
September 24-28, 2012
Rio de Janeiro, Brazil

Improved lower bounds for hard Project Scheduling instances

Guilherme Henrique Ismael de Azevedo
Universidade Federal Fluminense

Rua Passo da Pátria, 156, sala 309 – Bloco D, São Domingos, Niterói - RJ
guilhermehen@gmail.com

Artur Alves Pessoa

Universidade Federal Fluminense
Rua Passo da Pátria, 156, sala 309 – Bloco D, São Domingos, Niterói - RJ

artur@producao.uff.br

ABSTRACT

In a Resource Constrained Project Scheduling Problem with generalized precedence
restrictions (RCPSP/max), one must schedule a set of activities with known duration satisfying
precedence restrictions with variable time lags and respecting the availability of resources. The
goal is to minimize the project duration (makespan).

This study presents a method to calculate a lower bound on the makespan based on
constraint propagation that considers three relaxations of RCPSP/max. The first and the second
relaxations are solved by greedy methods and the last one as a linear programming problem. We
also introduce artificial resources and other preprocessing techniques to improve the lower bound
quality. We report experiments using 58 open benchmark instances with up to 200 activities
where our procedure proved the optimality of 3 known solutions and closed 62% of the
optimality gap on the average. It also found better lower bounds for 26 out of 79 instances with
500 activities.

KEYWORDS. Project Scheduling. Resource Constraint. Resource Constraint.

Main area (inform by priority the área of the article because JEMS system makes the
classification alfabeticaly)

OC - Combinatorial Optimization

PM - Mathematical Programming

AD & GP - OR in Administration & Production Management

124

September 24-28, 2012
Rio de Janeiro, Brazil

1. Introduction
Optimizing project planning is important in every knowledge area since it can avoid

waste of time and resources, especially in great projects like rocket launch, building hydro-
electrical plants or oil and gas platforms (PINEDO, 2004). The resource constrained project
scheduling problem (RCPSP) is a well-known model for such optimization that is defined as
follows. Let { }1,,...,1,0 += NNV be the set of activities to be scheduled using a set

{ }m,,1=ℜ of resources. Each activity Vj∈ has an execution time jp and uses a specific

amount ijr of resource i at every instant of its processing time. Resource i has iR units available
during all the time horizon. The schedule must also respect activity precedence, which are
represented by the directed graph ()AVG ,= . For each () Alj ∈, , we use jld to denote the

time lag from activity j to l. In this case, l has to start at least jld time units after j starts and j has

to start at most jld− units of time after l starts. For the RCPSP/max, nonnegative cycles are
allowed in A. The activities 0 and 1+N represent the beginning and the end of the project,
having null execution times and null use of resources. Every activity with no other predecessor
will succeed 0, and every activity with no other successor will precede 1+N . In this study, the
objective is to find the minimum completion time for the project, also known as makespan and
also defined as the finish time of activity 1+N .

RCPSP and its variations are NP-hard as they generalize shop problems, like open shop
or job shop (BLAZEWICZ ET AL., 1983). Since it is difficult and time costly to prove
optimality of solutions for this problem, finding a good quality lower bound (LB) may bring
some useful information during the decision making process. There are two approaches in the
literature to calculate a LB for the RCPSP: constructive and destructive methods.

Constructive LBs use relaxed formulations of the problem, which are, generally, easier
to solve. One of the most used relaxations is the workload based one. For a given resource i, the
total workload required by each activity j is given by jij pr × . The workload based relaxation
tries to schedule activities so as to satisfy the workload requirements instead of the resource
constraints. For example, Koné et al. (2011) introduced a mathematical formulation based on
start and finish events. Kooli et al. (2010) presented a Mixed Linear Problem (MIP) that
generalizes workload constraints. Franck et al. (2001) also presented a workload-based method
using the concepts of Baptiste et al. (1999) and Dorndorf et al. (1999). Schutt et al. (2010) use a
finite domain solver in a lazy clause generation approach with a hybrid of finite domain and
Boolean satisfiability solving.

Demassey et al. (2005) define the destructive method as a procedure that defines
hypothetical upper bounds T ′ on the makespan aiming to prove that there is no solution
respecting this upper bound. If such a proof is successful, one can conclude that 1+′T is a lower
bound on the optimal makespan. Brucker & Knust (2000) presented a destructive LB that uses a
constraint propagation method and a MIP to try to prove that T ′ is an infeasible upper bound.

The method presented in this paper contains three different workload approaches to be
used in both constructive and destructive LBs. The first and the second ones are single resource
workload relaxations of RCPSP/max. The first relaxation does not consider the activities
execution intervals, but the second does consider. The third method uses a linear programming
(LP) relaxation that considers all resources in parallel. At first, the three methods are used in a
constructive approach to update execution intervals and the LB on makespan. Once an interval is
updated, the information is transmitted to the other intervals through by a precedence constraint
propagation method. After the constructive approach finishes, we use the same three relaxations
in a destructive approach to update the LB on the makespan.

We used the instances available at PSPLib (2012) as benchmark. As Schutt et al. (2010)
proved optimality for a great number of them with 10 to 200 activities in little computational

125

September 24-28, 2012
Rio de Janeiro, Brazil

time, we consider only the 58 hard instances that could not be solved by their method. All these
instances have available feasible solutions whose optimality is not proved and available lower
bounds reported by Franck et al. (2001). For these instances, no LB is provided by Schutt et al.
(2010). In the reported experiments, we proved the optimality of 3 feasible solutions for the first
time, for instances with 30 activities, and closed 62% of the optimality gaps on the average. We
also tested a faster but weaker version of our method on 79 instances with 500 activities, finding
better LBs for 26 of them, and closing 5.5% of the optimality gaps on the average.

This paper has the following structure: Section 2 presents our approach to calculate
lower bounds on the makespan. Section 3 describes the implementation and Section 4 the tests
and computational results. Finally, Section 5 presents our conclusions.

2. Our Approach
Our method maintains an execution interval for each activity defined as an interval

where it must be completely executed. The execution interval of activity j is denoted by
()jj LFES , , where the Early-Start (ES) is the first instant it can start and the Late-Finish (LF) is
the last moment it can end. Although the execution intervals are not in the problem definition,
they are implied by in the precedence relations. To initialize the execution intervals, first we
consider () ()TLFES jj ,0, = for all Vj∈ , where T is a valid upper bound (UB). Then we use
the propagation method, described below, to check and update them if possible. This method is
divided in two phases, one for ES and other for LF updates.

We propagate the ES updates as follows. Let us consider that jES was updated. If

there is a precedence arc () Alj ∈, that does not respect the constraint ljlj ESdES ≥+ , we

update lES to jlj dES + . This check must be repeated until every updated jES is tested and no

more updates are performed. Similarly, we propagate LF updates as follows. Whenever jLF is

updated, if the constraint ljjl dLFLF −≤ is not satisfied, due to () Ajl ∈, , we update lLF to

ljj dLF − . This check must also be repeated until every updated jLF is tested and no more
updates are performed.

Until this point, the execution intervals consider only precedence relations. In the next
subsections, we will present the three workload methods to update the intervals considering also
the resource constraints, each one based on a different relaxation of the problem. In the first
relaxation, we schedule the workload for each resource individually regardless the execution
intervals. In the second, the workload is also schedule for each resource individually, but
considering execution intervals. In order to increase the quality of the lower bound, we also
present a way to include artificial resources and other techniques to strengthen the relaxation. The
third method is a domain reduction by LP that considers all resources in parallel, which is
stronger but slower than the previous methods. For all the relaxations preemption is allowed.

2.1. Domain reduction by single-resource relaxation
The first method presented to update the execution intervals uses a workload based

relaxation that considers a single resource to check if activity Vj∈ can start at jES and finish

at jLF . In order to check the validity of the starting time jES for activity j, we consider the total
workload that must occur before j starts. If we prove that it is not possible to schedule all this
workload in the interval ()jES,0 , then we can conclude that jES can be increased by at least

one time unit. More generally, let α be an arbitrary instant before jES . If we prove that it is not
possible to schedule the workload that must occur between α and the start of j in the interval
()jES,α , then we can conclude that jES can be increased. Similarly, given an instant β after

jLF , if we find out that it is not possible to schedule all the workload that must occur between

126

September 24-28, 2012
Rio de Janeiro, Brazil

the finish of j and β in the interval ()β,jLF , then we prove that jLF can be reduced by at least
one time unit.

2.1.1. Workload requirements
Here, we show how to calculate the workload of each Vl∈ that must occur in

()jES,α assuming that j starts at jES , or in ()β,jLF assuming that j finishes at jLF . Beside
the assumptions, the method to calculate the workload for both intervals is the same. Hence, we
will present it for a generic interval ()UBLB, with no assumption. Later, we show how to
consider these assumptions.

Let ()ll BUBL ′′, be the current execution interval for activity Vl∈ and l∆ be the part
of the processing time of l that must occur in the interval ()UBLB, . We can calculate l∆ by the
formula { }llll p Φ−=∆ ;max φ , where lφ is the part of the execution time of l out of ()UBLB,
when it is scheduled starting at lBL ′ and lΦ is the part of the execution time of l out of
()UBLB, when it is scheduled finishing at lBU ′ . lφ and lΦ can be calculated as follows:

{ } { }0;max0;max UBpBLBLLB llll −+′+′−=φ (1)
{ } (){ }0;max0;max llll pBULBUBBU −′−+−′=Φ (2)

Once we calculated l∆ , the workload of activity l that is required in the interval
()UBLB, for the resource i is lilil rw ∆×= .

When checking whether the activity Vj∈ can start at jES , we do not use the current
execution intervals for remaining activities. Instead, we temporarily update such intervals
assuming that j starts at jES and using the propagation method described in the beginning of this

section. Then, we calculate the workload of each activity that must occur in ()jES,α as shown

above (let α=LB and jESUB =) and use the single resource workload relaxation to check if it
is possible to schedule all this workload for each resource individually. Similarly, to check
whether Vj∈ can finish at jLF we temporarily update the execution intervals assuming j

finishes at jLF and calculate the workload that must occur in ()β,jLF as shown above (let

jLFLB = and β=UB).
After all checks are performed the execution intervals for all activities other than j are

restored to their original values regardless of whether the interval of j is updated or not. If it is
updated, we propagate the information to the other execution intervals.

For a given resource i, the total workload to schedule in ()jES,α is { }∑∈ jVl ilw
\

 and

the total available work is ()α−ji ESR . Thus, in order to be possible that Vj∈ to starts at

jES , the constraint { } ()α−≤∑∈ jijVl il ESRw
\

 must be satisfied. Otherwise, jES can be

updated to { }()ijVl il Rw∑∈
+

\
α . To update jLF , one could use a similar procedure, but

considering the workload in the interval ()β,jLF and the constraint { } ()jijVl il LFRw −≤∑∈
β

\
.

In this case, if the constraint is not satisfied, jLF is updated to { }()ijVl il Rw∑∈
−

\
β .

We also call the update criterion described above “single-resource relaxation with no
execution interval”, as it does not consider the execution interval of any activity for scheduling
workloads. In the next subsection, we define the “single-resource relaxation considering the
execution intervals” and present a method to solve it. This method generalizes the ideas

127

September 24-28, 2012
Rio de Janeiro, Brazil

introduced above to satisfy the interval workload constraints. The resulting relaxation is stronger
but harder to solve than the one with no interval. We use both relaxations in our method.

2.1.2. Single-resource workload relaxation considering execution intervals
The single-resource workload problem (SRWP) can be described as follows. Let

{ }NV ′=′ ...,,2,1 be a set of activities to be scheduled to a single resource during the time
horizon ()T ′;0 and allowing preemption. Each Vk ′∈ has a workload kw′ to be scheduled
during the time interval ()kk FLSE ′′ , . There are H subintervals of the time horizon, each
subinterval h starting at 1−hUB and finishing at hUB , for { }Hh ,,1∈ . For every activity

Vk ′∈ , there are subintervals h′ and h ′′ such that jh ESUB =′ and jh LFUB =′′ . The time

horizon bounds are such that 00 =UB and TUBH ′= . There is a single resource with
availability hW ′ on each subinterval h of the time horizon. The objective is to find the amount

khω of workload for each activity k to be scheduled in each subinterval h such that

hVk kh W ′≤∑ ′∈
ω for all { }Hh ,,1∈ and k

H

h kh w′=∑ =1
ω for all Vk ′∈ .

Assume without loss of generality that NFLFLFL ′≤≤′≤′ 21 . We use a greedy
method to solve the SRWP defined above. For every subinterval h from 1 to H, we schedule the
activity with lowest index that can be executed in h (() () ∅≠∩′′ − hhkk UBUBFLSE ,, 1) and

whose workload is not completely scheduled until hVk kh W ′≤∑ ′∈
ω or there is no activity that

satisfies the requirements to be scheduled in h. At the end, if every activity is completely
scheduled, i.e. if the constraint k

H

u ku w′=∑ =1
ω is satisfied for every Vk ′∈ , then the SRWP is

feasible. Otherwise, it is infeasible. Next, we prove that the previous procedure is correct.
Lemma 1: Let 1S be a feasible solution for the SRSP where there is at least one pair of activities

Vlj ′∈, such that lj < and a part of l is scheduled in a subinterval before a part of j when
both activities could be scheduled. It is always possible to change 1S so that the workload of l is
scheduled in the same subinterval as j or after, without changing the schedule for the other
activities.
Proof: In 1S , if hVk kh W ′<∑ ∈

ω then it is possible to transfer part of hj ′ω to h so that jhω and

lhω are in the same subinterval. If there is still a part of j in h′ then the new hj ′ω and lhω are in
one of the following cases.

If lhhj ωω =′ , since both j and l can be scheduled in h and jl LFLF ≥ , then we can

change their positions and 1S is still feasible as the total workload in h and in h′ do not change.
If lhhj ωω >′ then we divide hj ′ω in to () lhhj ωω =′ 1

 and () ()
12 hjhjhj ′′′ −= ωωω to perform the

change between ()
1hj ′ω and lhω . If lhhj ωω <′ then it is possible to divide lhω in to

() hjlh ′= ωω 1 and () ()12 lhlhlh ωωω −= and perform the change between ()1lhω and hj ′ω . In all

cases, after the changes in 1S the total workload in h and in h′ do not change, the scheduling for
the other activities’ workload do not change and the part of l’s workload is in the same interval
j’s or later, as Lemma 1 describes. 

The explanation previously presented shows that for a given feasible solution it is
always possible to change the scheduling order of 2 activities workload, or parts of them, so that
the activity with the smallest LF is scheduled before.
Theorem 1: If the problem is feasible, then it is always possible to find a feasible solution
scheduling the activities in the earliest possible time interval, respecting execution intervals and

128

September 24-28, 2012
Rio de Janeiro, Brazil

workload constraints.
Proof: We prove it by induction on the value of N ′ . For 1=′N , the theorem obviously holds.
Assume that the theorem holds for kN =′ . We must prove that it also holds for 1+=′ kN . Let

1=j and 1S be a feasible solution for this problem such that there is at least a part of an jl >
scheduled before a part of j. By Lemma 1, it is possible to perform all the necessary changes in
order to have j completely scheduled in the same interval or earlier than all the other activities
after jES . Thus, if the problem is feasible then the algorithm schedules j in a feasible position.
For the remaining activities, consider modified problem without j where every workload used by
j is subtracted from the availability of the corresponding intervals. By the inductive hypothesis,
since this subproblem has k activities, the algorithm finds a feasible solution for it if possible. As
a result, it will find a feasible solution to the original problem, when it is feasible. 

2.2. Single-resource workload subproblem
As the original problem has m resources and the relaxation has a single one, there will

be m subproblems to check the ES of each activity, one for each resource, and other m
subproblems to check the LF of each activity.

 To check jES for resource i, there will be NN =′ activities, and each activity Vk ∈

will have an associated Vl ′∈ with kikl rw ∆×=′ to be scheduled in ()ll FLSE ′′, , where
{ }α;max kl ESSE =′ and { }jkl ESLFFL ;min=′ . The work available at the subinterval h will

be ()1−−=′ hhih UBUBRW . If at least one of the subproblems is infeasible, then jES can be

updated to 1+jES . This procedure is used in a binary search to define the new value of jES .
After that, the information is propagated to the other activities of V .

To check jLF for the resource i, we use a similar procedure, but the activity intervals

are defined as { }jkl LFESSE ;max=′ and. { }β;min kl LFFL =′ If at least one of the

subproblems is infeasible, then jLF can be updated to 1−jLF .
Although the single-resource relaxation considers the execution intervals, some useful

information may be lost because the problem considers only one resource at a time, without
precedence relations and the workload constraint allows activities to use more resource units than
they really instantly require. In order to avoid it, we developed two additional techniques that we
present in the next subsection.

2.3. Artificial resources
The lower bounds obtained through the workload approach can be further improved by

the creation of artificial resources. The effectiveness of such technique relies on the fact that the
workload relaxation allows for using resources fractionally in such a way that would not be
possible in a feasible solution. For instance, if two jobs need two units of a given resource each
and there are only three units available, the execution of these two jobs could not overlap in time.
On the other hand, the workload relaxation would allow one job and half of the other to be
executed simultaneously. In this case, instead of trying to consider the non-overlapping constraint
directly in the LB calculation, we represent it as an additional (artificial) resource with one
available unit and having one unit required by each job, so that it is taken into account without
changing the lower bounding algorithm. The mathematical concept of artificial resources is
presented below.

Let fjr be the requirement of activity j for the artificial resource f and fR be the

availability of this resource during the time horizon of the project. The condition BR f ≥ , such
that B is the optimal value of the MIP (3)-(6), is sufficient to ensure that the new resource does
not change the feasible region of the RCPSP.

129

September 24-28, 2012
Rio de Janeiro, Brazil

∑ ∈
×=

Vj jfj yrB max (3)

s.t.:

iVj jij Ryr ≤×∑ ∈
 ℜ∈∀i (4)

1≤+ kj yy () kjjkjjk LFESLFESpdAkj ≥≥≥∈∀ or or ,, (5)

{ }1,0∈jy (6)

In this MIP, jy is an auxiliary variable that is 1 if j is in the subset of activities that
maximizes the use of resource f, calculated in equation (3), and 0 otherwise. The chosen subset
must respect the resource constraints and their execution intervals must overlap. Those
requirements are guaranteed by Equations (4) and (5), respectively.

In the next subsections, we present two specific families kinds of artificial resources to
be considered in the workload method. The first is called “clique resources” and the second,
“hypergraph clique resources”.

2.3.1. Clique resources
Let ()EVG ,=′ be an undirected graph where each activity of V is a vertex and

{ } Ekj ∈, if and only if j and k can not be executed in parallel. A clique is a set of vertices
VQ ⊆ , such that if kj ≠ and Qkj ∈, then { } Ekj ∈, .

For the construction of G′ , let Vkj ∈, be two activities. If for any resource i,

iikij Rrr >+ , if () Akj ∈, with jjk pd > , if kj LFES > or if jk LFES > , then { } Ekj ∈, .

For each clique Q, an artificial resource f can be added, with ffj Rr = if Qj∈ and 0=fjr if

Qj∉ . For simplicity, we consider 1=fR .

2.3.2. Hypergraph clique resources
The main idea is to generalize clique resources to consider the cases where 3 activities

can not be executed in parallel, but pairs among those 3 may be allowed. Let ()EVH ′=′ , be a
hypergraph where each activity of V is a vertex and each hyperedge { } ElkjEi ′∈= ,, if and
only if no more than two activities among j, k and l can be executed in parallel. Since each
hyperedge in E has exactly three endpoints, H ′ is classified as 3-uniform. Each subset VQ ⊆′
induces a sub-hypergraph ()EQH ′′′=′′ , of H ′ such that { }QEEEE ii ′⊆′∈=′′ | . A 3-
uniform complete hypergraph H ′′ induced by Q′ in H ′ is a sub hypergraph such that, for all

Qlkj ′∈,, , { } Elkj ′′∈,, , i.e. no more than two activities in Q′ can be executed in parallel.
For the RCPSP, let the three activities be Vlkj ∈,, , if at least one of the edges { }kj, ,

{ }lj, or { }lk, belongs to E as described in subsection 2.3.1, or for any resource i we have

iilikij Rrrr >++ . For each generalized VQ ⊆′ that induce a 3-uniform complete sub-

hypergraph in H ′ , an artificial resource f is added with ffj Rr = if Qj ′∈ and there is no

Qk ′∈ that can be executed simultaneously with j. If Qj ′∈ and there is at least one Qk ′∈
that can be executed simultaneously with j, then 2ffj Rr = . If Qj ′∉ then 0=fjr . For

simplicity, we consider 2=fR .

2.4. Resource availability reduction
The LB obtained through the workload approach can also be improved by reducing the

resource availabilities without changing the feasible space when it is possible. For instance,
consider a given interval of the project time horizon, whose duration is 2 time units, where three

130

September 24-28, 2012
Rio de Janeiro, Brazil

units of a given resource is available, but only two activities can be scheduled each one needing
one resource unit, and having a duration of 3 time units. It is clear that, for the original problem,
the maximum resource usage at any instant of the given interval will be 2. Notice that, if this
information is not available to the workload relaxation, it does not detect that the two activities
cannot be completely scheduled in the given interval since the total available work is equal to the
sum of their workloads. On the other hand, if we consider that the maximum resource usage is 2,
them the total available work will be 4, forcing part of the activities to be scheduled before or
after this interval.

In a more general way, let tV ′ be the set of activities that can be scheduled in the
interval t. The maximum usage of the resource i can be calculated by the MIP below:

∑ ′∈
×

tVj jij yrmax (7)

s.t.:

iVj jij Ryr
t

≤×∑ ′∈
 (8)

{ }1,0∈jy tVj ′∈∀ (9)

In this MIP, jy is a binary variable that is 1 if the activity j is in the combination that
maximizes the use of resource i and zero otherwise. One might have noted that the previous
problem is exactly the 0-1 knapsack Problem. This problem is also a NP-Hard problem, but it is
widely studied in the literature. In this study, we considered the method presented by Psinger
(1997) to solve it.

2.5. Domain reduction by linear programming
This method uses a linear programming relaxation to update each activity both ES and

LF. The idea is to consider the workload for all the resources for every subinterval of the time
horizon instead of considering the resource constraint. We use the relaxation defined below.

Let { }NV ′=′ ...,,2,1 be a set of activities to be scheduled to m′ resources during the
time horizon ()T ′;0 and { }TU ′=′ ,...,0 be an ordered set of instants to divide the time horizon
in subintervals. Each activity k requires ikr ′ units of the resource i and has an execution time kp′
to be scheduled in ()kk FLSE ′′ , . Preemption is allowed. For every subinterval h of the time
horizon, the resource i has an availability of ihR′ . The total workload to i in h must respect

()1−−′=′ hhihih UBUBRW the available work. There are H subintervals of the time horizon, each
subinterval h starts at UUBh ′∈−1 and finishes at UUBh ′∈ . For every activity Vk ′∈ there are

UUBUB hh ′∈′′′ , such that kh ESUB =′ and kh LFUB =′′ . The objective is to define the
maximum part of an activity l that can be scheduled in ()ba, for given instants Uba ′∈, . The
problem can be solved as the LP below.

()
()∑Γ

+Γ=
=

b

ah lhx
1

maxα (10)

s.t.:

k

H

Vk
h

kh px

h

′=∑
′∈

=1
 Vk ′∈∀ (11)

()1−′∈
′−′′≤×′∑ hhihVk khik BUBURxr

h
 Hhi ,,1, =ℜ∈∀ (12)

{ }1;min0 −′−′′≤≤ hhkkh BUBUpx hVkHh ′∈=∀ ,,,1 (13)

In this LP, khx represents the part of the activity k that is executed in the interval h, hV ′
is the set of activities that can execute in h and ()yΓ denotes the index of the interval that

131

September 24-28, 2012
Rio de Janeiro, Brazil

finishes at y. The equation (10) calculates the maximum amount of l’s execution time that can be
scheduled in ()ba, . Equation (11) guaranties that all execution time of every activity is
scheduled. Equation (12) makes sure that the workload scheduled for each resource in each
subinterval does not exceed the available workload. Equation (13) defines the domain of khx .

We use this relaxation to define a new value to jES as follows. Let us consider

VV =′ , mm =′ , () ()TT ,0,0 =′ , kk pp =′ , () ()kkkk LFESFLSE ,, =′′ , ikik rr =′ , ihih RR =′
and () ()jjj pESESba += ,, . For every activity k, UFLpFLpSESE kkkkkk ′∈′′−′′+′′ ,,, . If

jp<α then it means that j can not be completely scheduled in ()jjj pESES +, for the
relaxed problem, and so for the original problem. Since the original problem does not allow
preemption, j can not start before ()α−+ jj pES , them jES can be updated to

()α−+ jj pES .

To solve the relaxation and update jLF , we use a similar procedure. The only

difference is that () ()jjj LFpLFba ,, −= . If jp<α then it means that j can not finish after

()α−− jj pLF , them jLF can be updated to ()α−− jj pLF .

Since 01 =′ +Np , it is not possible to update the LB on the makespan using the

procedure shown above to update 1+NES . To update 1+NES we use the same problem, but with
another objective. The goal of the new problem will be to find the minimum execution time
scheduled in ()ba, . This problem can be solved as the LP below.

γα min= (14)
s.t.:

k

H

Vk
h

kh px

h

′=∑
′∈

=1
 Vk ′∈∀ (11)

()1−′∈
′−′′≤×′∑ hhihVk khik BUBURxr

h
 Hhi ,,1, =ℜ∈∀ (12)

{ }1;min0 −′−′′≤≤ hhkkh BUBUpx hVkHh ′∈=∀ ,,,1 (13)

()

()

∑
Γ

′∈
+Γ=

≥
b

Vk
ah

kh

h

x
1

γ k∀ (15)

To update the LB on the makespan with this LP we define () ()TESba N ,, 1+= to
schedule all activities using the minimum amount of time after the current lower bound on the
makespan. So, if 0>γ then we know it is not possible to schedule all activities for the relaxed

problem before γ++1NES and so for the original problem. As a result, the LB on the makespan

can be updated to γ++1NES .
We also introduce the following cuts on demand to improve the LB quality, where

()21 ,, hhlδ denotes the execution time of l that must be scheduled in ()
21

;1 hh UBUB − .

()21;;2

1
hhlxh

ht lt δ=∑ =
 (16)

One might have noted that relaxing the resource constraints to workload ones may
result in the same loss of information mentioned in the subsection 2.3. So, in order to avoid some
schedules that are not allowed in the original problem, we introduce workload constraints for
artificial resources on demand as the constraints of Equation (12). We use the same kinds of

132

September 24-28, 2012
Rio de Janeiro, Brazil

artificial resources that were presented in subsections 2.3.1 and 2.3.2.

3. Implementation
The concepts and relaxations presented before were used in two different methods:

complete and simplified ones.
The complete method starts initializes the ESs and LFs for every activity using the

propagation method presented in Section 2. After that, it adds artificial resources described in
2.3.1 and 2.3.2 until every activity j has 0≠fjr for at least one artificial resource f. Next, it
applies the workload relaxation with no execution intervals and without resource-availability
reduction, as described in 2.1.1 until no more updates are possible.

Then, the greedy method described in 2.1.2 is executed with resource-availability
reduction described in 2.4. In the moment that no more updates are possible with the greedy
method, we create and solve the LPs described in 2.5, introducing cuts on demand as previously
described. Once it is not possible to update any interval using the current LPs, we use the
propagation method described in 2. If any ES or LF is updated, then we go back to the greedy
method iteration. This is repeated until no more updates are found with both LP and greedy
methods.

Until this point, we have used a constructive method that, not only updates the LB on
the makespan, but also updates the execution intervals of the activities. Now, in order to further
improve the quality of the LB on the makespan, we will use the destructive process, described in
Brucker and Knust (1997). From now on, no update will be valid to ESs and LFs. The process
defines a T ′ in ()11 , ++ NN LFES to be tested. Now, we use the two workload-based relaxations
previously presented to update activity execution intervals. If at any moment we get

jjj LFpES >+ for any Vj∈ then there is no feasible solution with makespan equal or less
than T ′ , i.e. T ′ is an infeasible value for the makespan. The optimal value for T ′ in
()11 , ++ NN LFES is found through a binary search procedure.

In order to compare the relaxations alone, we also implemented the procedure
considering only the relaxations with single resource. We call this implementation simplified
method.

The whole procedure was implemented in C++ and all the tests were made in a 2.13
GHz Intel® Core2Duo® computer with 4 GB of RAM. In order to solve LPs and MIPs, we use
the CPLEX 12.

4. Computational tests and results
The methods here presented were tested in the 58 hard instances of the benchmark sets

UBO50, UBO100, UBO 200, C, D and J30. The hard instances are the ones that Schutt et al.
(2010) could not prove optimality or found a LB. We also solve the 79 benchmark instances of
the set UBO500 that are feasible using the only the simplified method. The LBs available at
PSPLib (2012) were used as benchmarks to check the quality of our LBs. All instances are
available at PSPLib (2012).

Table 1 shows the results obtained by our complete method for the 58 hard instances. In
this table the first column represent the set of instances tested, the second represent the number of
instances tested in the set, columns “Same LB” and “Better LB” represent the number of
instances that our method could find respectively the same and a better LB than the one available
in the literature, “Closed” shows the number of instances whose optimality was proved for the
first time, “Average Time (s)” shows the average time (in seconds) to solve the instances,
“GAP%” represents the average percentage GAP and “% GAP closed” represent the percentage
of the GAP closed by our method.

133

September 24-28, 2012
Rio de Janeiro, Brazil

Table 1 – Results for complete method

Group Instances Same LB Better LB Closed Average
Time (s) GAP % % GAP

closed

UBO50 3 0 3 0 23.47 9.83% 66.99%
UBO100 10 0 9 0 1,358.88 16.86% 24.40%
UBO200 18 0 15 0 12,176.40 24.32% 10.05%
C 17 5 4 0 1,574.68 16.29% -4.78%
D 4 0 0 0 959.34 21.25% -14.73%
J30 6 1 5 3 5.70 1.38% 81.16%

The LB found by this method is better in 62% of the instances and for other 10% it is

the same found in the literature. Considering the set J30, the method closed 3 (50%) hard
instances, found better LB for other 2 (33%) and reduced the average percentage GAP in more
than 80%. For the class UBO, we found better LBs for 87% of the hard instances and reduced the
percentage GAP in more that 10%. For the sets C and D, although the average GAP was not
reduced, this method could find better LB for 4 (24%) hard instances and the same available in
the literature for other 5 (29%) of set C.

The Table 2 shows the results obtained by our simplified method for the 58 hard
instances and the 79 feasible instances of the set UBO500. This table follows the same structure
of Table 1.

Table 2 – Results for simplified method

Group Instances Same LB Better
LB Closed Average

Time (s) GAP % % GAP
closed

UBO50 3 0 3 0 5.03 9.83% 66.99%
UBO100 10 0 8 0 211.58 17.00% 23.42%
UBO200 18 0 15 0 2,925.29 24.26% 9.12%
UBO500 79 42 26 0 25,388.69 9.21% 5.50%
C 17 3 2 0 119.98 17.03% -10.31%
D 4 0 0 0 237.12 21.42% -15.73%
J30 6 1 5 3 0.77 1.38% 81.16%

The LB found by this method is better in 43% of the instances and for other 34% it is

the same available in the literature. This method could also prove optimality for 3 hard instances
of set J30.Considering only the hard instances of class UBO, this method found better LB in 47%
and reduced the GAP in more them 5%. For UBO500 instances, that Schutt et al. (2010) did not
tested, our method could find the same LB in 53% of the instances and found better LBs in 33%.
For the sets C and D, the GAP is in average more than 10% greater than the one in the literature.

Comparing the complete and the simplified methods, it is clear that the simplified one
requires less computational effort, but the complete is important to reduce the GAP and to find
better LBs for larger instances.

5. Conclusion
Considering the results obtained by the complete and the simplified methods presented

in this paper, although the LP relaxation is important to reduce the average percentage GAP, it is
clear that the complete method requires much more computational effort.

Comparing the results here obtained and the ones available at PSPLib (2012), we could
reduce the percentage GAP for all but the sets C and D. The LBs were improved for 62% of the
hard instances with the complete method and for 43% with the simplified one.

134

September 24-28, 2012
Rio de Janeiro, Brazil

Comparing the method here proposed with the one presented by Schutt et al. (2010),
their finite domain uses the Cumulative Scheduling Problem that is similar to the SRWP, but it
does not allow preemption and the execution time is fixed. So their relaxation is stronger than the
one used in this work. On the other hand, their Boolean satisfiability solving is used to add
disjunction restriction to the model, each disjunction as a constraint. As the artificial resources
introduced in this work are created considering more than one disjunction at a time, they are
stronger as than the Boolean satisfability. Another important difference between the methods is
that Schutt et al. (2010) method includes a branch-and-bound procedure and the one proposed
here does not.

A weak point of our method is the fact that it needs a valid upper bound as input.
Although the quality of the upper bound does not change the final LB, it may affect the
constructive LB and the total execution time. Another important fact is that our method does not
include a heuristic procedure, so if the known upper bound is not optimal then we will not find a
better solution. On the other hand, the execution intervals obtained after the constructive part of
our LB can be used in other exact methods or in heuristics.

6. References
Baptiste, P; Pape, C. L.; Nuijten, W. and Pape, C. (1999), Satisfiability Tests and TimeBound
Adjustments for Cumulative Scheduling Problems, Annals of Operations Research, 305-333.
Bartusch, M.; Möhring, R. H. and Radermacher, F. J. (1988), Scheduling project networks
with resource constraints and time windows, Annals of Operations Research, 199-240.
Blazewicz, J.; Lenstra, J. K. and Kan, A. H. G. (1983), Scheduling subject to resource
constraints: classification and complexity, Discrete Applied Mathematics, 32, 11-24.
Brucker, P.; Drexl, A.; Mohring, R.; Neumann, K. and Pesch, E. (1999), Resource-
constrained project scheduling: Notation, classification, models, and methods, European Journal
of Operational Research, 112, 3-41.
Brucker, P. and Knust, S. (2000), A linear programming and constraint propagation-based
lower bound for the RCPSP, European Journal of Operational Research, 127, 355-362.
Demassey, S.; Artigues, C. and Michelon, P. (2005), Constraint-Propagation-Based Cutting
Planes: An Application to the Resource-Constrained Project Scheduling Problem, Journal on
Computing, 17, 52-65.
Dorndorf, U.; Pesch, E. and Phan-Huy, T. (2000), A time-oriented branch-and-bound
algorithm for resource-constrained project scheduling with generalised precedence constraints,
Management Science, 46, 1365-1384.
Franck, B.; Neumann, K. and Schwindt, C. (2001), Truncated branch-and-bound, schedule-
construction, and schedule-improvement procedures for resource-constrained project scheduling,
OR Spectrum, 23, 297-324.
Koné, O.; Artigues, C.; Lopez, P. and Mongeau, M. (2011), Event-based MILP models for
resource-constrained project scheduling problems, Computers & Operations Research, 38, 3-13.
Kooli, A.; Haouari, M.; Hidri, L. and Néron, E. (2010), IP-Based Energetic Reasoning for the
Resource Constrained Project Scheduling Problem, ISCO 2010 - International Symposium on
Combinatorial Optimization, 359-366.
Pinedo, M, Planning and Scheduling in Manufacturing and Services, Springer, New York, 2004.
Pisinger, D. (1997), A Minimal Algorithm for the 0-1 Knapsack Problem, Operations Research,
45, 758-767.
Schutt, A.; Feydy, T.; Stuckey, P. J. and Wallace, M. G., Solving the Resource Constrained
Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation, Computer
Science, Cornell University, http://arxiv.org/abs/1009.0347v1, 2010.
PSPLIB., Project Scheduling Problem Library, http://129.187.106.231/psplib, 2012.

135

	Improved lower bounds for hard Project Scheduling instances
	ABSTRACT
	1. Introduction
	2. Our Approach
	2.1. Domain reduction by single-resource relaxation
	2.1.1. Workload requirements
	2.1.2. Single-resource workload relaxation considering execution intervals
	2.2. Single-resource workload subproblem
	2.3. Artificial resources
	2.3.1. Clique resources
	2.3.2. Hypergraph clique resources
	2.4. Resource availability reduction
	2.5. Domain reduction by linear programming
	3. Implementation
	4. Computational tests and results
	5. Conclusion
	6. References

