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ABSTRACT

This article deals with the lot sizing and scheduling problem in a one-level manufacturing based on
a real case. It is proposed a two-level integration scheme, where a MILP model for the lot sizing
problem is optimally solved in the comercial software CPLEX. As for the scheduling subproblem,
three approaches are proposed and compared with different objetive functions. The shop floor is
composed of no-wait flowshop with family-setup times. The master production model is performed
once for the time horizon, and three heuristics are executed in accordance to the outputs of the lot-
sizing once per time period. It is tested up to 150 instances and the makespan objetive leads to a
better solution for the problem.
Keywords: Production planning. Lot sizing. Machine scheduling
AD N GP, IND

RESUMO

É considerado no artigo o problema de dimensionamento de lotes capacitado e o problema de se-
quenciamento de máquinas em um único nı́vel de manufatura. É considerado um caso real. É
proposto um método de duas fases, onde o modelo PLIM para o problema de dimensionamento de
lotes é resolvido de maneira ótima no software comercial CPLEX . Para o problema de sequenci-
amento são propostas e comparadas três heurı́sticas com diferentes funções objetivo. O chão de
fábrica é composto por no-wait flowshop com tempos de setup por famı́lias de produtos. O prob-
lema de dimensionamento de lotes capacitado é resolvido uma única vez para o horizonte de tempo
enquanto as três heurı́sticas são executadas de acordo com as saı́das do dimensionamento de lotes
uma vez por instante de tempo. São testadas mais de 150 instancias e foi concluido que o objetivo
de makespan conduz a melhores resultados para o problema proposto.
Palavras chave: Planejamento da produção. Dimensionamento de lotes. Sequenciamento de
máquinas
AD N GP, IND

1 Introduction

In manufacturing, the role of production planning is to define how many and when production
batches will be produced. The main concern of production planning decisions is the trade-off
between cost and customer satisfaction. Costs are generally defined of inventory and production
costs, while customer satisfaction can be measured by quality and lead time.

The master program or capacitated lot sizing problem acts in the medium term of an organiza-
tion. Its main function is to take manufacturing decisions, when receiving as input the independent-
demand forecast and shop-floor’s capacity estimation, taking into account inventory, production
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and setup costs. The lot-sizing models have various classifications and variations, for more details
see Karimi et al(2003), Pinedo(2005) and Pochet and Wolsey(2006). The Capacitated lot sizing
and scheduling problem (CLSP) is NP-hard, we refer the reader to Bitran(1982) for a review on lot
sizing models complexity

Soon after the lot-sizing decisions are made, production lots should be decomposed into pro-
duction orders to run on machines (jobs), and that is when the operational planning takes place by
dealing with a scheduling problem. The scheduling problem is defined as determining the order of
a set of jobs on the available machines aiming at certain optimization criteria, usually time related.

The problem here considered is integrate these two levels and it is based on a real case. Were
a novel iterative method of integration between the lot-sizing and scheduling problems is proposed
and analized. The programming model with a commercial solver (CPLEX) is used to optimally
solve the lot-sizing problem, while for each time interval (period) the related scheduling problem is
heuristicaly solved.

The company in analysis produces steel tubes. Its production process consists on seven stages:
oven, perforator mill, PQF mill, reheating oven, finishing mill, quality tests and cut-off press. The
second and third stages are the bottleneck stages, so they are considered critical. These two mills
are basically two machines in sequence, characterizing a flowshop environment. There is no inter-
mediate buffer between the two mills because the tubes can not chill during the process, thus it can
be called a no-wait flowshop system.

Many studies and articles have been published discussing integration methods between lot siz-
ing and scheduling planning problems. Nevertheless, most of the studies deal with problems of
single machine, in which only the setup constraint is modified, and there are no many references
regarding complex shop floor environments. Drexl and Kimms(2000) published a survey of various
methods to integrate the two problems according to the setup treatment and time horizon. Follow-
ing a similar approach we can cite Pochet and Wolsey(2006) and Karimi et al.(2003). On parallel
machines there are also a few works. Mateus et al.(2010) propose an iterative method to the un-
related parallel machines problem: the lot-sizing problem in this case is solved optimally while
the scheduling problem is solved by a GRASP heuristic. We follow their approach modifying the
integration procedure.

The article is organized as follows: In section 2 we propose a mixed integer-linear programming
model for capacitated lot sizing, and presented three heuristics for the no-wait flowshop problem
with different optimization objectives. In Section 3 we propose the method of integration between
the two problems. Computational results are presented in Section 4, conclusion in Section 5 and
comments in Section 6.

2 Medium-term and short-term levels

In the lot-sizing problems, the basic input is the aggregate production capacity and external de-
mand. As output we have the quantity of each product that must be produced by period considering
as criterion optimization costs (setup, production and stock). In each individual period we have
the short-term problems, that is, to schedule the production orders in a way that the products’ dead
lines and the shop capacity limits are satisfied. Here the main concern is to deliver the production
orders (jobs) before the delivery dates (due dates). The optimization criteria is time-related, such as
minimizing total delay, weighted delays, total completion time, maximum delay etc.

2.1 Capacitated lot sizing

According to the classification of production planning models given by Drexl and Kimms(2000),
Karimi et al.(2003) and Pochet and Wolsey(2006) the following model can be had as big bucket, in
which various products can be produced by each period, and scheduling decisions are not taken at
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this level. Furthermore the model is multi-item and considers only one level of production. As for
not meeting demand, backlogging is permitted provided that a fine is paid.

A market research or external requests generates a demand of product p, p = 1, . . . ,P in period
t, t = 1, . . . ,T .

The parameters are: ap is the amount of available capacity consumed by production of product
p [time units], bp is the amount of available capacity consumed by setup of product p [time units],
dpt external demand of product p in period t [units]., wt machine available capacity in period t [time
units].cp, hp, vp and qp are the costs (production, inventory, backlogging and setup, respectively)

The decision variables are: quantity of product p produced in t (xpt), quantity of p left in in-
ventory in t (spt) and quantity of product p backlogged for t+1(npt). ypt is the binary variable that
indicates if a setup of product p is run in t (ypt=1) and ypt=0, else.

The model is descibed below,

Minimize
T
∑

t=1

P
∑

p=1
cpxpt +hpspt + vpnpt +qpypt

sp(t−1)− spt + xpt +npt −np(t−1) = dpt ∀t ∈ T ∀p ∈ P (1)
P

∑
p=1

apxpt +bpypt ≤ wt ∀t ∈ T (2)

apxpt ≤ wtypt ∀t ∈ T ∀p ∈ P (3)

ypt ∈ {0,1} ∀t ∈ T ∀p ∈ P (4)

xpt ,spt ,npt ∈ Z+ ∀t ∈ T ∀p ∈ P (5)

The objective function is minimizing the sum of setup, production, inventory and backlogging
costs. Constraints (1) represent the demand balance. The second group, (2), ensure that everything
that is produced does not exceed the available capacity in the period. Constraints (3) indicate that
in each period that product p is produced it is necessary running and paying a setup. The setup
variables are binaries (4) and inventory, production and backlogging are integers and non negative
(5).

2.2 No-wait flowshop scheduling problem

As mentioned, the shop floor scenario considered in this paper is a flowshop, where N jobs must
be sequenced in two unrelated machines. Jobs are sorted into families or classes in which they have
similar production characteristics. Among jobs of the same class there are no need to have a setup
between them. For a deeper understanding about setup and families of products see Allahverdi et
al.(1999) and Pinedo(2005). The no-wait constraint means that there should be no time intermediate
buffer between two operations of a job. Problems of this nature, well known to be NP-hard, receive
considerable attention, where heuristic methods are the more common approaches. Although no-
wait flowshop has received only a few attempts of study, it has a large applicability in industrial
problems.

This problem consists on a set of N jobs to be scheduled in two machines. Let job j[i, j] be the
jth job in the ith batch. p1[i j] and p2[i j] denote the processing times of job [i,j] on machines 1 and
2, respectively. s[i],k is the setup time of the ith batch on machine k. βi is the number of jobs in ith
batch in the schedule.

Three approaches are compared for this scenario: The first subproblem(SP1) (According to
Pinedo(2005), F2 \ nwt, f mls \ Lmax) is proposed to solve the objective function of minimizing the
maximum lateness, which was proposed by Cheng and Wang(2006). This first method has com-
putational complexity O(n2logn) and reaches about 5% GAP in average for real-sized instances.
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It combines an inicial solution, obtained from EDD (early due dates) algorithm with a merging
batches method.

Second subproblem (SP2) (According to Pinedo(2005), F2 \ nwt, f mls \ ∑Tiwi), considered in
this article objective to minimize weighted tardiness. Considering the objective function of mini-
mizing weighted tardiness is important when some jobs are more important than others and in some
cases the weight can be considered cost of tardiness, and minimize the sum between cost (weight)
and tardiness can be financially interesting. The second heuristic is a dispaching rule, which is
O(nlogn). In this case jobs are scheduled in increasing order of the index below:

I(i) =
di

wi
(6)

di is the due date of job i, and wi is the weight of i, defined by its backlogging cost.
Third subproblem (SP3) (According to Pinedo(2005), F2 \ nwt, f mls \ Cmax), objective to mini-

mize makespan. When family setup constraint is considered the most efficienty method to minimize
makespan is dividing the schedule into batches. Into these batches setup is not needed, so the flow-
time in system is minimized. The heuristic consists on two stages. Firstly it obtains as inicial
solution by joining the jobs of the same classes and then permutate these batches and find the best
solution.

To improve the results were applied a deterministic local search heuristic based in the insertion
algorithm which was proposed by Nawaz et al.(1983). Its complexity is O(n2). Several experiments
were done and this local search improve the solution nearly 3%.

We must remember that our goal is to minimize the cost of production planning. Our method-
ology is comparing the three objetives functions to test which one fits better the objetive.

3 Integration algorithm

It is proposed in this paper an interative algorithm for integration, the algorithm consistis in two
modules: firstly, the CLSP model is run optimally by using the commercial solver CPLEX, and
the results are the inputs of scheduling problem. The production lots are decomposed into jobs.
Scheduling module determines the feasibility of lot sizing output. If the schedule is not feasible,
jobs have to be delayed to the next subperiod, these jobs are considered critical and their due dates
for the next period are negative to ensure that they will be sequenced firstly. If the schedule is
feasible and there is idle capacity, the idle capacity is used to attend next period of scheduling. The
integration scheme is shown in Figure ??:

It is considered in the algorithm the following variables: αpt is the quantity of product p that
has to be delayed to the next period and φt is the idle capacity in period t.Cl and Cs are the lot sizing
and scheduling costs, respectively. Denote Nc the number of jobs of class c, ans It the total numeber
of jobs in period t.

The procedure of decomposing lots into jobs consists on disaggregate ap and bp variables into
p1, p2,s1,s2. ap is the sum between processing times and bp is the sum between setup times.

The capacity considered in lot sizing is an aggregate one thus it does not consider the shop floor
specificities. No-wait flowshop environment has a particularity: there are superposition of jobs the
schedule. Thus, the capacity constraints of lot sizing must be adjusted by multiplying a factor,
called ξ.

P

∑
p=1

apxpt +bpypt ≤ ξwt (7)

apxpt ≤ ξwtypt (8)

ξ≥ 1 (9)
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Figure 1: Integration scheme: lot sizing is run once and scheduling heuristics are run for all time
horizon

Algorithm 1 Integration algorithm
Run Capacitated lot sizing model
Cl ← lotsizingcost
Cs← 0
for t = 1 to t = T do

Decompose lots into jobs
Run scheduling heuristic for subproblems (SP1, SP2 or SP3)
for i = 1 to i = It do

if Ci > wt then
{αpt}← {αpt}+ i
di←−(Ci)
Cs←Cs + vp

end if
end for
φt ← max{wt −Cmax,0}
wt+1← wt+1 +φt

end for
Cl ←Cl +Cs

ξ value is determined empirically. It was created a set of independent instances considering
various scenarios, diferent from the originals, to determine this value. Consider two situations:
S1 is the sum of processing times and setups of the two machines and S2 is the regular no-wait
flowshop situation. ξ is calculated in equation 10:

ξ =
Cmax(S1)
Cmax(S2)

(10)

It is trivial to see that situation s(S1) is an upper bound of situation 1(S1). The upper bound is
defined as:

Cmax(S1) =
J

∑
j=1

β j

∑
i=1

p1[i, j]+ p2[i, j]+ s[i],1 + s[i],2 (11)

The subproblem used was subproblem 3(SP3) with makespan objective, which leads to the best
results. ξ value follows a normal distribution (p−Value = 0,548 for Anderson-Darling normality
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test). The 95% confidence interval of ξ is: (1,55258≤ ξ≤ 1,58042). Thus, it is arbitrarily adopted
that ξ≈ 1,6

4 Computacional results

Several numerical experiments were designed and run to test the efficiency of the heuristics
and the integration method. The intention here is to compare the efficiency of the three proposed
heuristics in some scenarios considering costs.

4.1 Instances generation

The instances were generated by the pseudo-random number generator Mersenne Twister algo-
rithm, (see Matsumoto and Nishimura(1998)). The planning horizon has three periods (T = 3) for
all instances. The number of products varies between 5,10,15 and 20. It was tested four scenarios

These values is based on a real case, where there are approximately 20 products and 200 jobs.
The instances distribution and the scenarios utilized are shown in table ??:

Table 1: Instances generation: Values were generated following a uniform distribution

Input Data Value(Scenario 1) Value(Scenario 2) Value(Scenario 3) Value(Scenario 4)
ap U(7,10) U(7,10) U(7,10) U(7,10)
bp U(1,2) U(1,2) U(1,2) U(1,2)
dpt U(1,50) U(1,50) U(1,25) U(1,25)
cp U[1,2] U[1,2] U[1,2] U[1,2]
hp U[5,10] U[5,10] U[5,10] U[5,10]
vp U[40,80] U[40,80] U[40,80] U[40,80]
qp U[2,4] U[2,4] U[2,4] U[2,4]
wt 600 1200 600 1200

4.2 First experiment

The first experiment shows the sensibility of ξ value in the objective function. ξ varies from
1,0 to 2,0 and costs for these values are shown in Figure ??. For values greater than 2,0 costs are
constant.

Figure 2: Lot sizing and three heuristic costs according to ξ increasing. x axis represents ξ and y
axis represents cost.

141



September 24-28, 2012
Rio de Janeiro, Brazil

It is already clear that SP3 perfoms better results for any ξ value. It can be seen that the inte-
gration method is worse according to the increasing of ξ value. In practice, ξ can not be less than
1,55.

4.3 Second experiment

The second experiment relate the scenarios and the number of products to compare the heuristics
performance. The number of products varies between 5,10,15 and 20 products. The results are
shown in tables ?? and ??

Table 2: Algorithm Results: LS represents lot sizing costs. Total is the sum of lot sizing and schedul-
ing costs (average ± standard deviation).

Nprod Scenario LS Total(SP1) Total(SP2) Total(SP3)
5 1 3930,8±2695,84 9859±5488,23 9099,5±4878,53 6531,4±3445,56

2 278,3±93,97 278,3±93,97 278,3±93,97 278,3±93,97
3 230,3±30,74 230,3±30,74 230,3±30,74 230,3±30,74
4 253,3±24,81 253,3±24,81 253,3±24,81 253,3±24,81

10 1 41475,2±8395,62 48360,6±10299,6 47691,6±10054,54 44556,8±8682,33
2 8394,1±7538,83 18367,4±12328,09 16970,4±12148,66 12159,9±9711,91
3 4465,9±3156,52 11495,1±4349,53 10263,8±3969,77 7337±3403,86
4 476,2±53,61 476,2±53,61 476,2±53,61 476,2±53,61

15 1 84482,3±17302,81 91792,9±19057 91841,3±17490,2 87736,7±17357,9
2 53178,2±12005,20 68408,8±12743,8 66682,3±12420,2 60058,8±12175,3
3 25602,3±5264,15 32912,9±5941,2 32961,3±5788,0 28856,7±5196,2
4 1259,7±732,38 5057±4769,6 4236,9±3977,7 3412,9±2586,4

20 1 128849±14792,41 139919,6±15972,0 136602,4±14861,4 132282±14878,9
2 83343,6±16697,9 98574,2±17631,1 96835,8±17303,4 90183,2±17015,2
3 44370,8±6924,6 55441,4±7833,2 51821,7±6824,3 47646,1±6878,7
4 12400,5±3979,9 27931,1±3917,6 26115,5±4091,7 19110,6±3917,4

Table 3: Algorithm Results: Relative percentage deviation (RPD) is defined as the deviation of the
total cost from lot-sizing cost (lower bound) (average). Values in boldface are the best for each
scenario

Nprod Scenario RPD(SP1) % RPD(SP2) % RPD(SP3) %
5 1 180,45 162,54 93,76

2 0 0 0
3 0 0 0
4 0 0 0

10 1 16,42 14,89 7,61
2 193,38 140,70 57,66
3 231,38 196,56 102,19
4 0 0 0

15 1 9,71 9,04 4,05
2 29,74 26,42 13,49
3 29,53 29,39 13,19
4 361,19 281,81 167,25

20 1 8,60 6,08 2,68
2 18,90 16,77 8,52
3 25,26 17,22 7,55
4 142,27 125,59 62,40

Average 1,2,3,4 77,90 64,01 33,77

It is clear that SP3 performs better for all instances because dealing with makespan objective
reduces a lot the quantity of jobs delayed and the other subproblems proposed are due date related.

Another important analysis is about scenarios: Scenario 1 is the most tight one because it has
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high demand and low capacity. It can be seen in Table 2 and Table 3 that scenario 1 leads to the
highest cost while scenario 4 leads to the lowest cost.

5 Conclusions and Future research

In this paper we propose an iterative scheme to integrate lot sizing and scheduling problems.
The method alternate two decision levels. The CLSP is solved optimally and scheduling is solved
by three diferent heuristics with diferent objetive functions. Different approaches are compared in
computational results. It can be concluded that with the integration scheme proposed makespan
objetive leads to the lowest cost because backlogging in scheduling is defined as which jobs are fin-
ished after the time capacity (in hours). Minimizing the completion time of the last job consequently
minimizes the quantity of jobs delayed.

We solved instances with 25 produtcs and up to 300 jobs, it is a real-sized problem from a real
organization.

Future works may include a detailed analysis considering new forms of integration as well as a
no-wait flowshop mixed-integer linear program. A direction of research is to consider that the idle
capacity returns to lot sizing model, and CLSP is run again.

6 Comments

The student has implemented the three approaches analysed in C++ language, MILP model in
CPLEX solver and has written the article. This article is under submission for INFORMS and will
be submitted to a journal. This project was financed by FAPEMIG since March/2011.
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