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ABSTRACT.

We study the management of a dam hydroelectric production where economic
and tourist stakes compete about the reservoir water use. We first consider the
expected gain stemming from the production as the criterion to maximize. In ad-
dition, the tourist issue is modelled so as to ensure a reference storage level during
the tourist season, at a given probability level. This leads to a chance-constrained
optimal control problem, that we solve by the Uzawa algorithm. Albeit the optimal
strategy meets the a priori specified requirements, the deviation of the gain from
its expected value is significative. Therefore, handling the dam management this
way may not be satisfactory when the dispersion of the reached gains is of interest.
Thus, we propose a viability approach to the problem: doing our best to respect the
reference storage level during the tourist season while guarantying an acceptable
gain. To this end, we symmetrize the two stakes by maximizing the probability for
this joint thresholds event to occur.

KEYWORDS. stochastic optimal control, chance constraints, stochastic viability,
hydroelectric dam management

Hydroelectricity is the main renewable energy in many countries. It provides a clean (no green-
house gases emissions) and fast-usable energy that is cheap and substitutable for the thermal one. It
is all the more important to ensure its proper use that it comes from a shared limited ressource: the
reservoir water. This is the dam hydroelectric production management purpose. This management
is subject here to the following tourist constraint: to ensure a reference storage level s ¢ during the
tourist season ‘T at a probability level P ref

We first proceed by solving a chance-constrained stochastic optimal control problem. We first
proceed by modelling the optimization process as a chance-constrained stochastic optimal problem
which belongs to the finite-horizon Markov decision processes framework (see [Puterman| (2005))).

A part of these optimization processes have been studied by authors who solved it by different
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algorithms (see for example [Dupacova et al.| (1991), Prékopal (1995)), Dentcheva et al. (2001)), Ne-|
imirovski and Shapiro| (2006a), Nemirovski and Shapiro| (2006b)), [Andrieu et al.| (2010), Dentcheval
and Martinez|(2011) and Nemirovski (2012))). We solve it by the Uzawa and the stochastic dynamic

programming algorithms.

Then, we propose a stochastic viability approach (see [Doyen and De Lara (2010)) that sym-

metrizes the economic and the tourist stakes. These two modellings offer us complementary views
on the link between the gain which stems from a dam hydroelectric production and the risk for a

storage level trajectory not to complying with the tourist constraint.

1. DAM MODELLING

We present the dynamics of the dam, and the production model.

1.1. Dynamics of the dam. Let time ¢ vary in {0, ..., T}. The following positive real valuated
random variables are defined on a probability space (2, F, P):

e S, the storage level at the beginning of period [t,7 + 1], (state)
e U; and Z,, the hydroturbine and the regulative outflows during [r,7 + 1], (control)
e A, and C,, the inflows and the production earnings during [t,7 + 1]. (noise)

We assume that the noise random variables are mutually and step by step independent. They are

uniformly distributed on a discrete set. The dynamics of the reservoir storage level reads:
Sie1:=8+A, — (U, + Z,) with Sy :=so.
The bound constraints are:
$41 <841 <S4 and g <U; <gq, Vte {0,...,T—1}. €))

The hydroturbine and the regulative outflows U; and Z; are distinct control processes, a priori.
However, the latter is not associated to any earnings and its only way to get valuated is to ensure
the storage level upper bounds. So, we can consider that:

Zl‘ = maX{S; +At - Ut — S, O}
Then, the control reduces to one random variable and the reservoir dynamics becomes:

St+1 :ﬂs(St, Ut,At) = min{St +A[ — U[,§[+1} Vit € {0, ceny T— 1} and S() = 350. (2)

A storage level

St
St+14-
St-1 time
St =

FIGURE 1. Reservoir dynamics of the dam
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1.2. Dam production. The hydroelectric production obeys the following valorization mechanism:
e the production at time 7, 1), : Ri — R} is linearly retributed,
ci(Se, Up, As, G) i= Cr XM (S, Uy, Ay);

e a final storage level appreciation function v;(S7) prevents the reservoir from being empty
at the end of the study period, T

The total gain is

T-1
or = Y, GiMi(St, Us, Ar) + v¢(ST) - 3)
t=0

2. CHANCE-CONSTRAINED STOCHASTIC OPTIMAL MANAGEMENT OF A DAM

We address the problem of the optimization of the expected gain 67 under a tourist chance
constraint.

2.1. Problem statement. The expected value of the total gain 67 is the problem criterion:

Elor] where or= T_Ol Cie(St, U, Ar) +ve(St) - “)
=
The tourist chance constraint is
P ({S: > Stef, VT € T}) > ppog Where T C {1,..., T —1}. 35)
The problem is to find a non-anticipative stochastic process U := (Up, ..., Ur—) that maximizes

() subject to the bounds and to the chance constraints () and (3. To be more specific, we adopt
the Hazard-Decision and classical information pattern framework: U; is measurable with respect to
all of the past and current realizations of the noise at time . We denote this property by the symbol
=< as follows:

U =X6(So, Wy, ..., W;) Vte{0,...,T—1} where W, = (A, ;). (6)

Chance constraint goes back to the work of A. Charnes and W.W. Cooper ((Charnes and Cooper,
1959)), and using it raises theoritical and numerical difficulties (see (Grassmann, |1999)), (Prékopa,
1993)), (Henrion, [2002), (Ruszczynski and Shapiro, 2003)). We opt for writing the chance constraint

as an expectation over indicator functions:

P({S‘E > Sref, VT € T}) =E [1{Sr2sref,VreT}] =E [Hre‘f 1{S¢>S[«gf}j| .

We then introduce the random process T = (7;), {0, T} defined by the dynamics

3y

Ty :ftn(Sn U, Ay, Tct) = (1{5r+|25ref} X 1{t€T} +1{t¢rf})ﬂ?t, Vt € {1, T — 1} and Ty =1, (7)

to propagate the information about the reference storage level respect during the tourist season all

over the study period. We have that
P({St > Seef, VTE€T}) =E[ny] . (8)

We handle the bounds and the measurability constraints (I)) and (6 by means of the control admis-
sible set U:
W:={U = (Uy, ..., Ur—1) | (1) and (6) hold}. 9)

1312



Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

The chance-constrained stochastic optimal management now reads:
SH-I = ftS(Sl) Ut7 Al‘)

!T—] ] T+1 :f[n(Stv UlaAtvnl)
E S.C

max Z Ctnt(St) Ut,At) + Vf(ST) (10)
t=0

Ueid So=s0,T9p=1 P—p.s.

E[TCT] 2pref
Vie{0,...,T—1}.

2.2. Solving the chance constrained problem by the Uzawa algorithm. We dualize the chance
constraint (3)) by a multiplier A which is a scalar. We assume that a saddle point exists and we solve
the Lagrangian by an iterative update of the A value:

-1

i E (S, Up, A S AT — ) 11
)IL‘IEHR? Tlljlélzf ;} N (St, Ur, t)+vf( 1) + AT — Pret) (1D

The Uzawa algorithm features are:

e a primal maximization (reduced to an unconstrained problem) by dynamic programming;
e a dual minimization by a gradient step update of A.

dynamic programming

’ (k)
resulting 7p

gradient method

2.2.1. Primal maximization by stochastic dynamic programming. The Bellman optimality princi-
ple applies since, in (I0), the criterion is time separable and the noise processes are step by step
independent. So, we can write a dynamic programming backward induction with the state (S;, ;)

at every time step t: for every (t, 5, ) such that s, , | < § <541,
Vr(5, %) = A (= prer) +v£(5)

Vi(5,®) = E |max Cin (5, u, A) +Virr (ff (5, u, A) , T (5, u, 7, W) (12)

ueil,

Vie{0,...,T—1}.

2.2.2. Dual minimization by a gradient step algorithm. The (k)-th optimal solution U***1)_ we get
by solving (12)), gives us S*¢+1) and n#*+1) by (T0), so the reached tourist constraint probability
level respect is E [ﬂ:ﬁ(k“)]. Then, we can update the multiplier to a value A**!) thanks to the
following p gradient step algorithm:

AR :max{k(k)—i—p (pref—E [ﬂ:ﬁ(Hl)]) , 0}. (13)
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2.3. Numerical experiment.

2.3.1. Numerical instance. We test the algorithm and (T3) with a real case based simple in-
stance of a dam. The bounds in (6) are constant over time. The dam characteristics are:

e {min, max} bounds on S = {0, 76} hm?;

e time steps number 7 = 1092 (3 steps a day over a year);

e tourist reference storage level = 57.5 hm? from time 543 to time 732 (tourist season 7);

e {min, max} bounds on U = {0, 61.7} m3s~!.
The unities are given in m>s~! for the inflows and in € MWh~! for the earnings. The stochastic

universe is finite. The noise processes are white and uniformly distributed. The required probability
level of the tourist constraint is p.; = 0.9.

2.3.2. Numerical results and dispersion of the gain.

e expected total gain = 2.1 x 10° €;

e probability level of the tourist constraint respect = 0.9;

e iterations number, run time = 20, 10 mn on Intel 17 2720QM;
e optimal value of lambda = 5.8 x 10° in (TT).

1000

FIGURE 2. Storage level trajectories, those which fail to the tourist constraint re-
spect are bolded. The tourist constraint is represented with the red square.
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FIGURE 3. Distribution of 100 simulated total gains
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We observe that the deviation of the random variable 67 from its expected value is significative:
the standard deviation is more than 25% of the expectation. Thus, handling the dam management
this way may not be satisfactory if the dispersion of the total gain is of interest. Let us have a look
at some representative noise scenarios (upon the intakes in Figure ] and the earnings in Figure [5).

We note that the realizations of the noise random variables may vary significantly. This has all

FIGURE 5. Six instant earnings scenarios sample (in euros, a step a day over a year)

the more a non-negligible effect on the simulated accumulated gain values that they combine. They
explain the dispersion of the total gain random variable.

The expectation of a random variable is a way to characterize it, but it is neither the only one nor
captures and reflects all that characterizes it. We turn to a different approach in the next section.

3. STOCHASTIC VIABILITY APPROACH TO THE DAM MANAGEMENT

Here, we want to ensure both a guaranteed total gain brought by the hydroelectric production
and a guaranteed minimal level in the dam for the tourist issue, with a certain probability.
We call thresholds guaranty event and we note G the event that the reached o7 has a given

minimum value g and the reference storage level syr is ensured during the tourist season:

G ={07 > g and S¢ > seer, VT €T }.
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To maximize the probability for this event to happen is a mean to address the management of the
dam production by symmetrizing the economic and the tourist stakes whereas there was asymmetry
in (6)). This is a stochastic viability approach ((De Lara and Doyen| [2008)) and (Doyen and De Lara,
2010)) that we study in the next section.

3.1. Description of the approach. To meet the tourist constraint (to ensure the reference level syt
throughout the tourist period ) while ensuring a satisfactory total gain (a total gain greater than or
equal to g..r) in the stochastic framework, corresponds to ensuring the almost sure achievement of
the event G:

o1 (s0, U, ®) > g.o¢ and St (so, U, ®) > seer, VI€T Yo eQ /P(Q) =1
& P{or > g and S¢ > sper, VTET}) = 1.

However, such a probability-one respect may be unachievable or too costly. Based on this observa-

tion, the stochastic viability approach is:

e to define as viable every trajectory such that G occurs;
e to replace the P (G) condition by a confidence probability level P (G) > o, with o < 1;
e to maximize the confidence probability level o such that P (G) > o is possible.

We represent the gain process dynamics by:
or = f7(Sr) :=vy(Sr) + 071
6141 = f2(St, 01, U, Wo) :=C, x (S, Up, W) +0,, Vt€{0,...T—2}
cp=0.
Now, we consider the problem:

max P({or > gt and St > Sper, VT € T})
€

Siv1=f5(8:, Up, A), Ve €{0, ..., T}
s.C. o141 = f2(St, 01, U, W;), Ve €40,...T — 1} 14)
So=s0 and 6y =0
vre{0,...,T}.
3.2. Solving the stochastic viability problem by dynamic programming. Assuming again the
step by step independence of the noise random variables, the following proposition allows us to

solve the problem by a multiplicative dynamic programming equation (see (Doyen and De Lara),
2010) for the proof).

Proposition 1. (Hazard-Decision solving)

Let us consider the following backward induction:

Vr (Sa 6) = 1{62g,_(,f}

VieT: Vs, 0)=E [max Lot X Vi1 (£ (s, u, Ay, £2 (0, u, W,))] (15)

uesl;

Vi¢ TUT: Vi(s,0)=E [mzhx Visr (F (s, u, Ay), £ (0, u, Wt))] :
uctly
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If the noise random variables are step by step independent, then
Y(s0, 0p) € R2+ Vo(so, o) = I(l]’la&(P ({GT > 8oy and Sy > Spep, VT € ‘T}) .
o .

Thus, the equation (13)) determines the solution of the stochastic viability problem (14).

We shall now test numerically the resulting algorithm.

ALGORITHM: for a given starting state (so, Go)
for every gain value g,.; to guarantee do
for every storage level s to guarantee do
solve:

Vr(s,0) = Liozg,)

VieT: Vis,0)=E [max Loy X Vit (fts (s,u,A;), (0, u, W,))] .

ueil,

Vi¢ TUT: Vi(s,0)=E [milxx Vit (£ (s, u, Ar), £ (0, u, W,))] .
uelly

save: OC*(Sref, gref) = V() (S(), G())
end for
end for

3.3. Numerical experiment. We go back to the numerical instance we have studied in the first
section. We make s vary from 20 to 70 hm> and we make g.¢ vary from 0,5 to 2,5 millions
euros. The Figure [] shows the maximal viability probability and the Figure [7] shows its isograph,
as function of the guaranteed gain g ¢ in Meuros and guaranteed stock Sgf in hm3. In Section [2]
we maximized the expected gain subject to the tourist 0.9-level chance constraint (of having at least
57.5 hm3 in the tourist season), and obtained an optimal expected gain of about 2, 1 millions euros.
In Figure [/ we see that guaranteeing jointly such a gain value and the tourist constraint is feasible
with about 55% probability. In fact, if we keep srer to 57.5 hm3 and want a viability probability of
0.9, we cannot guarantee a gain higher than 1.5 millions euros. By symmetrizing the economic and
the tourist stakes, the stochastic viability approach offers a complementary view on the problem,
and more specifically on the influence of the tourist-associated risk parameterization on the gain
random variable.

4. CONCLUSION

The traditional approach, when going from deterministic to stochastic control, consists in taking
the expected value of the original criterion (risk-neutral approch in economics). The constraints
may be taken in various senses, such as robust, in probability one, or with a given probability level.
This is the way we handled the dam management issue in the first part. However, the realized opti-
mal random gain displayed a significative dispersion. This is why, in the second part, we proposed
a stochastic viability approach that symmetrizes the economic and the tourist stakes, and guaran-
tees minimal thresholds. Thus, the stochastic viability approach offers a complementary view to

stochastic optimal control under chance constraint.
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FIGURE 6. Maximal viability probability as function of the guaranteed gain g, in

Meuros and guaranteed stock s;er in hm3
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