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ABSTRACT 
 

This study presents the (un)constrained (un)weighted k-staged fixed and rotated two-
dimensional guillotineable single knapsack problem. A suitable encoding based on slicing tree is 
presented. A hybrid algorithm based on the Particle Swarm Optimization (PSO) and Genetic 
Algorithms (GA) is developed. This algorithm used the main characteristics of PSO and 
introduced the flight turbulence factor through the concept of mutation of GA. The computational 
results on large sets of test cases show that the methodology has effectiveness and robustness to 
solve the two-dimensional knapsack problem. 

 
KEYWORDS: two-dimensional guillotine knapsack problem, particle swarm optimization, 
turbulence factor. 

RESUMO 

Este trabalho apresenta o problema da mochila bidimensional guilhotinada com suas 
diversas variações: com demanda de peças restrita e irrestrita, com e sem custos associados nas 
peças, com padrões de corte de k-estágios, e com e sem rotação de peças. Uma codificação 
baseada em árvores de corte é apresentada. Um algoritmo híbrido de Enxame de Partículas (PSO) 
e Algoritmos Genéticos (GA) é desenvolvido. Este algoritmo usa as principais características do 
PSO e introduz o fator de turbulência de vôo através do conceito de mutação dos GA. Os 
resultados computacionais sobre um grande conjunto de instâncias de teste mostram que a 
metodologia proposta é efetiva e robusta para resolver os problemas da mochila bidimensional. 

PALAVARAS CHAVE: mochila bidimensional guilhotinada, enxame de partículas, fator de 
turbulência. 
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1. Introduction 
The k-staged two-dimensional guillotineable single knapsack problem is used to solve 

cutting problems when the material employed is one rectangular piece where the smaller 
rectangular pieces must be located, knowing their size, their associated cost, and restricting the 
number of items of the same type. In addition, the cutting pattern of the solution must be 
guillotine type and the pieces must be generated using at maximum k-stages of cut. The 
characteristics of this problem are: 

i) The associated cost can be related or not with the area of the piece that is going 
to be located; if the cost is equal to the area of the piece the problem will be solved without 
weights (unweighted version) and if the cost is different to the area of the item the problem will 
be solved with weights (weighted version). 

ii) The orientation of the pieces is fixed, when a piece of length l and width w is 
different from a piece of length w and width l (fixed version). When the dimensions (l, w) and 
 (w, l) represent the same piece, the problem includes the pieces rotation (rotated version). 

iii) The cutting patterns are guillotine type, each cut produces two sub-rectangles. 
The cuts are done from one edge to the opposite edge of the original rectangle (only guillotine 
cuts). 

iv) There exists a maximum number of stages k, taking the constant k < ∞ as the sum 
of all the vertical and/or horizontal parallel cuts. If k is equal to two, the problem is two-staged 
(and has many real applications). If k is equal to three, the problem is three-staged. Finally, if a 
large value is assumed for k, represents a non-staged problem.  

v) If there is a maximum limit bi of the quantity of pieces that will be cut from type i 
the problem is called restricted (constrained version) and if not exist a limit or it can be assume a 
large number for bi, it means that the demand is unrestricted (unconstrained version). 

There are two general techniques used to solve constrained problems: top-down and 
bottom-up approaches. In Christofides and Whitlock (1977) is originally proposed the top-down. 
The top-down approach requires an enormous amount of memory, due to the fact that, all 
possible cuts that can be made on the stock plate are enumerated by means of a tree in which 
branching corresponds to guillotine cuts and the nodes represent sub-rectangles obtained through 
the guillotine cut, for this reason its implementation is not attractive. The bottom-up approach has 
been more used, in works as: Wang (1983); Viswanathan and Bagchi (1993); Hifi (1997a); 
Fayard et al. (1998); Hifi and Roucairol (2001); Cui (2007); Morabito and Pureza (2007) and Cui 
(2008). In this approach, all possible combinations of smaller rectangles are generated to obtain 
larger rectangles until no more guillotine patterns can be obtained, one of its problems is the huge 
amount of required time. Different heuristics approximations have been developed to solve the 
problem; one of the best is the presented by Alvarez-Valdés et al. (2002), which presented the 
GRASP and Tabu Search algorithms with a good performance. 

In contrast, for the unconstrained problems, Gilmore and Gomory (1965; 1966) 
proposed a recursive exact algorithm based on dynamic programming. Their algorithm is 
applicable to both weighted and unweighted versions. Herz (1972) proposed a recursive tree 
search method, his method is more effective than Gilmore and Gomory’s algorithm for the 
unweighted problem, but does not apply to weighted cases. Beasley (1985) proposed an 
algorithm that is a modified version of Gilmore and Gomory’s algorithm. Hifi and Zissimopoulos 
(1996) proposed a recursive exact algorithm that uses a dynamic programming procedure and 
efficient lower and upper bounds. Young-Gun and Kang (2002) improved Hifi and 
Zissimopoulos’ recursive algorithm by applying a more efficient upper bound. This is presently 
the most efficient exact algorithm for the unconstrained problem. Young-Gun and Kang (2003) 
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proposed an algorithm based on Christofides and Whitlock (1977) that starts from an initial 
solution of good quality and uses the bottom-up algorithm as strategy to generate the branches, 
decreasing the number of nodes to explore. 
Recently, various authors have been working with particle swarm optimization (PSO), due to its 
performance for solving continuous optimization as well as discrete optimization problems, Zhan 
et al. (2009). Different studies have successfully employed PSO and its variants to optimize 
process parameters of various manufacturing processes such as grinding Xie et al. (2002), 
welding Kennedy and Mendes (2002), boring Hu and Eberhart (2002), turning Clerc (1999) and 
cache memory tuning Carlisle and Dozier (2000). 

This article uses a binary tree encoding, called slicing tree structure, which decomposes 
the problem into smaller packing problems to solve them through of hybrid metaheuristic 
algorithms that combine: the main characteristics of the PSO and the flight turbulence factor 
through the concept of mutation of GA (using an adaptation of the equation for updating the 
threshold variable from threshold accepting algorithm as mutation operator). In order to proof the 
efficiency and quality of the results obtained with the proposed methodology, study cases of the 
specialized literature were used. Solutions of good quality were obtained, and some of them have 
never been reported. The structure of this article is as follows: problem description, a general 
description of the methodology used to solve the k-staged two-dimensional guillotineable single 
knapsack problem, results analysis and conclusions. 

2. Problem Description 
The k-staged two-dimensional guillotineable single knapsack problem is formally 

defined as a finite set of n rectangular items of given dimensions (length li and width wi, where 
i=1,2,…,n), a demand bi and an associated profit ci, which are cut from a rectangular initial plate 
with length L and width W. An item (li, wi) is equal to a piece (wi, li). The objective is to find a 
cutting pattern of the plate maximizing the profit function, see the equation (1), where zi is a 
binary variable that indicates if the piece i would be cut or not. 

1

n

i i
i

max c z
=

⋅∑  
 

(1) 

Subject to: 

• The packed (cut) pieces cannot trespass the limits of the plate. 
• The pieces cannot overlap to each other. 
• Only cuts of guillotine type are permitted. 
• The cutting pattern should be obtained on k stages of cut. 

Are also taken in count the variants of the problem, where: the associated costs are 
related or not to the area of the pieces (weighted and unweighted versions). The pieces can have 
or not fixed orientation (fixed and rotated versions). There is or not a demand of pieces of the 
same type (constrained and unconstrained versions). Furthermore, all these variants are solved for 
different values of k-stages (two-staged, three-staged and non-staged versions). In order to 
simplify, the notation presented by Hifi and Roucairol (2001) was used to enumerate the 
proposed problems on this study, where the most common k values are two and three. 

• FCU_kSTDC: represents the Fixed Constrained Unweighted k-Staged Two-Dimensional 
Cutting problem;  

• RCW_kSTDC: denotes the Rotated Constrained Weighted k-Staged Two-Dimensional 
Cutting problem;  
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• FCU_nSTDC: corresponds to the Fixed Constrained Unweighted Non-Staged Two-
Dimensional Cutting problem;  

• RCW_nSTDC: denotes the Rotated Constrained Weighted Non-Staged Two-Dimensional 
Cutting problem. 

• FUU_kSTDC: represents the Fixed Unconstrained Unweighted k-Staged Two-Dimensional 
Cutting problem;  

• RUW_kSTDC: denotes the Rotated Unconstrained Weighted k-Staged Two-Dimensional 
Cutting problem;  

• FUU_nSTDC: corresponds to the Fixed Unconstrained Unweighted Non-Staged Two-
Dimensional Cutting problem;  

• RUW_nSTDC: denotes the Rotated Unconstrained Weighted Non-Staged Two-Dimensional 
Cutting problem. 

 

Figure 1. Illustration of slicing trees. (a) Numeric example of a slicing tree of two levels. (b) 
Slicing tree and subspaces generated (c) Slicing tree of three levels. 

3. Methodology 
The encoding and the solution methodology used on this study are presented below. 

3.1  Encoding 
Wong et al. (1988) presented a data codification for the floorplan design problem called 

slicing tree. A slicing tree is defined as: a tree with root, where each intern node (parental node) 
represents the position and how the cut will be done on the material (horizontal or vertical), 
meanwhile the leaves nodes (terminal nodes) represent the dimensions of the sub-spaces 
generated for cutting the grouped pieces. Therefore, the slicing tree contains on its internal nodes 
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the information about the orientation of the cut (perpendicular to the length or to the width) and 
the distance where the cut should be done. By other hand, its leaves nodes contain the dimensions 
of the resulting subspaces. 

A cut is represented by a number between [-1, 1], where the sign represents the 
orientation of the cut and its value the distance for making the cut, thus, if the cut number 1 is 
equal to , represents a perpendicular cut to the width of the plate with a distance of  of 
it. The Figure 1 shows the proposed encoding. 

One of the main advantages of using the slicing tree is the generation of cutting patterns 
guillotine type. Different proposed methodologies have corroborated the effectiveness of the 
slicing tree codification, especially the ones presented by Berthold (1995); Cui (2007); and Cui 
(2008). 

3.2. Objective Function Calculation 
After obtaining the sub-spaces, the placement of the pieces should be performed, this 

process is developed through a constructive best-fit algorithm, keeping the guillotine type 
restrictions and packing the biggest quantity of pieces for each sub-space. The constructive best-
fit algorithm consists on finding the set of identical pieces that maximizes the area of the 
subspace j (represented by its length and width respectively) with the best associated profit. The 
calculation of the objective function consists on applying the equation (2) to each subspace, then 
the value of the objective function is the sum of the areas (or associated profits) packed on the 
plate. 

 2) 

Different proposals that use the slicing tree encoding try to find the optimal tree, having 
this process a difficult solution, as: Berthold (1995) and Cui (2007; 2008). In contrast, in this 
work is restricted and reduced the number of trees during the optimization, after making a 
statistical study, the slicing tree is defined as a complete binary tree with three levels. 

3.3 Optimization Scheme 
The proposed codification in this study guarantees the feasibility of the guillotine type 

constraints and the maximum number of cutting stages. The optimization scheme for the 
knapsack problems is described below. 

 
Particle Swarm Optimization and Turbulence Factor 

The algorithm proposed on this work use different metaheuristic optimization 
techniques, combining the features of the particle swarm optimization and the mutation operator 
from the genetic algorithms. The first one is considered the main algorithm and the concept of 
mutation is used as flight turbulence factor. 

The PSO algorithm uses a simple mechanism that emulates the behavior of sets of birds 
and fishes when together are looking for food or running away from predators, as they have a 
common goal, the algorithm has the objective function. 

This algorithm can be computationally inefficient because may easily get trapped into 
local optima when solves cutting or packing problems, which have multimodal solution spaces, 
however, accelerates the convergence speed and skip the premature local optima, included a 
parameter control of the algorithm, improved of the topological structure and the combination of 
the search operators have become on the three most prominent and promising aims. In the 
presented work all the three aspects are taken into account. 

In order to improve the efficiency and accelerate the search process is fundamental to 
determinate the state of the evolution and the best values for the parameters, aiming to avoid 
possible local optima in the convergence state, Zhan et al. (2009). 
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Bratton and Kennedy (2007) redefined the standard for PSO by adopting lbest (local 
best) topology, where each particle has access to the information from its immediate neighbors 
only, also: Zhan et al. (2009) and Xie et al. (2002), and with success: Kennedy and Mendes 
(2002); and Mendes et al. (2003), however, lbest topology should not be considered as an optimal 
choice in all situations is statement by Bratton and Kennedy (2007). 

The algorithm has been modified introducing operators such as selection by Angeline 
(1998), crossing by Chen et al. (2007), mutation by Andrews (2006), local search by Liang and 
Suganthan (2005), restart of some operators by Carlisle and Dozier (2000) and Hu and Eberhart 
(2002), and the restart of all the operators of the process by Hu and Eberhart (2002) and Clerc 
(1999). All this hybrid operations are usually implemented during each generation as Andrews, 
(2006), inside a fixed interval as Liang and Suganthan (2005) or simply controlled by a defined 
fitness function for each specific case. 

In PSO, a set of particles represent potential solutions (in this work is represented by a 
slicing tree, i.e., a cutting pattern), where each particle i is associated to two vectors, the speed 
vector  and the position vector , where D is the 
number of characteristics that determine the dimension of the solution space. The speed and 
position of each particle are initialized with random values between [-1, 1] (encoding reasons) 
with a uniform distribution. During the evolution process, the speed and the position of the i-th 
particle are updated through equations (3) and (4). 

 
 

 
(3) 

 (4) 
Where w is the inertia weight,  and  are the acceleration coefficients and,   

and  are random numbers uniformly distributed between [0, 1] for the k-th dimension. 
The steps of the algorithm are: 

i) The process starts with a population of particles with certain position and speed in the space 
of the problem with dimension D. The population is generated randomly. 

ii) For each particle is evaluated the objective function (fitness function). 
iii) The fitness of the particle is compared with its pbest (the best obtained solution with the 

particle). If its current value is better, the pbest will be equal to the fitness value of the particle 
and the location of the pbest will be equal to the current location of the D-dimensional space. 

iv) The fitness of the particle is compared with the best population fitness. If the current value 
is better than the gbest (the best reached position by the swarm), then the gbest will be updated. 

 v) Modify the speed and position according to the equations (3) and (4) respectively. 
vi) Return to the step (ii) until the stopping criterion is reached (maximum number of 

generational cycles) 
 
The mutation operator commonly used in the genetic algorithms is introduced in the 

proposed algorithm trying to emulate the flight turbulence factor, in this work is used an 
adaptation of the equation to updating the threshold variable of the Threshold Accepting 
algorithm by Glass and Potts (1996). See more about turbulence factor in Fieldsend and Singh 
(2002). 

The turbulence mechanism consists in permitting big changes during the first iterations, 
like the threshold accepts the lost of quality for the objective function at the beginning of the 
process (due to the relaxation of the thresholds). With the advance of the process, turbulence will 
become more deterministic. The turbulence factor is defined as the modification of a node’s 
value from the tree, trough the mechanism shown in the equation (5). 

1  1
2

knode i node i rand
TotalIterations

ε
  = + − ⋅ − +       

 
 

(5) 
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Equation (5) is composed by: the current value of the node i from the tree, rand is a 
random number with uniform distribution in the interval , k is the current iteration, 
TotalIterations is the number of cycles and ε is the minimum percentage to generate a change on 
the tree, where . In this work is introduced the mutation operator used for 
the genetic algorithms, named as mutation rate, allowing mutation of the particles in each 
iteration. The figure 2 show the optimization algorithm proposed, those are used to search the 
optimum values of the nodes from the slicing of a specific size (level). 

Solution Methodology 
A scheme of the methodology is presented on the figure 3. The steps that must be done 

are described and depending of the instance of the problem some steps are omitted. Moreover, 
the types of searches that are presented on this work are only different on the number of levels of 
the slicing tree, this permits relate these levels with the cutting constraints by stages, i.e., for the 
two-staged problems the methodology is executed until step 2, for the three-staged problems until 
step 3 and finally for the non-staged problems is executed the whole methodology. 

Initialize population and parameters 
       For l =1 to Total Cycles 
              For i =1 to Population Size 
         If    <  then  
                             =  
                             If    <  then  
                                     =  
                             End if 
                     End if 
                      
                       
                      If rand < Mutation Rate 
                             c_rand =  
                              

      End if 
               Next i 
        Next l 
______________________________________________________________________________ 

Figure 2. PSO with Turbulence Factor algorithm (APSO+TF) 

Calibration of parameters 
The parameter adjustment is very important in order to have good results with the 

metaheuristic techniques. Different approaches were presented to make the parametrization. In 
general, there are no exact and efficient methods to make the parameter adjustment of the 
different metaheuristic techniques, commonly these algorithms are parameterized through the 
combination of an exhaustive search and a statistical analysis to the quality of the results.  

Figure 3. Scheme of the solution methodology. 

Step 1. Use the optimization algorithm to search over a slicing tree of one level. 

Step 2.  Use the optimization algorithm to search over a slicing tree of two levels. 

Step 3. Use the optimization algorithm to search over a slicing tree of three levels. 

Step 4. Deepening, the eight resulting subspaces from the optimal tree in the step 3 are sent 
to the step 2 in order to make an improvement process to the solution obtained. 
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To make the parameterization, different studies suggest: classify the test problems (if 
they exist) by its complexity (mathematical or computational), choose one representing problem 
(candidate) from each class, make an adjustment to the parameters for each candidate trough an 
exhaustive mesh search and finally recombine the obtained parameters for each class picking the 
best combination. 

This process requires a great computational effort because the parameter adjustment 
through a mesh search represents another optimization process of almost the same complexity to 
the problem of this study because each parameter belongs to a big range of values.  

Zhan et al., (2009) presented a reduced range of values for the parameters of PSO 
algorithm. Using the presented ranges in Zhan et al. (2009) the size of the mesh is considerably 
reduced. In the Table 1 the values of the parameters are shown. 

 
Parameters Value 

Population Size 100 
Number of Cycles - Level 1 50 
Number of Cycles - Level 2 75 
Number of Cycles - Level 3 100 

Number of Deepening Cycles 100 
c1 (Individual Knowledge) 2.05 
c2(Collective Knowledge) 2.05 

w (Inertia) 0.71 
Mutation Rate 0.03 

Table 1. Parameters and values for the algorithms. 
 
4. Results Analysis 

The test systems used in this study were taken from the specialized literature; both 
approximate and exact methodologies are used in the solution of the mentioned problems. The 
selected problems are diverse in terms of the mathematical complexity and were specially 
designed for each type of problem. Different studies have used these test cases to prove the 
performance of the proposed methodologies.  

For the constrained version of the problem, twenty-six test cases were selected for the 
non-staged problem. Fifteen cases for the weighted version, CHW1 and CHW2 are taken from 
Christofides and Whitlock (1977); TH1 and TH2 from Tschöke and Holthöfer (1996) and the 
instances CW1- CW11 are taken from Hifi (1997a). Eleven cases for the unweighted version, 
CU1- CU11 are taken from Hifi (1997a). Sixty-three test cases were selected for the two-staged 
problem. Fifty cases for the unweighted version, 2SCUI1- 2SCUI50 are taken from Cui (2007). 
Thirteen cases for the weighted version, taken from Hifi and Roucairol (2001). Forty test cases 
were selected for the three-staged problem. Twenty cases for the unweighted version and twenty 
cases for the weighted version, 3SCUI1- 3SCUI20 are taken from Cui (2008).  

For the unconstrained version of the problem, twenty-seven test cases were selected for 
the non-staged problem, thirteen cases for the unweighted version, GCUT1-GCUT13 take from 
Cintra et al. (2008) and fourteen test cases were selected for the weighted version, (W1-W3 and 
UW1-UW11) take from Song et al. (2010). Thirty test cases were selected for the two-staged 
version, fifteen cases for the weighted version (UW1-UW11 and UWL1-UWL4) and fifteen 
cases for the unweighted version (UU1-UU11 and UUL1-UUL4). The database is presented by 
Hifi (2001) and its available online Hifi (1997b). Twenty-two (UW1-UW11 and UU1-UU11) are 
the same that were used for the three-staged version. 

In order to obtain a sample of the algorithm’s performance, it was executed 30 times 
with each test instance. The algorithm was developed using Delphi 7.0 ® and executed with a 
Pentium IV ® processor of 3,0 GHz and a RAM memory of 1 GB. With the publication of the 
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paper, these results will be made available on Internet at 
http://www.dee.feis.unesp.br/lapsee/arquivos/sistemastestes/resultspsowithturbulencefactor.html. 

For the unconstrained non-staged weighted rotated problem, the unconstrained two-
staged weighted and unweighted fixed problem, the constrained non-staged and three-staged 
weighted and unweighted rotated problem and the constrained two-staged unweighted rotated 
problem, there are no published results to compare. On the other hand, the best known solution 
(best reported solution in the literature) was chosen for the results of the remaining problems, and 
in case of having a draw on the results, the solution obtained in the shortest time was chosen. 

As observation, for the two-staged weighted problem the answers were compared 
against Cui (2007), a methodology that generates patterns of two segments which is more 
restricted, being an unfair comparison. This one was used due to the fact that in the literature 
does not have another reference to make a comparison. The large-scale instances of the 
unconstrained three-staged weighted and unweighted, fixed and rotated problem were not 
compared, due to the fact that Hifi and Roucairol (2001) used in their work but they did not 
reported results for those. 

The table 2 shows the number and average of optima reached by each algorithm, the 
optima represents the best reported solutions on the specialized literature. For the non-staged 
problem with item rotation, for the weighted rotated two-staged problem and for the rotated 
three-staged problem, the comparison is not done, due to that do not exist references to validate 
the results. The average of optima reached presented in the table 2 shows the robustness of the 
methodology presented. In general, the APSO+TF algorithm obtained good results for the different 
variants of the k-staged two-dimensional guillotine knapsack problem (see figure 4). 

 

 
Figure 4. Proposed solution for the 2SCUI1 case that belongs to the constrained two-staged 
unweighted fixed problem, Cui (2007) reaches an objective value of 98.033%, meanwhile, the 
presented value on this work reaches 98.93%. 

5. Conclusions 
The two-dimensional guillotineable knapsack problem has been solved with all its 

variants: constrained, unconstrained, weighted, unweighted, rotated, fixed, two-staged, three-
staged and non-staged. Using an optimization algorithm based on: particle swarm optimization, 
variable neighborhood search and genetic algorithms, showing effectiveness and robustness in 
this kind of problems. 

The slicing tree encoding from the floorplan design problem was adapted in this work, 
creating a simple encoding (for the cutting and packing problems) based on the divide and 
conquer strategy. This encoding proposal presented a satisfactory performance for this type of 
problems because it reduces the search space with a low risk of losing good quality solutions. 
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Problem Number of 
Instances 

Number of Optima 
Reached 

FUU_nSTDC 13 13 
RUU_nSTDC 13 13 
FUW_nSTDC 14 14 
RUU_2STDC 15 15 
RUW_2STDC 15 15 
FUU_3STDC 11 5 
RUU_3STDC 11 5 
FUW_3STDC 11 11 
RUW_3STDC 11 11 
FCU_nSTDC 11 6 
FCW_nSTDC 15 10 
FCW_2STDC 13 13 
FCU_3STDC 20 15 
FCW_3STDC 20 19 
Average of Optima Reached (%) 84.4372 

Total Computing Time (sec) 745,280 
Table 2. Number and average of optima reached by each algorithm. 
 

The optimization algorithm combines the main features of particle swarm optimization, 
variable neighborhood search and genetic algorithms. The first one is considered the main 
algorithm, the second one was used as a limiter of the characteristics of the particles that must be 
updated, and the last one is the flight turbulence factor represented through the concept of 
mutation of genetic algorithms, using an adaptation of the equation for updating the threshold 
variable from threshold accepting algorithm as mutation operator. 

The computational times obtained using the proposed methodology, in some cases were 
better than the ones reported on the specialized literature but due to the differences between the 
processors architecture and the programming languages used, is not possible to make a final 
conclusion for the methodologies. In general terms the computing times were reasonable. 
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