported in the literature, Best Sol., Avg. Sol. and Time(s)
indicate, respectively, the best solution, the average solution and the average computational time in seconds
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associated to the correspondent work, Gap denotes the gap between the best solution found by MILS-RVND and
the best known solution, Avg. Gap corresponds to the gap between the average solution found by MILS-RVND
and the best known solution. The best solutions are highlighted in boldface and the solutions improved by
MILS-RVND are underlined. The approximate speed, in Mflop/s, of the machines used by other authors is also
reported considering the factors suggested by the benchmarks of Dongarra (2010), when solving solving a system
of equations of order 1000.

4.1 Parameter Tuning

It has been empirically observed that the suitable values of MaxIterILS depends on the size of the
instances, more precisely, on the number of customers and vehicles. For the sake of simplicity, we have chosen to
use a simple linear expression for computing the value of MaxIterILS according to n and v, as shown in Eq. 1.

MaxIterILS = n+ β × v (1)

The parameter β in Eq. 1 corresponds to a non-negative integer constant that indicates the level of
influence of the number of vehicles v in the value of MaxIterILS.

After some preliminary tests we decided to adopt the following values: MaxIter = 50 and β = 5.

4.2 OVRP

To examine the behavior of the MILS-RVND algorithm when applied to solve the OVRP, use was made
of two well-know benchmark datasets from the literature. The first set contains the instances of Christofides et al.
(1979) without and with route durations constraints (see Brandão, 2004, for more details), as well as another
two generated by Fisher (1994) were also considered. The second set corresponds to the large-sized instances
suggested by Li et al. (2007b) involving 200-480 customers.

Table 1 presents the results found by MILS-RVND in the first set of instances and a comparison with
those pointed out by Pisinger e Røpke (2007) (ALNS 50K), Fleszar et al. (2009), Repoussis et al. (2010) and
Zachariadis e Kiranoudis (2010). Regarding those of Christofides et al. (1979) and Fisher (1994), MILS-RVND
was capable to obtain the BKS in 11 cases and to improve another 2 solutions, but it failed to find 3 BKSs.
Furthermore, MILS-RVND also failed to always obtain solutions with the minimum number of vehicles on
instances C7 and C9. Although the MILS-RVND was capable of producing competitive results, its performance
with respect to the minimization of the number of vehicles was slightly worse when compared to the other
algorithms, namely on those instances that include route duration constraints. The average gap between the Avg.
Sols. obtained by MILS-RVND and the BKSs, disregarding those two instances where the average number of
vehicles found by the proposed algorithm was larger than those associated to the BKSs, was 0.62%.

Table 2 shows the results obtained in the second set of instances. It can be observed that MILS-RVND
improved 7 results and the average gap between the Avg. Sols produced by MILS-RVND and the BKSs was
0.19%. Also, the developed algorithm was successful to generate feasible solutions using vmin vehicles in all
instances of this group.
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Tabela 2. Results found for the instances of Li et al. (2007a)
Repoussis et al. (2010) Zachariadis and MILS-RVND

Kiranoudis (2010)
Instance n vmin BKS vbest Best Time1 Best Time2 Best Avg. Gap Avg. Time

Sol. v (s) Sol. v (s) Sol. v Sol. (%) Gap (%) (s)

O1 200 5 6018.52 5 6018.52 5 452 6018.52 5 612 6018.52 5 6018.52 0.00 0.00 160.27
O2 240 9 4557.38 9 4583.7 9 613 4557.38 9 774 4547.67 9 4567.72 -0.21 0.23 172.18
O3 280 7 7731.00 7 7733.77 7 736 7731.00 7 681 7721.16 7 7730.30 -0.13 -0.01 335.04
O4 320 10 7253.20 10 7271.24 10 833 7253.20 10 957 7220.19 10 7248.29 -0.46 -0.07 490.66
O5 360 8 9193.15 8 9254.15 8 1365 9193.15 8 1491 9225.78 8 9289.39 0.35 1.05 996.76
O6 400 9 9793.72 9 9821.09 9 1213 9793.72 9 1070 9771.31 9 9809.87 -0.23 0.16 1207.13
O7 440 10 10347.70 10 10363.4 10 1547 10347.70 10 1257 10325.70 10 10365.80 -0.21 0.17 1567.80
O8 480 10 12415.36 10 12428.2 10 1653 12415.36 10 1512 12389.40 10 12412.60 -0.21 -0.02 1816.19

Average -0.14 0.19 843.25
1: Best run on a Scaled to a Pentium II 400 MHz (262 Mflop/s).
2: Average of 10 runs on a T5500 1.66 GHz (2791 Mflop/s).

4.3 HFFOVRP

In the case of the HFFOVRP, a comparison performed between MILS-RVND and the MAMP algorithm
proposed by Li et al. (2012) was not possible, because the authors have not provided their instances. Therefore, we
decided to adapt the well-known instances prosed by Taillard (1999) for the HFFVRP. This set is composed by 8
instances up to 100 customers with fixed and variable costs. The results found by MILS-RVND for the HFFOVRP
were presented in Table 3

Tabela 3. Results found for the HFFOVRP
MILS-RVND

Best Avg. Avg. Time
Instance n t v Sol. v Sol. Gap (%) (s)
13 50 6 17 2588.65 16 2591.04 0.09 4.59
14 50 3 7 9961.81 6 9966.91 0.05 4.23
15 50 3 9 2731.46 9 2731.63 0.01 4.16
16 50 3 9 2929.78 8 2958.32 0.97 4.16
17 75 4 11 1792.20 10 1798.55 0.35 12.47
18 75 6 14 3228.14 12 3235.93 0.24 12.95
19 100 3 10 10179.70 8 10187.99 0.08 39.51
20 100 3 13 4344.55 13 4349.33 0.11 29.17
Average 0.24 13.91

5 Concluding Remarks

This paper dealt with Open Vehicle Routing Problem (OVRP) and the Heterogeneous Fixed Fleet
Open Vehicle Routing Problem (HFFOVRP). These problems often arises in distribution management and
transportation. Both variants were solved by a multi-start algorithm based on the Iterated Local Search (ILS)
metaheuristic, that uses a Variable Neighborhood Descent procedure, with random neighborhood ordering
(RVND) in the local search phase.

The proposed algorithm (MILS-RVND) was tested on 24 benchmark instances with up to 480 customers
for the OVRP and it was found capable to obtain 9 new improved solutions, to equal the result of 11 instances
and failed to obtain the best known solution of only 4 instances. Finally, we proposed 8 new instances for the
HFFOVRP which were adapted from well-known instances available in the literature. The average gap between
the Avg. Sols. and the Best Sol. obtained by MILS-RVND was only 0.24%.
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