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Abstract
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1 Introduction

2 Legendre Type Function in IR
n

Definition 2.1 A poper lower semicontinuous convex function h : IRn → (−∞,+∞] is called
essentially smooth if h satisfies:

1. int(dom h) 6= ∅

2. h is differentiable on int(dom h)

3. ||∇h(xk)|| → +∞, for all {xk} ⊂ int(dom such that xk → x̄, for some x̄ ∈ Bound(dom h).

Remark 2.1 (Rock, theorem 26.1) h is essentially smooth if and only if

∂h(x) =

{

{∇h(x)}, x ∈ int(dom h)
∅, otherwise

In particular dom ∂h = int(dom h).

Definition 2.2 A poper lower semicontinuous convex function h : IRn → (−∞,+∞] is called
strictly essentially smooth if:

1. h is essentially smooth

2. h is striclty convex on every convex subset of dom ∂h.

Remark 2.2 (Rock, Section 26) h is essentially smooth if and only if h∗ is essentially
strictly convex

Definition 2.3 A poper lower semicontinuous convex function h : IRn → (−∞,+∞] is called
of Legendre type, denoted by h ∈ L, if it is essentially smooth and essentially strictly convex.

Remark 2.3 If h is of Legendre type, then

(∇h)−1 = ∇h∗.

Let h ∈ L. Define the funcion Dh(., .) : S̄ × S → IR so that

Dh(x, y) := h(x)− h(y)− 〈∇h(y), exp−1
y x〉y. (2.1)

Definition 2.4 Let Ω ⊂ IRn, and let y ∈ IRn. A point Py ∈ Ω for which

Dh(Py, y) = min
x∈Ω

Dh(x, y) (2.2)

is called a Dh−projection of the point y on the set Ω.

This point also is denoted by

Py = arg min{Dh(u, y) : u ∈ Ω}
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The next Lemma furnishes the existence and uniqueness of Dh−projection for a type Legendre
function under an appropriate assumption on Ω.

Lemma 2.1 Let Ω ⊂ H a nonempty closed convex set such that int(dom h) ∩ ir(Ω) 6= ∅ and
h ∈ L. Then, for any y ∈ H, there exists a unique Dh−projection Py of the point y on Ω
satisfying

i. Py ∈ int(dom h).

ii. 〈∇h(y)−∇h(Py), c− Py〉 ≤ Dh(c, Py),∀c ∈ C.

Proof. C’est facil.

Now, we define the proximal normal cone NP
Ω (x) of Ω at x ∈ Ω.

NP
Ω (x) = {t(y − x) : t ≥ 0, x ∈ PΩ(y), y ∈ IRL}

where PΩ denotes the usual projection on Ω and each vector is called a proximal normal to Ω
at x

Proposition 2.1 Suppose that h ∈ L is twice continuously differentiable on S = intdom h, let
y ∈ S and suppose that x = PDh

(y) on Ω, then

∇h(y)−∇h(x) ∈ NP
Ω (x).

3 A Proximal Decomposition Method with Bregman Distances

Consider the problem:
find (x, y) ∈ A×B such that y ∈ T (x) (3.3)

Along this section we use the notation S = int(dom h)

Definition 3.1 Let T be a monotone multivalued operator on IRn and (x, y) ∈ S × IRn. The
proximal decomposition with the factor λ > 0 of (x, y) on the graph of T and the function h ∈ L,

is the unique pair (u, v) ∈ S × IRn such that

∇h(x) + λy = ∇h(u) + λv; v ∈ T (u)

Remark 3.1 The above definition is well given. In fact, suppose that there exists another
(u′, v′) ∈ Gr(T ) satisfying the condition of the definition, from the convexity of h, the above
definition and the monotonicity of T we have that

0 ≤ 〈∇h(u)−∇h(u′), u− u′〉 = 〈v′ − v, u− u′〉 ≤ 0

Now, from the strictly convexity of h we obtain that u′ = u and using this fact in the definition
we obtain that v′ = v.

Remark 3.2 A simple manipulation of the definition provides the following expression:

u = (∇h + λT )−1 (∇h(x) + λy)

v =

(

I +
1

λ
∇h ◦ T−1

)−1 (

1

λ
∇h(x) + λy

)
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PDB Algorithm

Let h ∈ L and let Dh be the function associate to h and defined by (2.1).

Initialization:
Let λ > 0 and

(x0, y0) ∈ (S ∩A)×B (3.4)

Main Steps:
For k = 1, 2, 3, ...,

uk = (∇h + λT )−1
(

∇h(xk) + λyk
)

(3.5)

vk = −
1

λ
∇1Dh(uk, xk) + yk (3.6)

If (uk, vk) ∈ A×B then stop.
Otherwise,

xk+1 = PDh
(uk) and yk+1 = vk

B (3.7)

Take k ← k + 1.

Remark 3.3 PDh
(uk) is the projection of uk on A with respect to the Bregman distance Dh,

that is,
xk+1 = arg min{Dh(x, uk) : x ∈ A}

Remark 3.4 If h(x) = 1

2
||x||2 then

uk = (I − λT )−1(xk + λyk)

vk =
1

λ
(xk + λyk − uk)

xk+1 = uk
A, yk+1 = vk

B

which is the proximal decomposition method.

Remark 3.5 If T = ∂f where f is a proper, lsc and convex function then the problem (3.3)
becomes in

min{f(x) : x ∈ A}

and the algorithm is:

Algorithm for Minimization

Let h ∈ L with S = intdom h, as defined in Section 2, and let Dh be the function asso-
ciate to h and defined by (2.1).

4
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Initialization:
Let λ > 0 and

(x0, y0) ∈ (S ∩A)×B

Main Steps:
For k = 1, 2, 3, ...,

uk = arg min{f(u)− 〈u, yk〉+
1

λ
Dh(u, xk)} (3.8)

vk = −
1

λ
∇1Dh(uk, xk) + yk

If (uk, vk) ∈ A×B then stop.
Otherwise,

xk+1 = PDh
(uk) and yk+1 = vB

k

Take k ← k + 1.

4 Some Preliminar Results

Alog this section we have the following assumptions:

Assumption 1: T is a multivalued monotone operator satisfying domT ∩A ∩ S 6= ∅

Lemma 4.1 Suppose that λ > 0 and h ∈ L,. Then under assumption 1, the mapping (∇h +
λT )−1 is single valued.

Proof. [Eckstein, 1993] Since that h is strictly convex on S we have for x 6= y

〈∇h(x)−∇h(y), x− y〉 > 0

As T is monotone then ∇h + λT is strictly monotone and therefore (∇h + λT )(x) and (∇h +
λT )(y) do not intersect to x 6= y. Therefore (∇h + λT )−1 is single valued.

Theorem 4.1 Under assumption 1, and h ∈ L, the sequence (xk, yk) generated by the (PBD)
algorithm is well definided for each k and (xk, yk) ∈ (A ∩ S)×B.

Proof. We proced by induction. It holds for l = 0, due to (3.4). Assume that (xl, yl) ∈
(A∩S)×B. As h ∈ L from Lemma 4.1 there exist (ul, vl) satisfying (3.5) and (3.8) respectively.
As h ∈ L the set

arg min{Dh(x, uk) : x ∈ A}

is nonempty and has an unique element in A ∩ S, thus there exists xl+1 ∈ A ∩ S such that

xl+1 = arg min{Dh(x, uk) : x ∈ A},

On the other hand, always there exists yl+1 :

yl+1 = vl
B.

is well defined.
On the other hand, Therefore we obtain the aimed resultd.
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Remark 4.1 Consider λ = 1 and define

L : H ×H → H such that L(x, y) = ∇h(x) + y,

F : H → H ×H : F (z) = F (∇h(x) + y) = (u, v)

where ∇h(x) + y = ∇h(u) + v, v ∈ T (u),

P : H ×H → A×B : P (x, y) = (PDh
(x), yB).

Then, one iteration of the algoritm may be view as the application of the operator

Z = P ◦ F ◦ L

on A×B.

Lemma 4.2 All fixed point of the operator Z = P ◦ F ◦ L is a solution of the problem (3.3).

Proof. Let (x, y) ∈ dom Z such that:

(x, y) = Z(x, y).

This implies that
(x, y) = P (u, v) = (PDh

(u), vB) (4.9)

where
∇h(x) + y = ∇h(u) + v, v ∈ T (u) (4.10)

Thus, from (4.10)
(∇h(u)−∇h(x), v − y) ∈ {(a, b) : a + b = 0} (4.11)

On the other hand, from (4.9) we obtain that

v = vA + vB = vA + y

which implies that
v − y ∈ A (4.12)

Also, from (4.9) we will prove that

∇h(u)−∇h(x) ∈ B (4.13)

Of fact, as x = PDh
u, on A then from Proposition 2.1 then

∇h(u)−∇h(x) ∈ NP
A (x).

So, there exists y ∈ IRn and t ≥ 0 such that x = yA and

∇h(u)−∇h(x) = t(y − x) = t(yA + yB − x) = tyB ∈ B. (4.14)

From (4.13) and (4.12) we obtain that

(∇h(u)−∇h(x), v − y) ∈ B ×A (4.15)

which jointly with (4.11) gives

∇h(x) = ∇h(u) and u = v

as h ∈ L this implies that
x = u and u = v
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