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Abstract: In this paper it is studied the graph generated by the efficient solutions of the
bi-objective {0,1}-knapsack problem, trying to decompose it into meaningful communities. The
communities can give a better understanding about the entire set of efficient solutions and can
disclose the development of new search algorithms for finding efficient solutions. Three types of
random instances are used and some interpretation contexts are created.
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1 Introduction

In a network (or a graph), by community it is usually meant a subset of nodes highly linked
among them, comparing to the links to the rest of the network (Newman and Girvan, 2004 and
Donetti and Munoéz, 2004). These modules in the network can be useful for better understanding
the entire network, especially when it has an intricately complex structure. Identifying such
modules can also enable the detection of substructures with particular functions in the system
represented by the networks. An additional interest is that the original network can thus be
summarized by the interconnection of these fewer components and by this way becomes easier
to be analyzed. The interest of identifying communities is present in several diverse areas such
as computer science, sociology, biochemistry, taxonomy and the World Wide Web (Newman and
Girvan, 2004; Donetti and Munoz, 2004; Fortunato, 2010). In the business domain, for instance,
knowing the communities structures can be helpful for defining client market policies (Du et al.,
2007).

This paper is about finding and analysing communities in the set of efficient solutions (that is,
the feasible solutions for which there are no other feasible solutions that can improve the value
of one criterion without degrading the value of the other) of the bi-objective {0,1}-knapsack
problem and aims to bring new insights about the structure of the efficient solutions, namely
how they are organized and its relation to the objective space and some known properties.
This knowledge could, hopefully, be useful for developing new methods for discovering efficient
solutions for this and other combinatorial problems. As in many other areas, it is expected, for
instance, that the communities can simplify the original problem, in this case, of finding efficient
solutions.

In multiobjective linear programming problems the efficient solutions set is already perfectly
characterized, benefiting from the connectedness property, which assures that an efficient solu-
tion can be obtained from another one by performing an efficient pivoting (Steuer, 1986). In
general, for {0,1}-multiobjective linear problems the above results do not hold (Ehrgott and
Klamroth, 1997; Gorski et al., 2006). As a result, the computation of the efficient solutions set
of {0,1}-multiobjective linear problems has been a difficult task. In general, only small-medium
size instances can be exactly solved by the available traditional exact methods such as dynamic
programming or branch-and-bound based algorithms.

A considerable effort has been given to the development of strengthened formulations of sub
problems used to find efficient solutions, aiming at using efficiently the well-known properties of
the linear programming theory. Despite these efforts, a large amount of computational time is
still required, and, for many problems, large size instances remain unsolved in practice.

Heuristics methods face similar problems, since these methods usually pay a significant price
in terms of the accuracy of the approximate set of solutions to the exact set of solutions. In
some of these type of methods, the improvement of its performance is searched by defining
and exploring different neighborhoods of solutions found during the search process (Paquete et
al., 2007 and Beausoleil et al., 2009, for example) or known characteristics found in samples of
efficient solutions (Gomes da Silva et al., 2006, for example). Another line of research consists
of studying the composition of the set of efficient solutions in order to find some sort of rule or
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constancy which could be used to propose some alternative resolution procedures. In Gomes da
Silva et al. (2009) this line of research is followed concerning the bi-objective {0,1}-knapsack
problem. Converting the efficient solutions into a connected graph, it was found, for example,
that the graph of efficient solutions share some properties of the small-world phenomenon: a
small shortest path between any pair of nodes, a high clustering coefficient, and a node degree
(that is, number of links of a node), approximated by a power law distribution. This research is
further explored in the present paper by studying partition of the graphs.

The remainder of the paper is organized as follows. Section 2 presents the bi-objective {0,1}-
knapsack problem and how the graph of efficient solutions is built. In Section 3, it is presented a
summary of possible methods for finding the communities. Section 4 concerns the computational
experiments. Section 5 concludes the paper.

2 The bi-objective {0,1}-knapsack problem and the graph of
efficient solutions

This paper is about the graphs of efficient solutions of the well-known bi-objective {0,1}-knapsack
problem, which can be mathematically formulated as:

n
max 21(T1, ..., Tj, ..., Tn) = chl.xj
j=1

n
max 22(T1, ..., Tj, ..., Tn) = chzxj
j=1
s.t.:
n
Ywijz; <W
=1
r; €{0,1},j=1,...,n

where cé- represents the value of item j on criterion ¢,i = 1,2,z; =1 ifitem j (j =1,...,n) is
included in the knapsack and z; = 0 otherwise, w; is the weight of item j and W is the overall
knapsack capacity.

Combining a simple mathematical structure with a hard computational resolution complex-
ity, this problem is one of the most preferred for testing new search algorithms in the multiob-
jective combinatorial optimization field.

Till now, there was not drawn any efficient process for finding the complete set of efficient
solutions for medium-large size instances.

The efficient solutions of general random instances of the problem have no specific charac-
teristics. Nevertheless, by imposing additional constraints on the parameters, the solutions have
some particular features (Gomes da Silva et al., 2004): 1) if the weights of the items (w;) are
all equal, then all the efficient solutions have the same cardinality, |z|, that is, the same number
of included items; 2) if c} + cjz is equal for all the items, then the sum of the criteria values
of efficient solutions is proportional to its cardinality, leading to a decision space organized by
lines such that z; (z) + 22 (x) = k |x| . These properties will be used to interpret the meaning of
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some found communities in the graphs of efficient solutions, built like as in Gomes da Silva et

al. (2009). In such graphs, a node n; represents the efficient solution z’ and the edge between
n

nodes n; and n; exists if and only if d(n;,n;) = >

:CZ — :ci;‘ < 7. The value v is a constant

previously defined, named neighborhood radius, increased from the value 2 until a connected
graph is achieved.

3 Methods for finding communities

The problem of identifying communities is a hard combinatorial problem (Newman and Girvan,
2004), being available many methods. A recent review of some methods for finding communities
can be found in Fortunato (2010). The reviewed methods are aggregated into divisive algorithms,
modularity based methods, spectral algorithms, dynamic algorithms, methods based on statis-
tical inference and alternative methods. The recent methods try to go beyond the assumptions
of the previous ones, incorporating different concepts of community, intending to improve the
performance of the methods over different sets of testing graphs or assure enough flexibility, for
instance, by incorporating heuristic procedures, to analyze graphs with a very large number of
nodes and edges. For example, the modularity optimization implicit in the method of Newman
and Girvan (2004), and one of the most used techniques, was put into question in the identifica-
tion of small modules in the graphs, depending on the degree of interdependency of the modules,
that is, this method has a resolution limit (Fortunato and Barthélemy, 2007). However, it is an
optimal method for a specific type of graphs, such as the ones with communities of similar size
and nodes degree (Rosvall and Bergstrom, 2007).

In Lancichinetti and Fortunato (2009) it is presented a comparative study of the most signif-
icant methods considered representative of the most interesting ideas and techniques developed
in the last years.

Considering benchmarks compatible with general systems, where the degree of the nodes
follows a power law distribution (Lancichinetti and Fortunato, 2009) tested the performance of
several methods. They concluded that the method by Rosvall and Bergstorom (2009), referred
to as Infomap, is among the most competitive ones.

This method, with a heuristic nature, is based on the flow of information between the nodes
of the graph, which is evaluated by considering random walks in the graph. In short Rosvall and
Bergstrom characterize their approach as follows: "We use the probability flows of random walks
on a network as a proxy for information flows in the real system and decompose the network
into modules by compressing the description of the probability flow. The result is a map that
both simplifies and highlights the regularities in the structure and their relationships".

The problem of community discovery is thus associated with the problem of finding the
minimum length of information required to characterize the graph, based on the information
entropy conceptions. In summary, the method aims at optimizing a function describing the
length of that flow, L (M), given by (Rosvall et al., 2009):
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L(M)=q~H(Q)+) ptH (P') (2)
1=1

m

where M is a partition of the nodes, g~ = > ¢~ is the probability that the random walk
i=1

changes modules on a given step, g;~ is the fraction of movements that can occur within module

m
i, H(Q) is the entropy of changing modules, given by — Z—qi&?—pé log —qig— , P =
i=1 2= i~ 2. dirs
j=1 Jj=1
gi~n + Y _Pa is the fraction of within module movements in module ¢ plus the probability of
acl

exiting module ¢, m is the number of modules that define the partition M, and H (PZ) =

act BEi B<i

_ Qiry Girn _ Pa Pa . .
g ﬁz s log <qm i 52 pﬁ) > P log (aze:ii% +Zpﬁ> , meaning the entropy inside the
€ €i

module i,

The optimality of the length of the flow is treated heuristically by a greedy search and a
simulated annealing method.

As described in Rosvall et al. (2009), the main procedure of the method consists of consid-
ering each node as a module, and then, in a random sequence, it is verified the benefits for the
objective function of joining nodes into modules. The process is repeated until no improvement
is possible. Two additional routines are used to increase the accuracy of the partition. In the
first, each module is considered as a network and is clustered as above. With the resulting
clusters, the main procedure is applied. In the second, each node is candidate to represent its
module and the main procedure is applied to the network formed by these nodes. The objective
is to try to move single nodes into different modules.

In the following experiments, we also applied this method. Nevertheless, it is also convenient
to refer that applying other methods, different communities can be found. This is a subjective
issue and there is no universal best method.

Another difficult question is about the interpretation of the communities found. In some
cases, namely in biological networks, the communities have a functional specificity, which can
be used to interpret them. This is not the case in the majority of the systems. Du et al.
(2007) considered interpreting the communities by using the information that can be extracted
from the nodes defining a community. For each node of a community, a set of attribute can be
defined, indeed are inherent to them and the frequency of some of those attributes common to
central nodes (for instance, the nodes with the highest degree) and non-central nodes, are used
to name the community. For example, it was found that the three largest communities in a
telecommunication call network (Du et al., 2007) consist of people with similar attributes: close
consumption levels, similar ages or live in the same area. The interpretation of the communities
requires thus additional information regarding its nodes.

In this paper, for interpreting the set of efficient solutions we propose taking into account 1)

448



Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Type 1 Type 2
Statistics Nodes Edges Av.Degree v Nodes Edges Av.Degree 7y
Max 177 1504 10,5 5 538 3853 7,2 2
Min 73 307 4,1 4 225 1281 5,4 2
Average 124,9 804,9 6,5 4,3 326,5 1978,0 6,0 2
Std 27,9  303,3 2,1 0,5 64,1 522,1 0,4 0

Table 1: Graphs structure - Type 1 and Type 2

the objective space; 2) the known characteristics of the efficient solutions (cardinality and the
sum of the values of the objective functions).

4 Empirical evidence

In the experiments below three types of instances are considered, with the coefficients randomly
generated from the uniform distribution within the range [1,100], U(1,100):

Type 1: c}, CJQ-, w; ~ U(1,100),5 =1, ...,n (uncorrelated instances)

Type 2: c}, cj2- ~ U(1,100),w; =100, = 1, ...,n (uncorrelated criteria functions and constant
weight)

Type 3: c},wj ~ U(1, 100),cj2- = 101 — c},j = 1,...,n (uncorrelated criteria and weight

functions and strongly correlated criteria functions)

In the experiments, the number of variables was set to 100 (n = 100) for Type 1 and 2
instances, and 50 (n = 50) for Type 3 instances. Thirty instances for types 1 and 2 were used
and 14 instances for Type 3. The Infomap method (Section 3) is used to find the communities.
The results about the number of communities refer to the best value of the criteria function of
that method, after 100 repetitions and where the computational seed was arbitrarily set to 1000.

4.1 The graphs of efficient solutions

The obtained graphs of efficient solutions are described in tables 1 and 2, where it is presented
some statistics about the number of nodes, edges and the average degree of a node and the
radius used to connect the graphs. Note that the number of nodes corresponds to the number
of efficient solutions of each instance.

As can be seen, instances Type 1 are more regular in terms of number of nodes and instances
Type 2 are more stable in terms of the average degree. In the opposite side, are the instances
Type 3, where the number of nodes, number of edges and average degree varies significantly.
The configuration of the graphs is also different among the three types of instances. Indeed,
the graphs generated by instances Type 1 have a lower number of nodes and edges compared
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Type 3
Statistics  Nodes Edges Av.Degree vy
Max 20996 1348043 317,6 6
Min 851 19140,0 9,3 2,0
Average 4891,4 432073,8 112,6 3,8
Std 5224,7 4282129 106,2 1,1

Table 2: Graphs structure - Type 3

with the graphs generated by instances Type 2. And the same when comparing the graphs
generated by instances Type 2 and Type 3. The instances Type 3 have a significantly higher
number of efficient solutions. This is due to the existence of several alternative solutions for
each non-dominated solution.

It can also be referred to that the graphs of instances Type 1 and 3 are connected with a
similar average neighborhood radius, larger than the required for connecting solutions of Type
2. Additionally, please note that despite the fact that the neighborhood radius is equal to 2 for
all the random instances Type 2, this is not a general property (Gorshi et al., 2006).

4.2 The number of communities

The number of communities, the average percentage distribution of the nodes among communi-
ties, and the average number of communities that contain at least 70% and 90% of the efficient
solutions, are presented in Table 3.

On average, for instances Type 1, less than four communities contain at least 70% of the
nodes (solutions) of the graph, with approximately five communities containing at least 90%
of the nodes. It can be seen, that the two largest communities contain more than 50% of the
nodes. For instances Type 1, the number of communities varies from 3 to 11, being around 6
the average number. The instances Type 2 have a more stable number of communities, varying
between 7 and 11. The average is 8 communities. For these instances, achieving 70% and 90%
of the nodes requires more communities: 5 and 7 respectively. The graphs related to instances
Type 3 are quite diverse. The number of communities goes from 2 till 70, being the average
equal to 18. Many of these graphs are organized in such a way, that a single community has at
least 70% of the nodes. On average, it is required 8 and 12 communities to incorporate at least
70% and 90% of the nodes.

It was investigated the linear relationship between the number of communities, the number
of edges, number of nodes and the average degree of the nodes. Nonetheless, the results showed
a weak relationship. Therefore, the number of communities cannot be forecasted from those
attributes, at least in a linear form. It seems that the number of communities is grounded in a
nonlinear dynamic inside the graphs.
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Community
Instances Statistic Communities 1 2 3 4 5  70% 90%
Typel Max 11 56,4 38,4 27,4 18 17,2 5 9
Min 3 17,0 15,0 13,5 7,2 3,8 2,0 3,0
Average 5,8 31,1 23,7 18,2 13,1 10,4 3,5 5,1
Std 1,9 99 59 34 31 31 1,0 1,5
Type2 Mazx 11 24,7 21,7 17,5 15,5 13,7 7 9
Min 7 14,6 13,7 11,0 9,5 8,7 4 6
Average 8,8 19,5 17,0 14,6 12,3 11,0 5,2 7,3
Std 1,0 2,6 2,2 1,7 1,4 1,3 0,7 0,7
Type3 Max 70 99,0 22,9 22,9 13,4 6,5 26 46
Min 2 56 0,3 0,1 0,3 0,1 1 1
Average 17,6 51,8 9,6 5,0 54 45 7,6 12,1
Std 20,1 40,6 7,7 6,2 3,9 2,2 8,3 14,0

Table 3: Percentual composition of communities - Type 1 instances

4.3 Interpreting the meaning of the communities

How can we interpret the communities found? What do they mean in terms of the problem? Is
there any evidence that suggests that the known characteristics about the solutions are related
to the communities found?

z n n

ol 55 280

\\\ p Ny g
3 ., e 270 L

480 - , 2690

-~
-

Figure 1: Instance Type 1 Figure 2: Instance Type 2 Figure 3: Instance Type 3

As the considered graphs refer to a mathematical problem the interpretation of the commu-
nities is not straightforward. We need to have some starting point to interpret the communities.

Let us firstly visualize some examples of the communities found in the previous experiments.
Figures 1, 2 and 3 show, in the objective space, the communities of the first instance of Types 1, 2
and 3, respectively, used in the experiments above. For those instances, and as the figures show,
there is some clear organization in the objective space. This relation is formally investigated
in the following section, as a first context for interpreting the communities. In these cases, the
solutions appear to be clustered according to their proximity in the objective space. Additionally,
the largest community appears to be placed in the central area of this space and there is some
overlapping of the region of some communities, particularly for instances Type 3.
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The objective space is the most straightforward way of interpreting the communities, par-
ticularly because it has a graphical meaning. This characteristic is in some way distorted in the
presence of alternative solutions for the same non-dominated solution. In such cases, the same
point in the objective space is associated with different efficient solutions and those belong to
possible different communities.

Since some characteristics of the efficient solutions are known, they can also be tested as
interpretation contexts. As already referred to, the efficient solutions of types 2 and 3 have some
properties, namely the same cardinality (Type 2), and a sum of the criteria values proportional
to the cardinality of the solutions (Type 3). Solutions of instances Type 1 have no especial known
property. Each of these two characteristics will also be used to interpret the communities.

4.3.1 Relation to the objective space

In order to quantify the relationship between the communities and their position in the objective
space, we had computed the coefficient of linear correlation between the ranking of the efficient
solutions in the objective space and their ranking in the communities. A high coefficient (positive
or negative) value means a strong correlation between the two rankings. More formally, the
procedure is as follows:

1) The communities are built using the procedure presented in a section above and are named,
C',C?, ..., such that, min {¢ (CL’Z) (xt € C’l} < min{w (:cl) caxt € CQ} < ..with ¥ (CL’Z)
being the order of ' in the objective space (non-decreasing values of z;(x)).

Within each community, the efficient solutions are also sorted according to non-decreasing
values of the community order, 1 (z).

2) For each efficient solution, ¢, two parameters, u; and v;, are defined. Parameter u; gives
the order of 2* in the objective space and v; its order in the community.

3) The coefficient of linear correlation between u and v, ry,, is computed, as a measure of
association between the two orders:

The coefficient 7y, is between [-1,1] and r, = 1 or r,,, = —1 gives an exact linear relation
between u and v.

As an illustration of this procedure, let us suppose that we have six efficient solutions: z!, 22, 23,

x*, 2%, 8. Besides, also suppose that z (;Ul) <z (:L’Q) <z (:c3) <z (:U4) <z (:c5) <
21 (xﬁ). Additionally, let C = {:1:1,562,566},02 = {ac3,a:5},03 = {ac4}. Then, u; = 4,1 =
1,..,6;v1 = l;ua = 2;u3 =4;v4 = 6;v5 = 5506 = 3 and ryy = 0, 6.

In the presence of draws in the ranking, different correlation coefficient can be obtained,
being necessary an optimization procedure in order to retrieve the most favorable coefficient
value.

The coefficients of linear correlation were computed for each network used in the experiments
and are presented in Table 4. The results reveal a great consistency in the values of r,, for
instances Type 1 and 2, with the standard deviation values being small. The r,, is very high
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Statistic Type 1l Type?2 Type 3
Max 1,0000 1,0000 1,0000
Min 0,9749 0,9930 0,0418

Average 0,9946 0,9986 0,7841
Std 0,0064 0,0020 0,3220

Table 4: Linear correlation between euclidean and community rankings

and on average is higher than 0,99, both for Types 1 and 2. This is a very strong association
between the two orders. As a conclusion, it can be said that the efficient solutions are clustered
in the objective space. A denser relationship in the graph of efficient solutions is found between
nearer solutions in the objective space. The transition among near solutions in the objective
space appears to be also easier in the decision space. These features can justify the interest of
heuristics that search for efficient solutions on a basis of proximity of the objective values. For
instances Type 3, 1y, varies significantly. The lowest value was obtained with the instance with
70 communities. The alternative solutions for the same non-dominated solution were spread in
different communities, justifying the small value of 7.

The ideal point in the objective space, that is the vector with coordinates equal to the
best value of each objective function, is frequently used as a reference point when dealing with
multiobjective problems. The Chebyshev distance, which gives the worst case distance among
the values of the objective functions, is particularly used to access the distance between non-
dominated solutions (images of efficient solutions in the objective space) and the ideal solution
and is here also analyzed for the three types of instances.

Considering a non-dominated solution 2 = (2}, z{) and the ideal solution by z* = (2}, z}),
the Chebyshev distance between z' and z* is given by max {zf —2i 28— z%} . Computing the
autocorrelation coefficient for each instances of types 1, 2 and 3, we obtained also high coeffi-
cients, nevertheless smaller than the ones presented in the Table 6: 0,9043;0,9707 and 0, 66583,
respectively. This shows a weaker association for the composition of the communities, being
thus a less relevant interpretation context.

4.3.2 Relation to the characteristics of the efficient solutions

The relevance of the characteristics of the efficient solutions is assessed as above. The coefficient
of correlation between the rankings derived from the characteristics and the community order
are presented in Table 5. For Type 2, the r,, was not computed since all the efficient solutions
have the same cardinality and as a consequence 7, is necessarily equal to 1.
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Cardinality versus ranking Sum of criteria versus ranking
Statistic Typel Type2 Typed Typel Type?2 Type 3

Maz 1,0000  _ 1,0000 0,9826 0,9890 1,0000
Min 0,6645 _ 0,9794 10,7298 0,8880 0,9794
Average 0,8939 _ 0,9967 0,9077 0,9694 0,9967
Std 0, 0820 0,0065 0,0591 0,0225 0,0065

Table 5: Linear correlation between cardinality and sum of criteria versus community rankings

The results show that the cardinality reveals to be a worst context for interpreting the
organization of the graph of efficient solutions of Type 1. The average value of r,, is much smaller
than the one obtained with the Euclidean ranking. For instances Type 3, the cardinality gives
higher and consistent correlation values. The communities revealed thus the known influence
that cardinality has in definition of the nature of efficient solutions of these instances.

About the sum ranking, the coefficient of correlation is high for both Types 1 and 2, however,
smaller than the one obtained with the Euclidean ranking. As can be easily recognized (in
Figures 1 and 3 is presented a typical configuration of the efficient solutions in the objective
space), the highest sums are generally obtained with the central solutions in the objective space.
As the Figures 1 and 2 show the largest communities appear to be also in the central area.
The observation of this fact in the instances of the experiments can be pointed to justify a high
coeflicient of correlation.

The communities can be interpreted as composed of solutions with the same cardinality and
similar sum of the objective functions. Nevertheless, this interpretation is weaker than using
the Euclidean ranking in the cases of instances Type 1 and 2.

5 Conclusions

To the best of our knowledge, this was the first attempt to find communities within efficient
solutions, at least with the described methodology.

The paper showed that the organization of the connected network of efficient solutions is
related to the organization of the objective space. By using different rankings contexts it was
seen that some were better than others, which brings the problem of proposing the most accurate
interpretation of the communities, that is, proposing the most adequate set of context attributes.
These results also showed that for the same problem, different structures of communities can
be found. Probably, in the future, some short-cuts can be incorporated in search heuristic
procedures to find efficient solutions.

When a characteristic is known to be present in the efficient solutions we could observe in
the experiments that the community procedure that was used was able to define communities
of efficient solutions influenced by the presence of such characteristic. This aspect is obviously
interesting for discovering new properties from studying the communities.

The evaluation of the efficient graphs of other {0,1}-multiobjective problems, the proposal
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of new communities interpretation since different problems may have different rules governing
the organization of its efficient graph and the construction of search algorithms inspired on the
presented results are future research lines.
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