
September 24-28, 2012
Rio de Janeiro, Brazil

Evolutionary Algorithms Applied to Classifier Ensemble
Selection

Eulanda M. dos Santos

1Institute of Computing – Federal University of Amazonas (UFAM)
Manaus – AM

{emsantos}@icomp.ufam.edu.br

Abstract. Classifier ensemble selection is focused on finding the most relevant
subset of classifiers among a large pool of initial classifiers. Different non-
exhaustive search algorithms may be applied in this problem. Taking into ac-
count that the definition of the best search algorithm for finding the best sub-
set of classifiers is still an open question, in this paper, we present an experi-
mental study on comparing five search algorithms applied to the classifier en-
semble selection problem. Three multi-objective genetic algorithms and two
single-objective evolutionary algorithms, namely Genetic Algorithm and Parti-
cle Swarm Optimization, are investigated.

1. Introduction

Learning algorithms are used to solve tasks for which the design of software using tra-
ditional programming techniques is difficult. Machine failures prediction, filter for elec-
tronic mail messages and handwritten digits recognition are examples of these tasks. Sev-
eral different learning algorithms have been proposed in the literature such as Decision
Trees, Neural Networks (NN),k Nearest Neighbors (kNN) and Support Vector Machines
(SVM). Given a samplex and its class labelωk with an unknown functionωk = f(x), all
these learning algorithms focus on finding the best approximation functionh, which is a
classifier, to the functionf(x). Hence, the goal is the design of a robust well-suited single
classifier to the problem concerned.

Classifier ensembles attempt to overcome the complex task of designing a robust,
well-suited individual classifier by combining the decisions of relatively simpler classi-
fiers. It has been shown that significant performance improvements can be obtained by
creating classifier ensembles and combining their members’ outputs instead of using sin-
gle classifiers. Altinçay [Altinçay 2007] showed that ensemble of kNN is superior to
single kNN, Zhang [Zhang 2008] concluded that ensemble of SVM outperforms single
SVM and Ruta and Gabrys [Ruta and Gabrys 2007] demonstrated performance improve-
ments by combining ensemble of NN, instead of using a single NN.

The construction of classifier ensembles may be performed by adopting different
strategies. Two of the most popular methods are Bagging [Breiman 1996] and Random
Subspace [Ho 1998]. In addition, two different strategies may be applied when dealing
with classifier ensembles: fusion and selection. In the first, all classifier members are
combined since it is assumed that they are all important and independent. By contrast,
classifier selection chooses one individual classifier to assign the label of the samples.
A combination of both approaches is theoverproduce-and-choose strategy(OCS). The
objective of OCS is to find the most relevant subset of classifiers, based on the assumption
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that there is redundancy among classifiers [Zhou et al. 2002].Once the best subset of
classifiers has been selected, the output of its members must be combined.

OCS is clearly an optimization problem, which may be accomplished by using
search algorithms. Given an initial pool of classifiersC = {c1, c2, . . . , cn}, when per-
forming OCS using search algorithms, it is important to choose the best search criterion
and the best search algorithm. Recognition rate and diversity are two classical search
criteria employed in the literature. In terms of search algorithm, Sharkey and Sharkey
[Sharkey and Sharkey 2000] proposed an exhaustive search algorithm to find the best
subset of classifiers from an initial pool composed of NNs. The candidate ensembles’
recognition rates were used to guide the search process. Based on the same idea, Zhou
et al. [Zhu et al. 2004] developed equations, which were used to identify the classifiers
that should be eliminated fromC in order to keep the combination with optimal accuracy.
Their initial pool of classifiers was also composed of NNs. Nonetheless, non-exhaustive
search algorithms might not be used when a largeC is available due to the high comput-
ing complexity of an exhaustive search, since the size ofP(C) is 2n, whereP(C) is the
powerset ofC defining the population of all possible candidate ensembles.

Different non-exhaustive search algorithms have been applied in the literature for
the selection of classifier ensembles. Roli et al. [Roli et al. 2001] compared forward (FS),
backward (BS) and tabu (TS) search algorithms, guided by recognition rate and three di-
versity measures. Their initial poolC was composed of heterogeneous classifiers such as
NN and kNN. They concluded that the search criteria and the search algorithms investi-
gated presented equivalent results. Following the idea of identifying the best search cri-
teria and search algorithm, Ruta and Gabrys [Ruta and Gabrys 2005] used the candidate
ensembles’ error rate and 12 diversity measures to guide the following 5 single-objective
search algorithms: FS, BS, Genetic Algorithm (GA), stochastic hill-climbing (HC) search
and population-based incremental learning (PBIL). They concluded that the Greedy al-
gorithms FS and BS outperformed the remaining methods. However, Ruta and Gabrys
[Ruta and Gabrys 2005] observed that unlike Greedy algorithms, evolutionary algorithms
allow the possibility of dealing with a population of classifier ensembles rather than one
individual best candidate ensemble at each iteration. This property can be important in
performing a post-processing phase.

Therefore, since the definition of the best search algorithm for finding the best
subset of classifiers is still an open question, several search methods may be used. In
terms of evolutionary algorithms, different methods are available in the literature, for in-
stance single- andmulti-objectiveGA (MOGA) and Particle Swarm Optimization (PSO).
In this paper, we present an experimental study on comparing GA, MOGA and PSO
applied to the classifier ensemble selection problem. First, three different MOGAs are
investigated, namely (1) non-dominated sorting GA (NSGA) [Deb 2001]; (2) elitist non-
dominated sorting GA (NSGA-II) [Deb et al. 2000]; and (3) controlled elitist NSGA
[Deb and Goel 2001]. Second, two single-objective evolutionary algorithms are com-
pared: GA and PSO. Finally, GA and NSGA-II are compared since, in our initial ex-
periments, these algorithms are identified as the best single- and multi-objective search
algorithms respectively. In this paper, the Random Subspace method is used to gener-
ate ensemble members, while kNN classifiers are used for the creation of homogeneous
ensembles. The objective functions employed is the ensemble’s classification error rate,
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ensemble size and a diversity measure.

The paper is organized as follows. The definition of classifier ensemble selection
is presented in section 2. In section 3, the search algorithms investigated are described.
Then, the experiments and the results are presented in section 4. Conclusions and sugges-
tions for future work are discussed in section 5.

2. Classifier Ensemble Selection

Methods based on OCS are divided into two phases: (1)overproduction; and (2)selection.
The overproduction phase must construct an initiallarge pool of candidate classifiersC,
using a training datasetT . The second phase is devoted to identify the best performing
subset of classifiers inP(C). The selected ensembleC∗

j is then combined to estimate the
class labels of the samples contained in the test datasetG. Figure 1 illustrates the OCS
phases.
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Figure 1. Overview of the OCS process. OCS is divided into the o verproduction
and the selection phases. The overproduction phase creates a large pool of clas-
sifiers, while the selection phase focus on finding the most performing subset of
classifiers.

Single- andmulti-objectivesearch algorithms are the two strategies available when
dealing with the selection phase of OCS. Figure 2(a) depicts an example of the evolution
of the optimization process for1, 000 generations using single-objective GA as the search
algorithm and the minimization of the error rate as the objective function. Even though
we employed the error rate as objective function, we show in Figure 2(a) plots of the
error rate versus number of classifiers to better illustrate the problem. Each point on the
plot corresponds to a candidate ensembleCj taken fromP(C) and evaluated during the
optimization process. Indeed, these points represent the complete search space explored
for 1, 000 generations. The number of individuals at any generation is 128. When using
single-objective GA, the solution with lowest error rate is selected as the best solutionC∗

j ,
which is further used to classify the test samples. Diamond representsC∗

j in Figure 2(a).
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Figure 2. Optimization using single-objective GA with the error rate as the objec-
tive function in Figure 2(a). Optimization using NSGA-II and the pair of objective
functions: the error rate and ensemble size in Figure 2(b). The best performing
solutions are highlighted by arrows and circles represent the Pareto front.

When using multi-objective search algorithms, it is possible to conduct optimiza-
tion using simultaneous multi-objective functions. An optimization process performed
by NSGA-II for 1, 000 generations, with 128 individuals at each generation, is illustrated
in Figure 2(b). NSGA-II was employed, using the pair of objective functions: jointly
minimize the error rate and the ensemble size. Circles on the plot represent the Pareto
front. Due to the fact that all solutions over the Pareto front are equally important, the
selection of the best candidate ensembleC∗

j is more complex. Several works reported in
the literature take into account only one objective function to perform the selection. In
[Radtke et al. 2009], the candidate ensemble with lowest error rate was chosen as the best
solutionC∗

j , even though the optimization process was guided regarding multi-objective
functions. In this paper, we also select the solution with lowest error rate asC∗

j to clas-
sify the test samples since it allows the main objective in pattern recognition, i.e. finding
predictors with a high recognition rate, and it avoids additional experiments in our work.
Diamond indicates the solutionC∗

j in Figure 2(b). The evolutionary algorithms investi-
gated in our experiments are described in the next section.

3. Evolutionary Algorithms

As mentioned in the introduction, we compare two single-objective evolutionary algo-
rithms and three multi-objective GA. In this section, we summarize these algorithms.
First, we describe PSO and GA.

3.1. Single-Objective Particle Swarm Optimization

PSO simulates the behaviors of bird flocking or fish schooling. Each individual of the
population is called particle. All particles have fitness values which are evaluated during
the optimization process of the selection phase of OCS. Algorithm 1 summarizes the
variant of the PSO algorithm used in this paper. This variant is calledglobal neighborhood
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[Parsopoulos and Vrahatis 2002] in the literature. The solution gBest denotes the best
particle in the whole population. In PSO, the population is called swarm.

Algorithm 1 PSO
1: for each particledo
2: Initialize particle
3: end for
4: while maximum iterations or stop criteria are not attaineddo
5: for each particledo
6: Compute fitness value
7: if fitness value is better than the best fitness (pBest) in historythen
8: Set current value as the newpBest

9: end if
10: end for
11: Choose the particle with the best fitness as thegBest

12: for each particledo
13: Compute its velocity
14: Update its position
15: end for
16: end while

3.2. Single-Objective GA

Single- andmulti-objectiveGA are the two strategies available when dealing with GAs.
Traditionally, when the optimization process is conducted as a single-objective problem,
GA is guided by an objective function during a fixed maximum number of generations
(user definedmax(g)). The selection of classifier ensembles is applied in the context of
GA based on binary vectors. Each individual, called chromosome, is represented by a
binary vector with a sizen, since the initial pool of classifiers is composed ofn members.
Initially, a population with a fixed number of chromosomes is randomly created, i.e. a
random population of candidate classifier ensembles. Thus, at each generation stepg, the
algorithm calculates fitness of each candidate ensemble in the populationC(g), which
is the population of ensembles found at each generationg. The population is evolved
through the operators of crossover and mutation. Algorithm 2 summarizes single GA.

Algorithm 2 Single-Objective GA
1: Creates initial populationC(1) of w chromosomes
2: FindC∗

j (1)
3: for each generationg ∈ {1, . . . , max(g)} do
4: perform all genetic operators
5: generate new populationC(g + 1) and findC∗

j (g + 1)
6: end for
7: return C∗

j

3.3. Multi-Objective GA

MOGAs often constitute solutions to optimization processes guided by multi-objective
functions. These algorithms use Pareto dominance to reproduce the individuals. A Pareto
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front is a set of nondominated solutions representing different tradeoffs between the multi-
objective functions. In our classifier ensemble selection application, a candidate ensemble
solutionCi is said to dominate solutionCj , denotedCi � Cj, if Ci is no worse thanCj

on all the objective functions andCi is better thanCj in at least one objective function.
Based on this non-domination criterion, solutions over the Pareto front are considered to
be equally important.

Among several Pareto-based evolutionary algorithms proposed in the literature,
NSGA-II has two important characteristics: a full elite-preservation strategy and a
diversity-preserving mechanism using the crowding distance as the distance measure. The
crowding distance does not need any parameter to be set [Deb 2001]. Elitism is used to
provide the means to keep good solutions among generations, and the diversity-preserving
mechanism is used to allow a better spread among the solutions over the Pareto front. In
addition, in this paper, we investigated two variants of NSGA-II: (1) NSGA [Deb 2001];
and (3) controlled elitist NSGA [Deb and Goel 2001]. In the first case, a niche distance
parameter must be defined. This parameter, which indicates the maximum distance al-
lowed between any two solutions to participate into a niche, is used to control the number
of solutions allowed to be concentrated over small regions (niches) over the Pareto front.
In the case of controlled elitist NSGA, the portion of the population that is allowed to
keep the best non-dominated solutions must be set, which controls the extent of elitism.
In order to reduce redundancy, only NSGA-II is described bellow.

NSGA-II works as follows. At each generation stepg, a parent populationC(g)
of sizew evolves and an offspring populationCq(g), also of sizew, is created. These two
populations are combined to create a third populationC

r(g) of size2w. The population
C

r(g) is sorted according to the nondominance criteria, and different nondominated fronts
are obtained. Then, the new populationC(g + 1) is filled by the fronts according to the
Pareto ranking. In this way, the worst fronts are discarded, since the size ofC(g + 1) is
w. When the last front allowed to be included inC(g + 1) has more solutions than the
C(g + 1) available free space, the crowding distance is measured in order to select the
most isolated solutions in the objective space in order to increase diversity. Algorithm 3
summarizes NSGA-II.

4. Experiments

The experiments were conducted using an initial pool of 100 kNN (k=1) classifiers gener-
ated using the Random Subspace method (RSS) during the overproduction phase. Param-
eters such as: k value, the number of subspace dimensions and the number of classifier
members were defined experimentally. Our experiments were broken down into three
main series. In the first, NSGA-II, NSGA and controlled elitist NSGA are compared in
order to identify the best MOGA for classifier ensemble selection. In the second series,
PSO and GA are also compared. The objective is to point out the best single-objective
method. Finally, in the third series, the best search algorithm identified in both previous
series are compared to each other.

It is important to mention that all the experiments were replicated 30 times and
the results were tested on multiple comparisons using the Kruskal-Wallis nonparametric
statistical test by testing the equality between mean values. The confidence level was 95%
(α = 0.05), and the Dunn-Sidak correction was applied to the critical values. Classical
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Algorithm 3 NSGA-II
1: Creates initial populationC(1) of w chromosomes
2: while g < max(g) do
3: createsCq(g)
4: setCr(g) = C(g) ∪C

q(g)
5: perform a nondominated sorting toCr(g) and identify different frontsCk, k =

1, 2, . . . , etc
6: while |C(g + 1)|+ |Ck| ≤ w do
7: setC(g + 1):=C(g + 1) ∪Ck

8: setk:=k + 1
9: end while

10: perform crowding distance sort toCk

11: setC(g + 1):=C(g + 1) ∪Ck⌊1 : (w − |C(g + 1)|)⌋
12: createsCq(g + 1) from C(g + 1)
13: setg:=g + 1
14: end while

Table 1. Specifications of the datasets used in the experiment s

Dataset # of Training Optimization Validation Test Features PoolC
features Set (T ) Set (O) Set (V) Set (G) RSS size

NIST-digits 132 5,000 10,000 10,000 test1 60,089 32 100
test2 58,646

NIST-letters 132 43,160 3,980 7,960 12,092 32 100

holdout validation strategy is employed for the evaluation of performance. Thus, the orig-
inal datasets are partitioned into four independent datasets: train, optimization, validation
and test. The first partition is used to train ensemble members; the optimization partition
is used during the search process; validation partition is employed to set parameters; and
test set is used to performance evaluation.

4.1. Multi-Objetive Genetic Algorithms Comparison

The experiments were carried out using the NIST Special Database 19 (NIST SD19)
which is a popular database used to investigate digit recognition algorithms. It was
originally divided into two test sets: data-test1 (60,089 samples) and data-test2 (58,646
samples). In this first series of experiments, only data-test1 investigated. On the ba-
sis of the results available in the literature, the representation proposed by Oliveira et
al. [Oliveira et al. 2002] appears to be well defined and well suited to the NIST SD19
database. The features are a combination of the concavity, contour and surface of char-
acters. The final feature vector is composed of 132 components: 78 for concavity, 48 for
contour and 6 for surface. Table 1 lists important information about the database and the
partitions used to compose the four separate datasets.

Three search criteria are investigated: error rate, ensemble size and diversity mea-
sure. Ambiguity (as defined in equations 1 and 2) is used as the diversity measure. Tak-
ing into account that it has been shown in the literature that ensemble size and diversity
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Table 2. Genetic Algorithms parameters

Population size 128
Number of generations 1000
Probability of crossover 0.8
Probability of mutation 0.01
One-point crossover and bit-flip mutation

measures are not conflicting objective functions [DosSantoset al. 2008], the three search
criteria are not combined together as objective functions in this paper. Instead, two pairs
of objective functions are used to guide the three MOGAs: the maximization of ambiguity
combined with the minimization of the error rate; and the minimization of ensemble size
combined with the minimization of the error rate.

Ambiguity - The classification ambiguity is defined as:

ai(x) =

{

0 if yi = ωk

1 otherwise
(1)

whereai is the ambiguity andyi is the output of theith classifier on the observationx, and
ωk is the candidate ensemble output. Givenn the number of samples andl the number of
classifiers, the ambiguity of the ensembleCj is:

γ =
1

n.l

∑

i∈Cj

∑

x∈X

ai(x) (2)

The general GA parameters presented in Table 2, are used for all three MOGAs.
However, NSGA and controlled elitist NSGA need some parameters to be set. In the first
case, a niche distance parameter must be defined. In the second case, the portion of the
population that is allowed to keep the best non-dominated solutions must be set. The
level of elitism defined is equal to 50% for controlled elitist NSGA. In terms of NSGA’s
parameters, we set the best niche distance values also experimentally, as defined bellow.
The level of elitism for controlled elitist NSGA is also mentioned.

• NSGA guided by ambiguity and the error rate: niche distance=0.025;
• NSGA guided by ensemble size and the error rate: niche distance=0.05;
• Controlled elitist NSGA elitism level: 50%.

Figure 3(a) shows the comparison results of 30 replications on data-test1 obtained
using ambiguity and the error rate as objective functions. These results show that con-
trolled elitism NSGA and NSGA-II presented equivalent performances, while NSGA was
slightly worse.

The results obtained by combining ensemble size and the error rate in a pair of
objective functions to guide the three MOGAs are shown in Figure 3(b). Using this sec-
ond pair of objective functions, we observe that controlled elitism NSGA and NSGA
presented equivalent performances. Thus, unlike our previous results, NSGA-II was the
worst search algorithm. However, it is important to note that the variance of the recogni-
tion rates achieved by each algorithm is small (from 96.1% to 96,6%).
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(b) MOGAs guided by ensemble size and the error
rate

Figure 3. Results of 30 replications using NSGA, NSGA-II and controlled elitist
NSGA.

Table 3. Comparing GA and PSO in terms of error rate. Values are shown in bold
when the error rates are significantly different. The results were calculated using
NIST-letters and NIST-digits.

Search Algorithm data-test1 data-test2 NIST-letters
GA 3.55 7.80 6.44
PSO 3.62 7.88 6.49

Therefore, our results globally showed that the three MOGAs investigated in this
series of experiments are equally competent to guide the optimization process involved
at the selection phase of OCS. Since no search algorithm can be claimed to be the best,
NSGA-II is the MOGA applied in the experiments presented further. This choice is spe-
cially due to the fact that NSGA-II does not need any parameter to be set.

4.2. Single-Objective Evolutionary Algorithms Comparison

In order to develop our experiments on comparing GA and PSO, we use the two datasets
described in Table 1: NIST-digits (both test sets) and NIST-letters. The same initial pool
of 100 kNN classifiers generated by applying the Random Subspace method is investi-
gated here. In addition, only the error rate was used as objective function. Finally, in both
search algorithms, individuals (particles) are represented by binary vectors, the number
of generations (iterations) was 1000 and the number of individuals (particles) was 128.

Table 3 shows the average results from 30 replications obtained using both
databases. Values are shown in bold when the performances are significantly different,
according to the Kruskal-Wallis statistical test. It can be observed that GA generates so-
lutions that are better in generalization than PSO taking into account data-test1 of NIST-
digits. This result is better illustrated in Figure 4(a). In data-test2 (Figure 4(b)), GA was
slightly better than PSO. The average results from 30 replications obtained using NIST-
letters dataset are illustrated in Figure 5. This result confirms that the performance of the
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Figure 4. NIST-digits: error rates of the solutions found on 30 replications using
GA and PSO. The performances were calculated on the data-test1 and data-test2.

solutions found by GA were slightly better than the solutions found by PSO. Due to this
result, GA is used to be compared to NSGA-II in our third series of experiments.

GA PSO
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

E
rr

or
 r

at
e

Search Algorithm

Figure 5. NIST-letters: error rates of the solutions found on 30 replications using
GA and PSO.

4.3. Single and Multi–Objective Genetic Algorithms Comparison

In order to compare NSGA-II and GA, we employed NSGA-II guided by ambiguity com-
bined with the error rate, since this pair of objective functions outperformed error rate
combined with ensemble size in our first series of experiments. GA was guided by the
minimization of the error rate. Table 4 summarizes the mean of the error rates obtained
on all three databases investigated on comparing GA and NSGA-II. These results indi-
cate, without exception, that GA was better than NSGA-II. It is important to note that
differences between the results achieved by both search algorithms were not significant.
Moreover, only one pair of objective functions was used to guide NSGA-II. A differ-
ent combination of objective functions may help NSGA-II to find solutions with better
performances.
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Table 4. Mean of the error rates obtained on 30 replications co mparing GA and
NSGA-II.

Dataset NSGA-II GA
NIST-digits Test1 3.63 3.55
NIST-digits Test2 7.87 7.80
NIST-letters 6.54 6.44

5. Conclusion

This work presented the experimental results of a study comparing five search algorithms
applied to the selection of classifier ensembles performed as optimization problems using
single- and multi-objective search algorithms. The experiments were divided into three
series. In the first series, three multi-objective genetic algorithms were compared in one
database. A diversity measure and the ensemble size were combined with the error rate
to make up pairs of objective functions to guide these algorithms. In the second series
of experiments, single-objective GA and PSO were compared in two databases. Finally,
in the third series of experiments, the best multi-objective GA was compared to the best
single-objective algorithm.

The results show that all multi-objective GAs are equivalent. Then, NSGA-II was
picked up to be compared to single GA, since this algorithm outperformed PSO. Based
on the results found in the third series of experiments, single GA was slightly better than
NSGA-II as search strategy for classifier ensemble selection in our experiments. However,
since only one pair of objective functions was employed, these results could be different
according to the objective functions used. The next stage of this research will involve
to test different search criteria in order to determine strategies to improve the selection
results.
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