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ABSTRACT 
 

The paper presents a model and an algorithm for solving a class of stochastic economic 
lot sizing problems (SELSP). SELSP is important because it is very common in both 
manufacturing and process industries. The algorithm is related to the manufacturing strategy 
which consists of dynamic scheduling and fixed pitch production. These strategies are rather 
unexplored in the literature; yet, they are promising since they give flexibility to the solution. 

The algorithm returns a near-optimal solution composed of all the parameters needed to 
operate the production system. In order to do so, it iteratively combines two procedures: (i) a 
method of successive approximations which chooses progressively better values for the 
production pitch and the lot sizes, and (ii) a discrete stochastic simulation routine to find the 
order points. 

The algorithm proved to be fast enough to allow its frequent use in real world problems, 
on computers in current use. 
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1. Introduction 
The present paper deals with production and inventory systems of multiple products 

processed in a single stage, with a single machine, one product at a time, while the system is 
subject to the presence of significant setup time. This problem is extensively treated in literature, 
being identified as SELSP (Stochastic Economic Lot Sizing and Scheduling Problem), or just 
ELSP (Economic Lot Sizing and Scheduling Problem) in its deterministic version. 

Its importance stems from the fact that it is very common in both process and 
manufacturing industries. In process industries, it is central to planning and controlling the 
production of various segments, as for example: petrochemical, chemical, pharmaceutical and 
food industries. In manufacturing, it frequently appears in production steps such as: stamping, 
plastic and metal molding, machining centers, assembly cells, etc. 

More recently, interest in SELSP has been renovated and expanded due to the 
popularization of a management approach known as lean manufacturing, which seeks to organize 
the industrial plants as chains composed of consecutive modules of production and inventory, of 
which a large amount are real instances of SELSP. 

The methods of solution in the deterministic version of the problem (ELSP) try to find a 
production cycle comprising a fixed sequence of production and fixed lot sizes, so that: (i) it can 
be repeated indefinitely, (ii) it fully meets the demand (iii) it respects the capacity and (iv) it 
incurs in the lowest possible long term storage and setup costs. 

In order to solve the stochastic problem (SELSP), there are several different strategies. 
Several methods were proposed that complement ELSP with rules that make the production 
sequence and / or lot sizes more flexible, in response to the current state of the system, 
represented by the balance for each product in inventory and the current machine setup. 
Generally, the solution must contain a set of rules capable of indicating, at each moment, if the 
machine must be kept in its current state (continuing with the same product in production or 
continuing idle), or if its status should be changed to begin the production of another product or if 
it should start the idle period. 

This article aims at presenting a solution to a class of SELSP restricted by the following 
characteristics: 

a) The demand is known, with exponential and stationary probability function; 
b) The service level (i.e. the percentage of time in which demand was fully met during 

inventory lead time with regards to the total number of lots requested) is pre-
defined and equal for all products; 

c) Demand that is not readily met is pending for service as soon as possible (backlog); 
d) Production and setup unit times of each product are deterministic, known and 

independent of the production sequence; 
e) The production capacity is fixed, known and previously contracted for fixed cost, 

regardless of percentage of use; 
f) There is no significant setup cost (besides the loss of production time); 
g) The cost of stocking is directly proportional to the maximum total coverage of the 

inventory of products (i.e. the ratio between the highest possible level of inventory 
of finished products plus work-in-process inventory of each product divided by its 
rate of demand); 

h) The raw material needed to produce one lot is integrally provided to the production 
process when the lot production is requested; 

i) The products of a lot are delivered to stock all at once at the end of the lot 
production; 

j) The planning horizon is indefinite or infinite. 
The remainder of this paper is organized as follows: the next section presents the 

theoretical context of SELSP, limited to the references which are most relevant to the work. 
Section 3 explains and justifies the rules of control that make up the production strategy adopted. 
Section 4 formulates a mathematical model to calculate the parameters needed to operate the 
system through the chosen strategy. Section 5 presents the structure of the algorithm that was 
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implemented for solution of the model. Section 6 shows the output of the algorithm to three 
instances of the problem. In section 7, some conclusions are discussed and possible developments 
are pointed out. 

2. Theoretical background 
Management methods that establish a priori rules or strategies might be discarding the 

best solutions. The best ones can be found, in principle, by fully flexible methods, i.e. methods 
whose decisions are made dynamically, depending on the current state of the system. 
Nevertheless, the latest revision of the state of the art in SELSP by Winands et al. (2010) showed 
that most proposed solutions pre-set static rules, which are kept fixed regardless of the state of 
the system. 

Only two fully flexible solutions proposed for SELSP were found in the literature. In 
one of them, Qiu and Loulou (1995) modeled the SELSP as a semi-Markov stochastic process 
and solved it using dynamic programming. Thus, a near-optimal solution and an estimated 
maximum deviation in relation to optimum were obtained. Their proposal, however, is limited by 
the following: (a) it may only be used for 2 or 3 products, due to the exponential growth in the 
state space of the stochastic process, and (b) the difficulty to operate, and even communicate to 
the user, the policy to be pursued when we have more than two products. 

The other fully flexible solution was presented by Paternina-Arboleda and Das (2005), 
who developed an optimization method based on multi-agent simulation, using an artificial 
intelligence procedure called reinforcement learning to "teach" the agents to take the decision. 
According to the authors, this method is efficient enough to be used with many products. As the 
difficulty to inform the policy to the user persists, the authors proposed to use data mining to 
extract and communicate only the most relevant part of the decision rules. 

With so few results regarding flexible methods, Winands et al. (2010) strongly 
suggested that further research target particularly on dynamic scheduling strategies based on 
intuitive near-optimal rules which can be used in problems with many products. 

Following this point of view, Segerstedt (Segerstedt, 1999) and Nilsson (Nilsson and 
Segerstedt, 2008) have developed and perfected dynamic scheduling methods of production, 
exploring the idea of producing first the product which is closest to running out of stock. 
Furthermore, Brander et al. (2005) showed through simulations that the queuing discipline has a 
more decisive impact on the quality of solutions than the lot size. They postulated that flexibility 
in the sequence was more important than the lot sizes in solutions for the SELSP. 

Another important contribution to the development of flexible methods has been given 
by Zipkin (Zipkin, 1986). He proposed the connection between classical models of inventory and 
queuing replenishment orders for the solution of SELSP. His work showed that these problems 
are convex as long as certain restrictions are met. Among these, the most 'uncomfortable' one is 
that the production time for a product lot should be approximately independent of the lot 
quantity. 

3. Control rules proposed 
Following the guidelines recommended by Winands et al. (2010), we adopted a set of 

control rules to solve the SELSP described in section 1, which are, at the same time, flexible and 
easy to operate. The control rules (to be used together) are: 

3.1. Production dynamic scheduling 
Similarly to Segerstedt’s proposal (Segerstedt, 1999), products will be prioritized for 

production according to their time coverage. ‘Time coverage’ is the result of dividing the balance 
stock for its demand rate.  

Thus, every time it is possible to start the production of a new lot size, the product with 
the shortest time coverage will be chosen among those whose inventory is below the ‘order 
point’. If inventory is above the ‘order point’ for all products, then the machine must be idle. Due 
to this dynamic prioritization rule and to cost assumptions, the order points of several products 
should cover about the same demand time, subject to rounding errors. 
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The ‘order point’, on the one hand, is part of the inventory management policy (rule 
‘3.2’ below). It works as a production halt point, which is essential to avoid overproduction, since 
any feasible solution for the problem requires slack capacity. 

This scheduling rule will be identified as FSFP (acronym for ‘first stockout, first to be 
produced’). This choice has the following advantages: 

− It is dynamic and highly flexible. 
− It is intuitive and communicates in a rather simple way with the user when 

compared to the fully flexible methods, e.g. (Qiu and Loulou, 1995) and (Paternina-
Arboleda and Das, 2005). 

3.2. Inventory control policies (s, Q) 
Tracking inventory through policies (s, Q) means that, when the inventory of product i 

reaches the order point si, a replenishment order of size Qi is immediately triggered. This choice 
is justified due to the following: 

− Ease of control, understanding and practical adoption of the method. 
− Guarantee that the percentage of time actually consumed in setups will not be 

affected by the current demand, keeping the level planned at the time of calculating 
lot sizes. 

− As Brander et al. (2005) have shown through simulations, dynamic scheduling rules 
are sufficient and more effective to respond to demand fluctuations than lot sizes 
defined dynamically. That is, with the use of a dynamic sequence, the fixed lot does 
not overload the solution. 

3.3. Fixed production pitch 
It is said that the plant uses a ‘fixed production pitch’ (or ‘production pitch’ or simply 

‘pitch’), when the scheduled time for the execution of a production lot (including setup time) is 
constant, regardless of what product is made. 

The interest in policies based on fixed pitch production stems from two facts: (i) many 
industries already operate in this way on a daily basis, and (ii) the pitch is part of the increasingly 
popular lean manufacturing methodology. 

The adoption of a fixed pitch surely means absorbing some extra cost, besides the 
minimum cost. Depending on the instance, this cost can be more or less significant. However, the 
following organizational advantages can be obtained, which may be often compensating: 

− Easier daily control, making room for a more predictable and rhythmic production, 
and more reliable plans. 

− Possibility of rationalizing and reducing the unit setup time and cost due to its need 
to become perfectly predictable (once at each pitch). Lower setup time and cost, in 
turn, enable smaller economic lots, which allow greater flexibility, smaller stocks 
and smaller final costs. 

4. Model for calculation of parameters 
In order to fully solve the SELSP for the best production strategy of the kind described 

in the previous section, it is necessary to determine the following variables: the pitch, the lot sizes 
and the order point for each product. 

This section formulates a model by coupling typical inventory model equations with 
typical queue model expressions. As mentioned in section 2, this approach was used originally by 
Zipkin (Zipkin, 1986) and has the advantage to result in convex models. 

4.1. Nomenclature 

a) Sets: 
i  index that indicates an inventory item; 
N total amount of different products in the system. 
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b) Data entry: 
di  demand for product i (random variable with exponential probability 

function in units per time unit); 
𝑑̅𝑖 average demand for product i (in units per unit of time); 
oi  operation time required to produce a single unit of product i (in units per 

unit of time); 
ai  setup time for product i (in units of time); 
K  service level required by the market (common to all products - in 

percentage). 

c) Decision variables: 
Qi  fixed batch size for product i (units); 
si order point of product i (units). 

d) Auxiliary variables: 
P  length of production pitch (in unit of time); 
A number of setups required per time unit (in times per time unit); 
ρ utilization factor of capacity for all products, including the setup times 

(in percentage); 
Tq  waiting time of an order in the queue (random variable, in unit of time). 

4.2. The model 

a) Objective function: 
Given the set of assumptions related to cost, the aim of minimizing the cost of operation 

can be expressed as an objective function that pursues the lowest total maximum coverage time. 
Then we have: 

 𝑍 = 𝑚𝑖𝑛  ∑ 𝑠𝑖
𝑑�𝑖

𝑁
𝑖=1 + ∑ 𝑄𝑖

𝑑�𝑖
𝑁
𝑖=1        (1) 

In equation (1), the first sum comprises the safety stock and the work in process (to the 
extent that, on average, it corresponds to the amount of material that is below the order point), 
whereas the second sum is related to the highest level of the inventory cycle. 

b) Capacity constraint: 
Insofar as the contracted capacity remains fixed throughout the planning horizon, and 

this is infinite, the total amount of time available is divided into three parts: 
− Total execution time of operations: it is a fixed percentage of the contracted 

capacity. 
− Total setup time: it is inversely proportional to the lot sizes and limited by the 

difference between the total time contracted and the total time of operations. 
− Idle time:  time that is neither employed in operations or in setup, which is 

necessarily greater than zero due to random fluctuations in demand. 
Constraint (2) below expresses the limitation in the total time used in setups. The 

average total time employed in setups per unit of time is on the left side of the equation, where 
for each product i, the demand rate 𝑑̅𝑖 divided by the lot size Qi results in the average number of 
setups per time unit. On the right side of the equation, the result of the sum is the average total 
time spent in operations per unit of time and the result of the subtraction is the average total idle 
time per unit of time.       

 ∑ �𝑎𝑖  𝑑
�𝑖
𝑄𝑖
�𝑁

𝐼=1   <   1 −   ∑ �𝑑̅𝑖  𝑜𝑖�𝑁
𝑖=1      (2) 

c) Fixed-pitch production constraints: 
The policy of using the same production pitch for any product imposes the set of 

constraints (3). Thus, all lot sizes are determined uniquely as a direct result of the chosen pitch P. 
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 (𝑄𝑖   𝑜𝑖)   +  𝑎𝑖   =   𝑃                                     ∀  𝑖 = 1 . .  𝑁   (3) 

d) A constraint that fixes the number of setups required per unit of time (A) according 
to the pitch P: 

Through constraint (4), the number of setups per unit of time A is determined from the 
lot sizes Qi (indirectly by pitch P): 

 𝐴 =  ∑ 𝑑�𝑖
𝑄𝑖

𝑁
𝑖=1         (4) 

e) A constraint that relates the number of setups A with the percentage of utilization 
capacity ρ: 

As the number of setups per unit of time A is exactly the number of non-idle pitches per 
unit of time (or lots to be produced per unit of time), equation (5) determines the utilization 
factor: 

 𝜌 = 𝐴 𝑃         (5) 

f) Assistance constraints to the service level K: 
By definition from the basic theory of inventory, the order point si is the amount of 

products dedicated to meet the demand during the inventory lead time. In this case the lead time 
is the delay time of an order in a queue Tq plus the pitch P (which is the lot production time). 
Then, the set of constraints (6) require that the order points si are such that the service level K are 
met: 

 𝑃 � �𝑇𝑞 + 𝑃�𝑑𝑖 ≤ 𝑠𝑖  �  ≥ 𝐾                         ∀  𝑖 = 1 . .𝑁    (6) 

g) Variables domain: 
The constraints (7) establish the domain of model variables: 

 𝑄𝑖 > 0;  𝑠𝑖 ≥ 0;   𝑃 > 0;   𝐴 > 0;   1 > 𝜌 ≥ 0;  𝑇𝑞 ≥ 0     ∀ 𝑖 = 1. .𝑁 (7) 

h) Model overview: 

 𝑍 = 𝑚𝑖𝑛  ∑ 𝑠𝑖
𝑑�𝑖

𝑁
𝑖=1 + ∑ 𝑄𝑖

𝑑�𝑖
𝑁
𝑖=1        (1) 

 Subject to: 

 ∑ �𝑎𝑖  𝑑
�𝑖
𝑄𝑖
�𝑁

𝐼=1   <   1 −   ∑ �𝑑̅𝑖  𝑜𝑖�𝑁
𝑖=1      (2) 

 (𝑄𝑖   𝑜𝑖)   +  𝑎𝑖   =   𝑃                                     ∀  𝑖 = 1 . .  𝑁   (3) 

 𝐴 =  ∑ 𝑑�𝑖
𝑄𝑖

𝑁
𝑖=1         (4) 

 𝜌 = 𝐴 𝑃         (5) 

 𝑃 � �𝑇𝑞 + 𝑃�𝑑𝑖 ≤ 𝑠𝑖  �  ≥ 𝐾                         ∀  𝑖 = 1 . .𝑁    (6) 

 𝑄𝑖 > 0;  𝑠𝑖 ≥ 0;   𝑃 > 0;   𝐴 > 0;   1 > 𝜌 ≥ 0;  𝑇𝑞 ≥ 0     ∀ 𝑖 = 1. .𝑁 (7) 

5. Resolution of the model 
In the chart below, this section presents the structure of an algorithm which solves the 

model described in the previous section, determining near-optimal values for the pitch, the lot 
sizes and order points.  

It is important to notice that an exact analytical resolution of the model is difficult due 
to the fact that it is a non-linear one and, at the same time, contains a large-sized semi-markov 
stochastic process represented by equations (6). Given that, the algorithm operates on the 
convexity of the model, iteratively combining two procedures: 
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a) A method of successive approximations which chooses values progressively better 
for the pitch and, consequently, any lot size. 

b) A discrete stochastic simulation routine to find the lowest order points that are 
sufficient to meet the service level K. 

Structure of the Algorithm to Solve the Problem 
(1) Make 𝑄𝑖 = 1,   ∀ 𝑖 = 1. .𝑁 in equations (3) and assume the highest value of P 

as its initial value.  
(2) Repeat it until you find a pitch P that is viable (it will be its lower limit): 
      (2.1) Calculate the lot sizes Qi using equations (3). 
      (2.2) Make sure the pitch P is feasible using equation (2). 
      (2.3) If it is not feasible, increase the value of pitch P. 
(3) While it is possible to improve Z, do the following: 
      (3.1) Choose a new pitch P which is larger than its lower limit. 
      (3.2) Calculate the lot sizes Qi with equations (3). 
      (3.3) Calculate the number of setups A and utilization factor ρ with equations 

(4) and (5). 
      (3.4) Establish provisional values for the order points si, such that all match 

the same time demand. 
      (3.5) Simulate the operation of the system, collecting a sample of the demand 

during inventory lead time of each product i. 
      (3.6) Using the sample taken in the previous step, find the order points si such 

that they satisfy equations (6) and are the smallest possible ones. 
      (3.7) Calculate Z using equation (1) and store its lowest value so far. 

 
On step 2.3, the pitch increment size may be small because, as the loop on step 2 is very 

fast, there will be no performance problem. 
On step 3.1, as the model is convex, the values for P should be chosen according to a 

strategy to minimize non-linear functions of a single variable, based on successive 
approximations.  

It is worth noting that, at each iteration of the algorithm, when execution reaches step 
3.4, all variables are already determined except the order points si. On step 3.4, in order to enable 
simulation of the next step, provisional values are set to order points si. These are equivalent to 
the same arbitrary demand time. During the simulation of line 3.5, a sample of the demand is 
taken during the inventory lead time of each product i. From this sample, the order points si are 
finally determined on step 3.6 so that they meet the service level K (equation 6), and are as small 
as possible. 

6. Computational experiments 
Table 1 below shows three instances derived from Bomberger’s proposal (Bomberger, 

1966), which is one of the most used in the literature. They differ only in the values of the 
demands that multiply Bomberger’s ‘basis demand’ by 2, 3 and 4, respectively. The work day 
has 480 minutes and the service level required by the market is 90%. 

Each of these instances has been solved experimentally twice, using the method 
proposed in this article. For this, an algorithm based on the structure described in the previous 
section was coded in Pascal and compiled with Delphi 2007. In the resolution it was used a 
machine with an Intel Core i5 processor of 2.53 GHz, 4 GB RAM and Windows 7 operating 
system. 
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Table 1: Three instances varying only the demand rate 
Products Operation 

time 
(min./piece) 

Setup time 
(min) 

Demand 1 
(pieces/day) 

Demand 2 
(pieces/day) 

Demand 3 
(pieces/day) 

1 1,60 60 2 3 4 
2 6,00 60 2 3 4 
3 5,05 120 4 6 8 
4 6,40 60 8 12 16 
5 24,00 240 0,4 0,6 0,8 
6 8,00 120 0,4 0,6 0,8 
7 20,00 480 0,12 0,18 0,24 
8 36,92 240 1,7 2,55 3,4 
9 24,00 360 1,7 2,55 3,4 

10 3,20 60 2 3 4 
 

In each simulation performed by the algorithm (step 3.5 on the structure of the 
algorithm described in the previous section), at least 5,000 demand during lead time samples 
were collected for determining the order points. 

The results are shown in Tables 2, 3, 4 and 5 below. Besides the parameters of the items 
(lot size and order point), tables 3, 4 and 5 also show indicators from simulated use of the 
solution in the ‘outcomes’ columns. We observed the service levels of each product from at least 
20,000 demand during lead time samples. 

Table 2: Indicators of Solutions Obtained in Two Runs for each Instance 
Instance Execution 

time (sec.) 
Production 

pitch P 
(min.) 

Maximum 
stock Z 
(days) 

Operation 
time 
(%) 

Setup time  
 

(%) 

Slack 
 

(%) 
1 28 508 / 507 520 / 520 44,1 46,3 / 47,0 9,6 / 8,9 
2 34 692 / 691 569 / 569 66,2 31,2 / 31,3 2,6 / 2,5 
3 78 1834 / 1834 1425 /1424 88,2 10,8 /10,8 1,0 / 1,0 

 

Table 3: Solutions Obtained in Two Runs for Instance 1 
Products Solution Outcomes 

Lot size - Qi 
(pieces) 

Order 
point – si 
(pieces) 

Lot 
Consumption 

Time  
(days) 

Order 
point in 

Days 
(days) 

Service 
Level 
(%) 

Demand 
Served  

(%) 

1 280 / 279 13 / 14 140 / 140 7 / 7 94 / 94 99,9 / 99,9 
2 75 / 74 13 / 13 37 / 37 7 / 7 96 / 95 99,8 / 99,8 
3 77 / 77 24 / 26 19 / 19 6 / 7 96 / 96 99,8 / 99,7 
4 70 / 70 47 / 49 9 / 9 6 / 6 97 / 96 99,5 / 99,4 
5 11 / 11 3 / 3 28 /28  8 / 8 91 / 91 99,0 / 98,9 
6 48 / 48 3 / 3 121 / 121 8 /8 90 / 89 99,7 / 99,7 
7 1 / 1 2 / 2 12 / 11 17 /17 91 / 90 92,5 / 91,9 
8 7 / 7 11 / 11 4 / 4 6 / 6 96 / 95 98,6 / 98,3 
9 6 / 6 11 / 11 4 / 4 6 / 6 95 / 95 98,1 / 97,7 
10 140 / 140 13 / 14 70 / 70 7 / 7 95 / 94 99,9 / 99,9 
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Table 4: Solutions Obtained in Two Runs for Instance 2 
Products Solution Outcomes 

Lot Size - Qi 
(pieces) 

Order 
Point – si 
(pieces) 

Lot 
Consumption 

Time  
(days) 

Order 
Point in 

Days 
(days) 

Service 
Level  
(%) 

Demand 
Served 

(%) 

1 395 / 394 26 / 26 132 / 131 9 / 9 89 / 90  99,8 / 99,9 
2 105 / 105 26 / 25 35 / 35 9 / 8 90 / 91 99,5 / 99,5 
3 113 / 113 49 / 49 19 / 19 8 / 8 90 / 91 99,1 / 99,2 
4 99 / 99 95 / 97 8 / 8 8 / 8 90 / 91 98,1 / 98,3 
5 19 / 19 6 / 6 31 / 31 10 / 10 86 / 88 98,7 / 98,9 
6 71 / 71 6 / 6 119 / 119 10 / 10 86 / 87 99,7 / 99,7 
7 11 / 11 2 / 2 59 / 59 11 / 11 82 / 83 98,0 / 98,1 
8 12 / 12 21 / 22 5 / 5 8 / 9 90 / 91 96,2 / 96,6 
9 14 / 14 21 / 22 5 / 5 8 / 9 89 / 90 96,4 / 96,7 
10 197 / 197 26 / 26 66 / 66 9 / 9 89 / 90 99,7 / 99,7 

 

Table 5: Solutions Obtained in Two Runs for Instance 3 
Products Solution Outcomes 

Lot size - Qi 
(pieces) 

Order 
Point – si 
(pieces) 

Lot 
Consumption 

Time  
(days) 

Order 
Point in 

Days 
(days) 

Service 
Level  
(%) 

Demand 
Served  

(%) 

1 1109 / 1109 82 / 83 277 / 277 21/ 21 91 / 91 99,9 / 99,9 
2 296 / 296 83 / 82 74 / 74 21 / 21 92 / 91 99,7 / 99,6 
3 339 / 339 164 / 163 42 / 42 21 / 20 92 / 91 99,5 / 99,4 
4 277 / 277 327 / 326 17 / 17 20 / 20 93 / 91 98,9 / 98,6 
5 66 / 66 17 / 17 83 / 83 21 / 21 90 / 89 99,6 / 99,5 
6 214 / 214 17 / 17 268 / 268 21 / 21 90 / 89 99,9 / 99,9 
7 68 / 68 6 / 6 282 / 282 25 / 25 86 / 85 99,7 / 99,6 
8 43 / 43 71 / 69 13 / 13 21 / 20 92 / 91 98,3 / 98,0 
9 61 / 61 71 / 70 18 / 18 21 / 21 92 / 91 98,7 / 98,5 
10 554 / 554 81 / 83 139 / 139 20 / 21 92 / 91 99,8 / 99,8 

 
In tables 2, 3, 4 and 5 above, it can be noticed how the difference of each pair of values 

obtained as a solution to the problem instances (pitch, lot size and order point) is minimized. This 
fact shows that there is stability in the method developed. 

On the other hand, the service levels shown in Tables 3, 4 and 5, obtained as output 
indicators of simulated use of the method developed, show good approximation to the service 
level of 90% required in advance. 

7. Conclusions and developments 
The computational experiments showed that the implemented algorithm is fast and 

provides stable results. It can often be used with real world problems, on computers in current 
use. These results could be achieved due to the high convergence rate presented by the stochastic 
simulation step performed at each iteration of the algorithm. 

As a result, it can be said that the method proposed here can provide near-optimal 
solutions to the studied SELSP problem, delimited by the control rules laid down in section 3 of 
this article. 

Since the proposed rules are simple and flexible, the algorithm has great potential for 
real use, while providing good results for the proposed the SELSP problem. 
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With some changes, the approach adopted also seems to be able to solve less restricted 
problems, where the parameters of cost and service levels can be differentiated for each product. 

The implementation of the algorithm needs to be further enhanced to provide more 
accurate and reliable results and more efficient execution. In this regard, two important 
improvements are required: 

a) A more accurate determination of sample sizes and confidence intervals for the 
stochastic simulation that is performed at each iteration; 

b) The use of a more effective convergence method in controlling the iterations. 
Another relevant work would be to compare the solution with different solutions that 

employ distinct production strategies. The comparison with totally dynamic near-optimal 
solutions would be particularly interesting, so that the extra costs imposed by control rules 
proposed in this work could be measured. 
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