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ABSTRACT 

In a Resource Constrained Project Scheduling Problem with generalized precedence 
restrictions (RCPSP/max), one must schedule a set of activities with known duration satisfying 
precedence restrictions with variable time lags and respecting the availability of resources. The 
goal is to minimize the project duration (makespan). 

This study presents a method to calculate a lower bound on the makespan based on 
constraint propagation that considers three relaxations of RCPSP/max. The first and the second 
relaxations are solved by greedy methods and the last one as a linear programming problem. We 
also introduce artificial resources and other preprocessing techniques to improve the lower bound 
quality. We report experiments using 58 open benchmark instances with up to 200 activities 
where our procedure proved the optimality of 3 known solutions and closed 62% of the 
optimality gap on the average. It also found better lower bounds for 26 out of 79 instances with 
500 activities. 
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1. Introduction 
Optimizing project planning is important in every knowledge area since it can avoid 

waste of time and resources, especially in great projects like rocket launch, building hydro-
electrical plants or oil and gas platforms (PINEDO, 2004). The resource constrained project 
scheduling problem (RCPSP) is a well-known model for such optimization that is defined as 
follows. Let { }1,,...,1,0 += NNV  be the set of activities to be scheduled using a set 

{ }m,,1=ℜ  of resources. Each activity Vj∈  has an execution time jp  and uses a specific 

amount ijr  of resource i at every instant of its processing time. Resource i has iR  units available 
during all the time horizon. The schedule must also respect activity precedence, which are 
represented by the directed graph ( )AVG ,= . For each ( ) Alj ∈, , we use jld  to denote the 

time lag from activity j to l. In this case, l has to start at least jld  time units after j starts and j has 

to start at most jld−  units of time after l starts. For the RCPSP/max, nonnegative cycles are 
allowed in A. The activities 0 and 1+N  represent the beginning and the end of the project, 
having null execution times and null use of resources. Every activity with no other predecessor 
will succeed 0, and every activity with no other successor will precede 1+N . In this study, the 
objective is to find the minimum completion time for the project, also known as makespan and 
also defined as the finish time of activity 1+N . 

RCPSP and its variations are NP-hard as they generalize shop problems, like open shop 
or job shop (BLAZEWICZ ET AL., 1983). Since it is difficult and time costly to prove 
optimality of solutions for this problem, finding a good quality lower bound (LB) may bring 
some useful information during the decision making process. There are two approaches in the 
literature to calculate a LB for the RCPSP: constructive and destructive methods.  

Constructive LBs use relaxed formulations of the problem, which are, generally, easier 
to solve. One of the most used relaxations is the workload based one. For a given resource i, the 
total workload required by each activity j is given by jij pr × . The workload based relaxation 
tries to schedule activities so as to satisfy the workload requirements instead of the resource 
constraints. For example, Koné et al. (2011) introduced a mathematical formulation based on 
start and finish events. Kooli et al. (2010) presented a Mixed Linear Problem (MIP) that 
generalizes workload constraints. Franck et al. (2001) also presented a workload-based method 
using the concepts of Baptiste et al. (1999) and Dorndorf et al. (1999). Schutt et al. (2010) use a 
finite domain solver in a lazy clause generation approach with a hybrid of finite domain and 
Boolean satisfiability solving.  

Demassey et al. (2005) define the destructive method as a procedure that defines 
hypothetical upper bounds T ′  on the makespan aiming to prove that there is no solution 
respecting this upper bound. If such a proof is successful, one can conclude that 1+′T  is a lower 
bound on the optimal makespan. Brucker & Knust (2000) presented a destructive LB that uses a 
constraint propagation method and a MIP to try to prove that T ′  is an infeasible upper bound. 

The method presented in this paper contains three different workload approaches to be 
used in both constructive and destructive LBs. The first and the second ones are single resource 
workload relaxations of RCPSP/max. The first relaxation does not consider the activities 
execution intervals, but the second does consider. The third method uses a linear programming 
(LP) relaxation that considers all resources in parallel. At first, the three methods are used in a 
constructive approach to update execution intervals and the LB on makespan. Once an interval is 
updated, the information is transmitted to the other intervals through by a precedence constraint 
propagation method. After the constructive approach finishes, we use the same three relaxations 
in a destructive approach to update the LB on the makespan. 

We used the instances available at PSPLib (2012) as benchmark. As Schutt et al. (2010) 
proved optimality for a great number of them with 10 to 200 activities in little computational 
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time, we consider only the 58 hard instances that could not be solved by their method. All these 
instances have available feasible solutions whose optimality is not proved and available lower 
bounds reported by Franck et al. (2001). For these instances, no LB is provided by Schutt et al. 
(2010). In the reported experiments, we proved the optimality of 3 feasible solutions for the first 
time, for instances with 30 activities, and closed 62% of the optimality gaps on the average. We 
also tested a faster but weaker version of our method on 79 instances with 500 activities, finding 
better LBs for 26 of them, and closing 5.5% of the optimality gaps on the average. 

This paper has the following structure: Section 2 presents our approach to calculate 
lower bounds on the makespan. Section 3 describes the implementation and Section 4 the tests 
and computational results. Finally, Section 5 presents our conclusions. 

2. Our Approach 
Our method maintains an execution interval for each activity defined as an interval 

where it must be completely executed. The execution interval of activity j is denoted by 
( )jj LFES , , where the Early-Start (ES) is the first instant it can start and the Late-Finish (LF) is 
the last moment it can end. Although the execution intervals are not in the problem definition, 
they are implied by in the precedence relations. To initialize the execution intervals, first we 
consider ( ) ( )TLFES jj ,0, =  for all Vj∈ , where T is a valid upper bound (UB). Then we use 
the propagation method, described below, to check and update them if possible. This method is 
divided in two phases, one for ES and other for LF updates. 

We propagate the ES updates as follows. Let us consider that jES  was updated. If 

there is a precedence arc ( ) Alj ∈,  that does not respect the constraint ljlj ESdES ≥+ , we 

update lES  to jlj dES + . This check must be repeated until every updated jES  is tested and no 

more updates are performed. Similarly, we propagate LF updates as follows. Whenever jLF  is 

updated, if the constraint ljjl dLFLF −≤  is not satisfied, due to ( ) Ajl ∈, , we update lLF  to 

ljj dLF − . This check must also be repeated until every updated jLF  is tested and no more 
updates are performed. 

Until this point, the execution intervals consider only precedence relations. In the next 
subsections, we will present the three workload methods to update the intervals considering also 
the resource constraints, each one based on a different relaxation of the problem. In the first 
relaxation, we schedule the workload for each resource individually regardless the execution 
intervals. In the second, the workload is also schedule for each resource individually, but 
considering execution intervals. In order to increase the quality of the lower bound, we also 
present a way to include artificial resources and other techniques to strengthen the relaxation. The 
third method is a domain reduction by LP that considers all resources in parallel, which is 
stronger but slower than the previous methods. For all the relaxations preemption is allowed. 

2.1. Domain reduction by single-resource relaxation 
The first method presented to update the execution intervals uses a workload based 

relaxation that considers a single resource to check if activity Vj∈  can start at jES and finish 

at jLF . In order to check the validity of the starting time jES  for activity j, we consider the total 
workload that must occur before j starts. If we prove that it is not possible to schedule all this 
workload in the interval ( )jES,0 , then we can conclude that jES  can be increased by at least 

one time unit. More generally, let α  be an arbitrary instant before jES . If we prove that it is not 
possible to schedule the workload that must occur between α  and the start of j in the interval 
( )jES,α , then we can conclude that jES  can be increased. Similarly, given an instant β  after 

jLF , if we find out that it is not possible to schedule all the workload that must occur between 
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the finish of j and β  in the interval ( )β,jLF , then we prove that jLF  can be reduced by at least 
one time unit. 

2.1.1. Workload requirements 
Here, we show how to calculate the workload of each Vl∈  that must occur in 

( )jES,α  assuming that j starts at jES , or in ( )β,jLF  assuming that j finishes at jLF . Beside 
the assumptions, the method to calculate the workload for both intervals is the same. Hence, we 
will present it for a generic interval ( )UBLB,  with no assumption. Later, we show how to 
consider these assumptions.  

Let ( )ll BUBL ′′,  be the current execution interval for activity Vl∈  and l∆  be the part 
of the processing time of l that must occur in the interval ( )UBLB, . We can calculate l∆  by the 
formula { }llll p Φ−=∆ ;max φ , where lφ  is the part of the execution time of l out of ( )UBLB,  
when it is scheduled starting at lBL ′  and lΦ  is the part of the execution time of l out of 
( )UBLB,  when it is scheduled finishing at lBU ′ . lφ  and lΦ  can be calculated as follows: 

{ } { }0;max0;max UBpBLBLLB llll −+′+′−=φ     (1) 
{ } ( ){ }0;max0;max llll pBULBUBBU −′−+−′=Φ     (2) 

Once we calculated l∆ , the workload of activity l that is required in the interval 
( )UBLB,  for the resource i is lilil rw ∆×= . 

When checking whether the activity Vj∈  can start at jES , we do not use the current 
execution intervals for remaining activities. Instead, we temporarily update such intervals 
assuming that j starts at jES  and using the propagation method described in the beginning of this 

section. Then, we calculate the workload of each activity that must occur in ( )jES,α  as shown 

above (let α=LB  and jESUB = ) and use the single resource workload relaxation to check if it 
is possible to schedule all this workload for each resource individually. Similarly, to check 
whether Vj∈  can finish at jLF  we temporarily update the execution intervals assuming j 

finishes at jLF  and calculate the workload that must occur in ( )β,jLF  as shown above (let 

jLFLB =  and β=UB ). 
After all checks are performed the execution intervals for all activities other than j are 

restored to their original values regardless of whether the interval of j is updated or not. If it is 
updated, we propagate the information to the other execution intervals. 

For a given resource i, the total workload to schedule in ( )jES,α  is { }∑∈ jVl ilw
\

 and 

the total available work is ( )α−ji ESR . Thus, in order to be possible that Vj∈ to starts at 

jES , the constraint { } ( )α−≤∑∈ jijVl il ESRw
\

 must be satisfied. Otherwise, jES  can be 

updated to { }( )ijVl il Rw∑∈
+

\
α . To update jLF , one could use a similar procedure, but 

considering the workload in the interval ( )β,jLF  and the constraint { } ( )jijVl il LFRw −≤∑∈
β

\
. 

In this case, if the constraint is not satisfied, jLF  is updated to { }( )ijVl il Rw∑∈
−

\
β . 

We also call the update criterion described above “single-resource relaxation with no 
execution interval”, as it does not consider the execution interval of any activity for scheduling 
workloads. In the next subsection, we define the “single-resource relaxation considering the 
execution intervals” and present a method to solve it. This method generalizes the ideas 
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introduced above to satisfy the interval workload constraints. The resulting relaxation is stronger 
but harder to solve than the one with no interval. We use both relaxations in our method. 

2.1.2. Single-resource workload relaxation considering execution intervals 
The single-resource workload problem (SRWP) can be described as follows. Let 

{ }NV ′=′ ...,,2,1  be a set of activities to be scheduled to a single resource during the time 
horizon ( )T ′;0  and allowing preemption. Each Vk ′∈  has a workload kw′  to be scheduled 
during the time interval ( )kk FLSE ′′ , . There are H subintervals of the time horizon, each 
subinterval h starting at 1−hUB  and finishing at hUB , for { }Hh ,,1∈ . For every activity 

Vk ′∈ , there are subintervals h′  and h ′′  such that jh ESUB =′  and jh LFUB =′′ . The time 

horizon bounds are such that 00 =UB  and TUBH ′= . There is a single resource with 
availability hW ′  on each subinterval h of the time horizon. The objective is to find the amount 

khω  of workload for each activity k to be scheduled in each subinterval h such that 

hVk kh W ′≤∑ ′∈
ω  for all { }Hh ,,1∈  and k

H

h kh w′=∑ =1
ω  for all Vk ′∈ . 

Assume without loss of generality that NFLFLFL ′≤≤′≤′ 21 . We use a greedy 
method to solve the SRWP defined above. For every subinterval h from 1 to H, we schedule the 
activity with lowest index that can be executed in h ( ( ) ( ) ∅≠∩′′ − hhkk UBUBFLSE ,, 1 ) and 

whose workload is not completely scheduled until hVk kh W ′≤∑ ′∈
ω  or there is no activity that 

satisfies the requirements to be scheduled in h. At the end, if every activity is completely 
scheduled, i.e. if the constraint k

H

u ku w′=∑ =1
ω  is satisfied for every Vk ′∈ , then the SRWP is 

feasible. Otherwise, it is infeasible. Next, we prove that the previous procedure is correct. 
Lemma 1: Let 1S  be a feasible solution for the SRSP where there is at least one pair of activities 

Vlj ′∈,  such that lj <  and a part of l is scheduled in a subinterval before a part of j when 
both activities could be scheduled. It is always possible to change 1S  so that the workload of l is 
scheduled in the same subinterval as j or after, without changing the schedule for the other 
activities. 
Proof: In 1S , if hVk kh W ′<∑ ∈

ω then it is possible to transfer part of hj ′ω  to h so that jhω  and 

lhω  are in the same subinterval. If there is still a part of j in h′  then the new hj ′ω  and lhω  are in 
one of the following cases. 

If lhhj ωω =′ , since both j and l can be scheduled in h and jl LFLF ≥ , then we can 

change their positions and 1S  is still feasible as the total workload in h and in h′  do not change. 
If lhhj ωω >′  then we divide hj ′ω  in to ( ) lhhj ωω =′ 1

 and ( ) ( )
12 hjhjhj ′′′ −= ωωω  to perform the 

change between ( )
1hj ′ω  and lhω . If lhhj ωω <′  then it is possible to divide lhω  in to 

( ) hjlh ′= ωω 1  and ( ) ( )12 lhlhlh ωωω −=  and perform the change between ( )1lhω  and  hj ′ω . In all 

cases, after the changes in 1S  the total workload in h and in h′  do not change, the scheduling for 
the other activities’ workload do not change and the part of l’s workload is in the same interval 
j’s or later, as Lemma 1 describes.   

The explanation previously presented shows that for a given feasible solution it is 
always possible to change the scheduling order of 2 activities workload, or parts of them, so that 
the activity with the smallest LF is scheduled before.  
Theorem 1: If the problem is feasible, then it is always possible to find a feasible solution 
scheduling the activities in the earliest possible time interval, respecting execution intervals and 
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workload constraints.  
Proof: We prove it by induction on the value of N ′ . For 1=′N , the theorem obviously holds. 
Assume that the theorem holds for kN =′ . We must prove that it also holds for 1+=′ kN . Let 

1=j  and 1S  be a feasible solution for this problem such that there is at least a part of an jl >  
scheduled before a part of j. By Lemma 1, it is possible to perform all the necessary changes in 
order to have j completely scheduled in the same interval or earlier than all the other activities 
after jES . Thus, if the problem is feasible then the algorithm schedules j in a feasible position. 
For the remaining activities, consider modified problem without j where every workload used by 
j is subtracted from the availability of the corresponding intervals. By the inductive hypothesis, 
since this subproblem has k activities, the algorithm finds a feasible solution for it if possible. As 
a result, it will find a feasible solution to the original problem, when it is feasible.   

2.2. Single-resource workload subproblem 
As the original problem has m resources and the relaxation has a single one, there will 

be m subproblems to check the ES of each activity, one for each resource, and other m 
subproblems to check the LF of each activity. 

 To check jES  for resource i, there will be NN =′  activities, and each activity Vk ∈  

will have an associated Vl ′∈  with kikl rw ∆×=′  to be scheduled in ( )ll FLSE ′′, , where 
{ }α;max kl ESSE =′  and { }jkl ESLFFL ;min=′ . The work available at the subinterval h will 

be ( )1−−=′ hhih UBUBRW . If at least one of the subproblems is infeasible, then jES  can be 

updated to 1+jES . This procedure is used in a binary search to define the new value of jES . 
After that, the information is propagated to the other activities of V . 

To check jLF  for the resource i, we use a similar procedure, but the activity intervals 

are defined as { }jkl LFESSE ;max=′  and. { }β;min kl LFFL =′  If at least one of the 

subproblems is infeasible, then jLF  can be updated to 1−jLF .  
Although the single-resource relaxation considers the execution intervals, some useful 

information may be lost because the problem considers only one resource at a time, without 
precedence relations and the workload constraint allows activities to use more resource units than 
they really instantly require. In order to avoid it, we developed two additional techniques that we 
present in the next subsection. 

2.3. Artificial resources 
The lower bounds obtained through the workload approach can be further improved by 

the creation of artificial resources. The effectiveness of such technique relies on the fact that the 
workload relaxation allows for using resources fractionally in such a way that would not be 
possible in a feasible solution. For instance, if two jobs need two units of a given resource each 
and there are only three units available, the execution of these two jobs could not overlap in time. 
On the other hand, the workload relaxation would allow one job and half of the other to be 
executed simultaneously. In this case, instead of trying to consider the non-overlapping constraint 
directly in the LB calculation, we represent it as an additional (artificial) resource with one 
available unit and having one unit required by each job, so that it is taken into account without 
changing the lower bounding algorithm. The mathematical concept of artificial resources is 
presented below. 

Let fjr  be the requirement of activity j for the artificial resource f and fR be the 

availability of this resource during the time horizon of the project. The condition BR f ≥ , such 
that B is the optimal value of the MIP (3)-(6), is sufficient to ensure that the new resource does 
not change the feasible region of the RCPSP. 
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∑ ∈
×=

Vj jfj yrB max        (3) 

s.t.: 

iVj jij Ryr ≤×∑ ∈
  ℜ∈∀i      (4) 

1≤+ kj yy   ( ) kjjkjjk LFESLFESpdAkj ≥≥≥∈∀ or  or  ,,  (5) 

{ }1,0∈jy          (6) 

In this MIP, jy  is an auxiliary variable that is 1 if j is in the subset of activities that 
maximizes the use of resource f, calculated in equation (3), and 0 otherwise. The chosen subset 
must respect the resource constraints and their execution intervals must overlap. Those 
requirements are guaranteed by Equations (4) and (5), respectively. 

In the next subsections, we present two specific families kinds of artificial resources to 
be considered in the workload method. The first is called “clique resources” and the second, 
“hypergraph clique resources”. 

2.3.1. Clique resources 
Let ( )EVG ,=′  be an undirected graph where each activity of V is a vertex and 

{ } Ekj ∈,  if and only if j and k can not be executed in parallel. A clique is a set of vertices 
VQ ⊆ , such that if kj ≠  and Qkj ∈,  then { } Ekj ∈, . 

For the construction of G′ , let Vkj ∈,  be two activities. If for any resource i, 

iikij Rrr >+ , if ( ) Akj ∈,  with jjk pd > , if kj LFES >  or if jk LFES > , then { } Ekj ∈, . 

For each clique Q, an artificial resource f can be added, with ffj Rr =  if Qj∈  and 0=fjr  if 

Qj∉ . For simplicity, we consider 1=fR . 

2.3.2. Hypergraph clique resources 
The main idea is to generalize clique resources to consider the cases where 3 activities 

can not be executed in parallel, but pairs among those 3 may be allowed. Let ( )EVH ′=′ ,  be a 
hypergraph where each activity of V is a vertex and each hyperedge { } ElkjEi ′∈= ,,  if and 
only if no more than two activities among j, k and l can be executed in parallel. Since each 
hyperedge in E has exactly three endpoints, H ′  is classified as 3-uniform. Each subset VQ ⊆′  
induces a sub-hypergraph ( )EQH ′′′=′′ ,  of H ′  such that { }QEEEE ii ′⊆′∈=′′ | . A 3-
uniform complete hypergraph H ′′  induced by Q′  in H ′  is a sub hypergraph such that, for all 

Qlkj ′∈,, , { } Elkj ′′∈,, , i.e. no more than two activities in Q′  can be executed in parallel. 
For the RCPSP, let the three activities be Vlkj ∈,, , if at least one of the edges { }kj, , 

{ }lj,  or { }lk,  belongs to E as described in subsection 2.3.1, or for any resource i we have 

iilikij Rrrr >++ . For each generalized VQ ⊆′  that induce a 3-uniform complete sub-

hypergraph in H ′ , an artificial resource f is added with ffj Rr =  if Qj ′∈  and there is no 

Qk ′∈  that can be executed simultaneously with j. If Qj ′∈  and there is at least one Qk ′∈  
that can be executed simultaneously with j, then 2ffj Rr = . If Qj ′∉  then 0=fjr . For 

simplicity, we consider 2=fR . 

2.4. Resource availability reduction 
The LB obtained through the workload approach can also be improved by reducing the 

resource availabilities without changing the feasible space when it is possible. For instance, 
consider a given interval of the project time horizon, whose duration is 2 time units, where three 
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units of a given resource is available, but only two activities can be scheduled each one needing 
one resource unit, and having a duration of 3 time units. It is clear that, for the original problem, 
the maximum resource usage at any instant of the given interval will be 2. Notice that, if this 
information is not available to the workload relaxation, it does not detect that the two activities 
cannot be completely scheduled in the given interval since the total available work is equal to the 
sum of their workloads. On the other hand, if we consider that the maximum resource usage is 2, 
them the total available work will be 4, forcing part of the activities to be scheduled before or 
after this interval. 

In a more general way, let tV ′  be the set of activities that can be scheduled in the 
interval t. The maximum usage of the resource i can be calculated by the MIP below: 

∑ ′∈
×

tVj jij yrmax         (7) 

s.t.: 

iVj jij Ryr
t

≤×∑ ′∈
        (8) 

{ }1,0∈jy    tVj ′∈∀      (9) 

In this MIP, jy  is a binary variable that is 1 if the activity j is in the combination that 
maximizes the use of resource i and zero otherwise. One might have noted that the previous 
problem is exactly the 0-1 knapsack Problem. This problem is also a NP-Hard problem, but it is 
widely studied in the literature. In this study, we considered the method presented by Psinger 
(1997) to solve it. 

2.5. Domain reduction by linear programming 
This method uses a linear programming relaxation to update each activity both ES and 

LF. The idea is to consider the workload for all the resources for every subinterval of the time 
horizon instead of considering the resource constraint. We use the relaxation defined below. 

Let { }NV ′=′ ...,,2,1  be a set of activities to be scheduled to m′  resources during the 
time horizon ( )T ′;0  and { }TU ′=′ ,...,0  be an ordered set of instants to divide the time horizon 
in subintervals. Each activity k requires ikr ′  units of the resource i and has an execution time kp′  
to be scheduled in ( )kk FLSE ′′ , . Preemption is allowed. For every subinterval h of the time 
horizon, the resource i has an availability of ihR′ . The total workload to i in h must respect 

( )1−−′=′ hhihih UBUBRW  the available work. There are H subintervals of the time horizon, each 
subinterval h starts at UUBh ′∈−1  and finishes at UUBh ′∈ . For every activity Vk ′∈  there are 

UUBUB hh ′∈′′′ , such that kh ESUB =′  and kh LFUB =′′ . The objective is to define the 
maximum part of an activity l that can be scheduled in ( )ba,  for given instants Uba ′∈, . The 
problem can be solved as the LP below. 

( )
( )∑Γ

+Γ=
=

b

ah lhx
1

maxα         (10) 

s.t.: 

k

H

Vk
h

kh px

h

′=∑
′∈

=1
      Vk ′∈∀   (11) 

( )1−′∈
′−′′≤×′∑ hhihVk khik BUBURxr

h
   Hhi ,,1, =ℜ∈∀  (12) 

{ }1;min0 −′−′′≤≤ hhkkh BUBUpx    hVkHh ′∈=∀ ,,,1  (13) 

In this LP, khx  represents the part of the activity k that is executed in the interval h, hV ′  
is the set of activities that can execute in h and ( )yΓ  denotes the index of the interval that 
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finishes at y. The equation (10) calculates the maximum amount of l’s execution time that can be 
scheduled in ( )ba, . Equation (11) guaranties that all execution time of every activity is 
scheduled. Equation (12) makes sure that the workload scheduled for each resource in each 
subinterval does not exceed the available workload. Equation (13) defines the domain of khx . 

We use this relaxation to define a new value to jES  as follows. Let us consider 

VV =′ , mm =′ , ( ) ( )TT ,0,0 =′ , kk pp =′ , ( ) ( )kkkk LFESFLSE ,, =′′ , ikik rr =′ , ihih RR =′  
and ( ) ( )jjj pESESba += ,, . For every activity k, UFLpFLpSESE kkkkkk ′∈′′−′′+′′ ,,, . If 

jp<α  then it means that j can not be completely scheduled in ( )jjj pESES +,  for the 
relaxed problem, and so for the original problem. Since the original problem does not allow 
preemption, j can not start before ( )α−+ jj pES , them jES  can be updated to 

( )α−+ jj pES . 

To solve the relaxation and update jLF , we use a similar procedure. The only 

difference is that ( ) ( )jjj LFpLFba ,, −= . If jp<α  then it means that j can not finish after 

( )α−− jj pLF , them jLF  can be updated to ( )α−− jj pLF . 

Since 01 =′ +Np , it is not possible to update the LB on the makespan using the 

procedure shown above to update 1+NES . To update 1+NES  we use the same problem, but with 
another objective. The goal of the new problem will be to find the minimum execution time 
scheduled in ( )ba, . This problem can be solved as the LP below. 

γα min=          (14) 
s.t.: 
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To update the LB on the makespan with this LP we define ( ) ( )TESba N ,, 1+=  to 
schedule all activities using the minimum amount of time after the current lower bound on the 
makespan. So, if 0>γ  then we know it is not possible to schedule all activities for the relaxed 

problem before γ++1NES  and so for the original problem. As a result, the LB on the makespan 

can be updated to γ++1NES . 
We also introduce the following cuts on demand to improve the LB quality, where 

( )21 ,, hhlδ  denotes the execution time of l that must be scheduled in ( )
21

;1 hh UBUB − .  

( )21;;2

1
hhlxh

ht lt δ=∑ =
       (16) 

One might have noted that relaxing the resource constraints to workload ones may 
result in the same loss of information mentioned in the subsection 2.3. So, in order to avoid some 
schedules that are not allowed in the original problem, we introduce workload constraints for 
artificial resources on demand as the constraints of Equation (12). We use the same kinds of 
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artificial resources that were presented in subsections 2.3.1 and 2.3.2. 

3. Implementation 
The concepts and relaxations presented before were used in two different methods: 

complete and simplified ones. 
The complete method starts initializes the ESs and LFs for every activity using the 

propagation method presented in Section 2. After that, it adds artificial resources described in 
2.3.1 and 2.3.2 until every activity j has 0≠fjr  for at least one artificial resource f. Next, it 
applies the workload relaxation with no execution intervals and without resource-availability 
reduction, as described in 2.1.1 until no more updates are possible. 

Then, the greedy method described in 2.1.2 is executed with resource-availability 
reduction described in 2.4. In the moment that no more updates are possible with the greedy 
method, we create and solve the LPs described in 2.5, introducing cuts on demand as previously 
described. Once it is not possible to update any interval using the current LPs, we use the 
propagation method described in 2. If any ES or LF is updated, then we go back to the greedy 
method iteration. This is repeated until no more updates are found with both LP and greedy 
methods. 

Until this point, we have used a constructive method that, not only updates the LB on 
the makespan, but also updates the execution intervals of the activities. Now, in order to further 
improve the quality of the LB on the makespan, we will use the destructive process, described in 
Brucker and Knust (1997). From now on, no update will be valid to ESs and LFs. The process 
defines a T ′  in ( )11 , ++ NN LFES  to be tested. Now, we use the two workload-based relaxations 
previously presented to update activity execution intervals. If at any moment we get 

jjj LFpES >+  for any Vj∈  then there is no feasible solution with makespan equal or less 
than T ′ , i.e. T ′  is an infeasible value for the makespan. The optimal value for T ′  in 
( )11 , ++ NN LFES  is found through a binary search procedure. 

In order to compare the relaxations alone, we also implemented the procedure 
considering only the relaxations with single resource. We call this implementation simplified 
method. 

The whole procedure was implemented in C++ and all the tests were made in a 2.13 
GHz Intel® Core2Duo® computer with 4 GB of RAM. In order to solve LPs and MIPs, we use 
the CPLEX 12. 

4. Computational tests and results 
The methods here presented were tested in the 58 hard instances of the benchmark sets 

UBO50, UBO100, UBO 200, C, D and J30. The hard instances are the ones that Schutt et al. 
(2010) could not prove optimality or found a LB. We also solve the 79 benchmark instances of 
the set UBO500 that are feasible using the only the simplified method. The LBs available at 
PSPLib (2012) were used as benchmarks to check the quality of our LBs. All instances are 
available at PSPLib (2012). 

Table 1 shows the results obtained by our complete method for the 58 hard instances. In 
this table the first column represent the set of instances tested, the second represent the number of 
instances tested in the set, columns “Same LB” and “Better LB” represent the number of 
instances that our method could find respectively the same and a better LB than the one available 
in the literature, “Closed” shows the number of instances whose optimality was proved for the 
first time, “Average Time (s)” shows the average time (in seconds) to solve the instances, 
“GAP%” represents the average percentage GAP and “% GAP closed” represent the percentage 
of the GAP closed by our method. 
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Table 1 – Results for complete method 

Group Instances Same LB  Better LB  Closed Average 
Time (s) GAP % % GAP 

closed 

UBO50 3 0 3 0            23.47  9.83% 66.99% 
UBO100 10 0 9 0      1,358.88  16.86% 24.40% 
UBO200 18 0 15 0    12,176.40  24.32% 10.05% 
C 17 5 4 0      1,574.68  16.29% -4.78% 
D 4 0 0 0          959.34  21.25% -14.73% 
J30 6 1 5 3              5.70  1.38% 81.16% 

 
The LB found by this method is better in 62% of the instances and for other 10% it is 

the same found in the literature. Considering the set J30, the method closed 3 (50%) hard 
instances, found better LB for other 2 (33%) and reduced the average percentage GAP in more 
than 80%. For the class UBO, we found better LBs for 87% of the hard instances and reduced the 
percentage GAP in more that 10%. For the sets C and D, although the average GAP was not 
reduced, this method could find better LB for 4 (24%) hard instances and the same available in 
the literature for other 5 (29%) of set C. 

The Table 2 shows the results obtained by our simplified method for the 58 hard 
instances and the 79 feasible instances of the set UBO500. This table follows the same structure 
of Table 1. 

Table 2 – Results for simplified method 

Group Instances Same LB  Better 
LB  Closed Average 

Time (s) GAP % % GAP 
closed 

UBO50 3 0 3 0              5.03  9.83% 66.99% 
UBO100 10 0 8 0          211.58  17.00% 23.42% 
UBO200 18 0 15 0      2,925.29  24.26% 9.12% 
UBO500 79 42 26 0    25,388.69  9.21% 5.50% 
C 17 3 2 0          119.98  17.03% -10.31% 
D 4 0 0 0          237.12  21.42% -15.73% 
J30 6 1 5 3              0.77  1.38% 81.16% 

 
The LB found by this method is better in 43% of the instances and for other 34% it is 

the same available in the literature. This method could also prove optimality for 3 hard instances 
of set J30.Considering only the hard instances of class UBO, this method found better LB in 47% 
and reduced the GAP in more them 5%. For UBO500 instances, that Schutt et al. (2010) did not 
tested, our method could find the same LB in 53% of the instances and found better LBs in 33%. 
For the sets C and D, the GAP is in average more than 10% greater than the one in the literature. 

Comparing the complete and the simplified methods, it is clear that the simplified one 
requires less computational effort, but the complete is important to reduce the GAP and to find 
better LBs for larger instances. 

5. Conclusion 
Considering the results obtained by the complete and the simplified methods presented 

in this paper, although the LP relaxation is important to reduce the average percentage GAP, it is 
clear that the complete method requires much more computational effort. 

Comparing the results here obtained and the ones available at PSPLib (2012), we could 
reduce the percentage GAP for all but the sets C and D. The LBs were improved for 62% of the 
hard instances with the complete method and for 43% with the simplified one. 
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Comparing the method here proposed with the one presented by Schutt et al. (2010), 
their finite domain uses the Cumulative Scheduling Problem that is similar to the SRWP, but it 
does not allow preemption and the execution time is fixed. So their relaxation is stronger than the 
one used in this work. On the other hand, their Boolean satisfiability solving is used to add 
disjunction restriction to the model, each disjunction as a constraint. As the artificial resources 
introduced in this work are created considering more than one disjunction at a time, they are 
stronger as than the Boolean satisfability. Another important difference between the methods is 
that Schutt et al. (2010) method includes a branch-and-bound procedure and the one proposed 
here does not. 

A weak point of our method is the fact that it needs a valid upper bound as input. 
Although the quality of the upper bound does not change the final LB, it may affect the 
constructive LB and the total execution time. Another important fact is that our method does not 
include a heuristic procedure, so if the known upper bound is not optimal then we will not find a 
better solution. On the other hand, the execution intervals obtained after the constructive part of 
our LB can be used in other exact methods or in heuristics. 
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