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ABSTRACT 

Since deregulation on electricity markets has expanded, one of the main concerns for 

traders has been the measure of risk on operations and optimal trading limits, due to the unique 

features electricity exhibits. Stylized facts on price’s series, such as strong mean-reversing, 

heavy-tails and common spikes have been subject to revision on many studies. 

Using Extreme Value Theory, researchers have acquired new tools for computing these 

measures, such as Value at risk, toward the characterization of maxima, although the series’ fea-

tures still fail on assumptions based on its use. 

This paper presents a different approach, consisting on modeling the inter-exceedance 

times when extreme events occur, supported by high frequency models, while the distribution of 

extremes is still modeled by means of a generalized Pareto distribution. 

The modeling technique is applied to four main electricity markets in Australia and re-

sults are compared with classical modeling. 

 

KEYWORDS. Extreme value theory. Autoregressive conditional duration. Value at Risk.  

Main areas, GF - Financial Management, EN - OR in Energy, MP - Probabilistic Models 

1. Introduction 

One of the main characteristics of electricity is its impractical storage, requiring not only 

large containers, but also possessing a short life span. For that, suppliers may likely sell it regard-

less its current price. In the same manner, as supply needs to respond to shifts in demand, power 

generation may need to be under regular adjustments. 

Due to the non-stability of this commodity, the price series present spikes; this differs 

from standard jumps on classical financial returns, as in this case, the series returns immediately 

to regular values after an extreme event occurs. 

For a trader’s point of view, it is important to prevent such extreme price fluctuations 

from affecting their firm’s profitability. As evidence in this concern, risk management measures 

need to be at hand in order to prepare for extreme events, whether defining trading limits of oper-

ation or estimating saving’s requirements on a given period. 

One of the most common of these measures is the Value at Risk (VaR), which is fre-

quently used to establish trading limits, estimating the amount that a firm may lose in a certain 
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horizon given a statistical probability. A more extended discussion on the application of VaR in 

electricity markets can be consulted on Clewlow and Strickland (2000) and Eydeland and 

Wolyniec (2003). 

Some of the conventional approaches for the electricity spot prices take notice on predict-

ing the trajectory of the series, modeling the entire data. We propose to employ a technique based 

on the modeling of inter-exceedances times between only extreme events through an Autoregres-

sive Conditional Duration (ACD) model introduced by Engle and Russell (1998), due to the con-

ditional nature of when the extremes occur; while the marks follow a classical Peaks-Over-

Threshold (POT) model (see Smith, 1989). This allows us to concentrate only in these rare events 

rather than the whole data. 

The main contribution of this paper is the ability to capture the short-term behavior of ex-

treme events on electricity spot price’s returns without involving additional parameters to model 

volatility in the series, such as ARMA models, which may lead to estimation error and modeling 

bias. 

The rest of the paper is organized as follows. Section 2 presents a review on current arti-

cles dealing with electricity spot prices, Section 3 and 4 describe the approach taken, presenting 

the approach of the ACD-POT model and its parameterizations, Section 5 reviews an application 

and its performance against a classical EVT model, and Section 6 concludes the obtained results. 

2. Literature review 

The daily prices in the electricity markets are characterized for presenting stylized facts; 

features such as mean-reversing, high volatility, spikes (by shocks in price) and seasonality. 

Most of the development on this matter has address modeling the data using ARMA 

models in order to study it, aimed to the trajectory of the series, in order to make a forecast, rather 

than the impact of extreme events and its undertaken risk. 

Spikes present one of the common problems when dealing with this series, and for that, 

different approaches has been proposed in the literature to overcome its influence in modeling. 

For electricity spot prices, Weron and Misiorek (2005) present a brief review on ARMA and 

ARMAX models. Other works that deal with spikes come from Janczura and Weron (2009) and 

Higgs and Worthington (2008) proposing a Markov regime-switching model and a diffusion 

model were jumps on the series are introduced by modeling different components on a function. 

An EVT approach has been referred by Chan and Gray (2006) who compute VaR 

through classical models, adjusting volatility in the series with a GARCH model as well as 

Byström (2005). 

Christensen et al. (2011) present an ACH model focused on capture intensity dependence 

of the prices in the series, while focusing on extreme values. 

Consequently, the application presented on this paper focus on the work presented by 

Herrera and Schipp (2011), who use an ACD model for dependence between the time of extreme 

events, and utilize a Point Process to estimate a measure for VaR in financial markets. 

3. Methodology 

This section intends to summarize the approach taken by the proposed methodology. It 

has the intention to familiarize the reader with the components of the formulation and its assump-

tions. Brief concepts regarding Extreme value theory, Point Process and ACD models are ad-

dressed. 
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3.1 Extreme value theory (EVT) 

Following Embrechts et al. (1997) and McNeil and Frey (2000), we adopt a Peaks Over 

Threshold (POT) EVT method to identify extreme events that exceed a threshold u. Here, the 

exceedances’ distribution, Fu, that is, the magnitude of all observation over this threshold, can be 

approximated by a Generalized Pareto Distribution (GPD). 

Suppose a series of observations Y1, …, Yn, are random variables with distribution func-

tion Fu, if it satisfies a series of variation properties, the non-degenerate limiting distribution 

function belong to the maximum domain of attraction,       , must be the generalized extreme 

value distribution        given by 

          

 
 
 

 
 
         

   

 
 

  
 
     

          
   

 
      

  

 

Where the Fisher-Tippett theorem allows to obtain, according to the value of  , the 

Gumbel (ξ = 0, thin-tailed), Fréchet (ξ > 0, heavy-tailed) or Weibull (ξ < 0) distributions . 

3.2 Marked Point Process (MPP) 

Consider a random distribution of points in the space. We define a point process N as a 

sequence that carries information of both the occurrence times and marks (the size of an 

exceedance, defined as     ;        ). A marked point process (MPP) presents also an influence 

on its previous marks, denoted by its history                           . We describe a point 

process Ng, the ground process, which denotes the stochastic process of the inter-exceedance 

times of these extreme events. A conditional intensity (hazard) function is given by 

 

         
       

       
 

Where         and         are the conditional duration and survival function respec-

tively, while the conditional intensity function for N is defined for 

 

                            

 

With          , the density function of the marks conditional on time and history, and 

   the ground process, which can be composed by a baseline,   , for inter-exceedances times and 

a positive function (see Hautsch, 2011 for a brief review and Smith, 1989 for a more in deep 

analysis). 

3.3 The Autoregressive Conditional Duration Peaks Over Threshold (ACD-POT) model 

First proposed with the intention to model intraday, high-frequency transactional data, 

the ACD model can be expanded in this matter. 

As durations between extreme events (transactions on the original case) are not equally 

spaced, it seems natural to describe its process through an Autoregressive Conditional Duration 

(ACD) model. 
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Following Engle and Russell (1998) we define a conditional intensity function λg, for the 

ground process for fitting autocorrelated data from the inter-exceedance times,           . In 

this case, in order to standardize the data we utilize the most recent history, with ψi as the expec-

tation of the current inter-exceedance time (a similar approach is presented in Christensen et al., 

2011). 

                                   

 

 And we define the ground process composed by this new data, where    
  

  
. The com-

plete ground process is defined as follows 

 

              
       

        
 

 

        
 

 

Where   is a parameter vector;  , a positive function to standardize durations. With 

transformations at hand, we present the conditional intensity function, defined for an ACD model 

in durations. 

             
       

        
 

 

                 
    

   

         
 
 

      

 

 

Note that the function           presented earlier is modeled as a GPD, though now is 

dependent on time through the value of  . 

Keeping in mind the estimation of risk measures for electricity spot prices in the pro-

posed model for the intensity function, the VaR, for the α-th quantile, can be extracted straight-

forward in this case as 

 

    
    

         

 
  

   

                   
 

  

    

4. Parameters for the conditional intensity function 

With the presented model, this section introduce different alternatives in order to parame-

terize the three components; the expected conditional duration function (  ) and the distribution 

of probability of the standardized durations (  ) for the hazard function, and the scale parameter 

( ) of the GPD function 

 

4.1 ACD models for the expected conditional duration 

We define four alternatives for modeling the conditional duration function. 

 Lineal ACD model (Engle and Russell, 1998), based on a lineal parameterization of the 

mean function.             
 
           

 
     

 Logarithmic ACD (Log-ACD) model (Bauwens and Giot, 2000), which presents a multi-

plicative relation on durations.                    
 
              

 
      

 Box-Cox ACD (BCACD) model (Dufour and Engle, 2000)       
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 Exponential ACD (EXACD) model (Dufour and Engle, 2000)               
 
   

                   
 
     

4.2 Distributional assumptions for the standardized durations 

Two different distributions are considered for this matter. Note that the Generalized 

Gamma distribution includes the Weibull, Half-Normal and ordinary Gamma distribution under 

different values for γ and k. 

 Generalized Gamma distribution,         
      

       
      

 

 
 
 
      , non-

monotonic distribution used mostly under survival analysis, as a three parameter general-

ization of the regular Gamma (γ = 1) or Weibull (γ = k) for γ, λ, k > 0. 

 Burr distribution (Grammig and Maurer, 2000)            
      

         
     

  

4.3 Models for the time varying scale parameter 

For the scale parameter, β, there have been selected five approaches for its modeling in 

this paper 

 Constant scale              

 Lineal scale                       

 Polynomial scale                       
   

 The Hawke’s scale                                            

 The autoregressive realized duration (ARD)                            
  

      
  

 

Note that the first three alternatives for β are aimed to model the intensity (y) of the pa-

rameter, depending only of the last mark and its times, while the other two take into account the 

durations between excesses (t-t*) as part of the modeling.   

5. Empirical results 

The following presents the application results for the electricity market of Australia.  

5.1 Data 

This section presents the results obtained after using the proposed ACD-POT methodolo-

gy to calculate a VaR measure. The considered data for this paper correspond to the Daily Re-

gional Reference Price (RPP, in $/MWh) from the four mayor electricity markets of Australia; 

New South Wales (NSW), Queensland (QSL), South Australia (SA) and Victoria (VIC). The 

sample covers 1,493 observations, from January 1
st
, 2007 to December 31

st
, 2010. As we concen-

trate on the left tail for risk management, the negative log-returns are used for the analysis. Table 

1 presents some descriptive statistics for these series. 
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 New South Wales Queensland South Australia Victoria 

Mean -0.038 -0.033 -0.154 -0.183 

Std. dev. 44.131 52.268 57.717 38.854 

Min -406.436 -426.687 -439.620 -361.756 

Max 359.714 415.271 395.455 399.303 

Skewness 0.292 0.062 -0.590 0.251 

Kurtosis 22.725 21.727 20.851 29.920 

Box test 0.000 0.000 0.000 0.000 

Shapiro test 0.000 0.000 0.000 0.000 
Table 1: Descriptive statistics of the time series 

 

As it was exposed, stylized facts are present in these series, evidence by large values on 

both cases, minimum and maximum, which follow the form of a spike. Skewness most likely to 

be located on the positive side (of the negative log-returns), and heavy-tails, denoted by the ex-

cess of kurtosis. 

Some of these properties can be observed at Figure 1, presented as a motivation to this 

study given the autocorrelation on inter-exceedances times, also supporting the idea of clustering 

between extreme events. Density functions are obtained in order to examine the probability of 

inter-events time. 

 

 
Figure 1: Stylized facts. Autocorrelogram and density graphs for inter-exceedances times and marks for the 

studied series. 

1155



September 24-28, 2012
Rio de Janeiro, Brazil

 

One of the requirements for the methodology is the choice of a sufficiently high enough  

threshold (u) for applying EVT, without compromising variance of the sample. The instrument 

selected for this is the Hill plot, a common estimator for finding an optimal threshold (see Reiss 

and Thomas, 1997). For this application, we consider a 14% of maxima in the sample.  

5.2 Model fit 

The model names follow the classification scheme proposed by Herrera and Schipp 

(2011), were the first lower-case letter represents the distribution (b, burr; g, generalized gamma), 

the next capital letters denote the type of ACD model (ACD, Log-ACD, BCACD, EXACD) and 

the following number implies the scale of β (1, constant; 2, lineal; 3, polynomial; 4, Hawke; 5, 

ARD). 

With regard to the log likelihood and AIC statistic, there are not significant changes be-

tween models, thought most of the selected ones follow a similar architecture. The most signifi-

cant parameter belongs to the expected conditional duration over the intensity. This is also true 

for the ACD model’s weights. The hazard rate for most of the models exhibit a general shape . 

Results for selected models are presented on Table 2. 

 

Model 

Parameters 

Loglike AIC ACD model POT model 

W α1 b1 δ γ k ξ ω β1 β2 β3 

New South Wales 

bACD2 
0.74 

(0.56) 

0.10 

(0.05) 

0.79 

(0.12) 
 

0.64 

(0.11) 

1.47 

(0.12) 

0.72 

(5.19) 

1.42 

(0.13) 

0.06 

(0.04) 

66.4 

(34.83) 
 -1508.15 3034.30 

bLog-ACD1 
0.03 

(0.12) 

0.00 

(0.00) 

0.98 

(0.01) 
 

0.62 

(0.14) 

1.41 

(0.14) 

0.81 

(1.85) 

13.44 

(0.13) 
   -1509.45 3032.90 

gLog-ACD1 
0.04 

(0.01) 

0.00 

(0.00) 

0.98 

(0.01) 
 

0.37 

(0.13) 

8.00 

(5.31) 

0.79 

(1.88) 

13.64 

(0.13) 
   -1505.98 3025.97 

gEXACD1 
0.09 

(NA) 

0.00 

(0.01) 

0.90 

(NA) 

0.15 

(0.03) 

0.19 

(0.10) 

31.05 

(31.08) 

0.79 

(1.91) 

13.83 

(0.13) 
   -1504.58 3025.15 

Queensland 

bACD2 
1.15 

(0.54) 

0.23 

(0.07) 

0.62 

(0.12) 
 

0.65 

(0.12) 

1.45 

(0.13) 

0.60 

(5.64) 

6.87 

(0.12) 

0.07 

(0.04) 

75.51 

(33.35) 
 -1578.30 3174.59 

bBCACD2 
0.35 

(0.18) 

0.17 

(0.08) 

0.81 

(0.09) 

1.31 

(0.33) 

0.66 

(0.12) 

1.46 

(0.13) 

0.60 

(5.47) 

6.50 

(0.12) 

0.08 

(0.05) 

75.42 

(31.17) 
 -1578.85 3177.71 

gACD2 
1.06 

(0.50) 

0.21 

(0.07) 

0.65 

(0.11) 
 

0.17 

(0.19) 

36.98 

(79.34) 

0.60 

(6.36) 

8.59 

(0.12) 

0.06 

(0.04) 

63.75 

(35.66) 
 -1575.35 3168.70 

gLog-ACD2 
0.27 

(0.12) 

0.15 

(0.05) 

0.75 

(0.08) 
 

0.19 

(0.14) 

30.25 

(43.52) 

0.60 

(6.99) 

7.70 

(0.12) 

0.06 

(0.04) 

71.41 

(41.26) 
 -1576.55 3171.09 

South Australia 

bACD2 
1.66 

(0.81) 

0.15 

(0.06) 

0.62 

(0.14) 
 

0.59 

(0.13) 

1.35 

(0.12) 

0.73 

(5.77) 

3.05 

(0.12) 

0.00 

(0.03) 

92.82 

(43.23) 
 -1564.42 3146.84 

bBCACD2 
0.63 

(0.25) 

0.16 

(0.06) 

0.70 

(0.12) 

0.40 

(0.52) 

0.57 

(0.13) 

1.33 

(0.12) 

0.73 

(6.79) 

0.72 

(0.12) 

0.00 

(0.03) 

108.40 

(52.14) 
 -1564.58 3149.15 

gACD2 
1.65 

(0.80) 

0.13 

(0.06) 

0.64 

(0.14) 
 

0.21 

(0.70) 

23.14 

(149.65) 

0.73 

(6.86) 

2.03 

(0.12) 

0.00 

(0.02) 

98.12 

(48.51) 
 -1561.03 3140.05 

gLog-ACD3 
0.50 

(0.24) 

0.12 

(0.05) 

0.65 

(0.14) 
 

0.28 

(0.31) 

13.95 

(30.20) 

0.74 

(NA) 

0.43 

(0.11) 

0.00 

(0.03) 

67.81 

(29.76) 

0.78 

(NA) 
-1559.74 3139.47 

Victoria 

bACD2 
0.47 

(0.24) 

0.11 

(0.04) 

0.83 

(0.05) 
 

0.52 

(0.13) 

1.33 

(0.11) 

0.47 

(3.58) 

2.64 

(0.09) 

0.05 

(0.04) 

65.80 

(25.41) 
 -1465.41 2948.81 

bLog-ACD3 
0.14 

(0.07) 

0.11 

(0.03) 

0.85 

(0.05) 
 

0.44 

(0.15) 

1.28 

(0.11) 

0.46 

(10.03) 

0.00 

(0.09) 

0.05 

(0.04) 

76.24 

(61.09) 

0.94 

(0.79) 
-1463.79 2947.59 

gACD3 
0.53 

(0.32) 

0.11 

(0.04) 

0.82 

(0.06) 
 

0.31 

(0.50) 

11.73 

(36.85) 

0.48 

(20.34) 

0.17 

(0.09) 

0.05 

(0.04) 

46.41 

(30.68) 

0.69 

(1.11) 
-1462.77 2945.54 

gLog-ACD3 
0.18 

(0.11) 

0.10 

(0.04) 

0.84 

(0.07) 
 

0.30 

(0.19) 

11.76 

(15.03) 

0.48 

(1.86) 

12.60 

(0.10) 

0.08 

(0.06) 

4.19 

(120.78) 

6.09 

(0.67) 
-1466.14 2952.28 

Table 2: Results of the ACD-POT model estimation 
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 It should be noted that, for some values, there is a NA indicator and exhibit numerical 

problems at the time of calculations. On the other hand, some variations presented values less 

than the observed number, as the case of (0.00) being actually (< 0.00). 

To complement to the presented results, we expose a set of graphs for the New South 

Wales return’s index, along with the measure of VaR obtained for some of our empirical applica-

tion of the ACD-POT model on Figure 2, corresponding to α = 0.005 for a (from the upper left 

corner) bACD1, bACD2, gACD1, gACD2, bEXACD1 and bEXACD2. The x marks above the 

estimation indicate violations at this confidence. 

 

 

Figure 2: Estimation examples for the VaR 

5.3 Comparison 

In order to measure the performance of the proposed methodology, we proceed to com-

pare the obtained results with a classic ARMA-GARCH-EVT model approach for computing 

VaR on electricity price returns. 

For these models, volatility in the series is captured by an ARMA(1,1) and GARCH(1,1) 

with a Normal (CondN), t-Student (CondT) and Skewed t-Student (CondST) conditional distribu-

tion assumption. 

For the matter, we present a variety of both fitting and accuracy tests for the estimated 

models in Table 3 for the New South Wales power market. Similar results can be obtained from 

the rest of the given series. 
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In short, the battery of tests selected covers Kolmogorov-Smirnov test (KSACD, KSPOT); to 

quantify the distance between the sample’s residuals and the empirical distribution for both the 

ACD model and the POT methodology; Anderson-Darling test (AD) and Density forecasting (χ
2
), 

as a second and third test for fitting the series based on different properties; Ljung-Box test 

(LBACD, LBVaR), at lag 5, for testing the structure of the remaining data; as well as a W-statistics 

(W), for checking the residuals of the GPD. 

As for VaR calculations, we consider a Test of unconditional coverage (LRuc), to test cor-

relation between failures; Test of independence (LRind), for independence of the failures; Condi-

tional Coverage (LRcc), for independence and correct coverage, a combination of the last two 

tests and a Dynamic quantile test (DQhit and DQVaR), to analyze VaR violations, testing independ-

ence. 

 

Model 
GoF ACD GoF POT Accuracy VaR 

KSACD AD χ2 LBPOT W KSPOT α failures LRuc LRind LRcc LBVaR DQhit DQVaR 

bACD2 

0 0 0 0.02 0.98 0.81 0.050 69 0.78 0.08 0.21 0.05 0.09 0.22 

      0.010 19 0.14 0.47 0.27 0.62 0.47 0.27 

      0.005 7 0.90 0.80 0.96 0.87 0.80 0.16 

bLog-ACD1 

0 0 0 0.05 0.07 0.80 0.050 57 0.21 0.04 0.05 0.02 0.04 0.12 

      0.010 18 0.23 0.50 0.38 0.64 0.50 0.01 

      0.005 3 0.11 0.91 0.28 0.93 0.91 0.56 

bEXACD1 

0 0 0 0.03 0.07 0.82 0.050 58 0.26 0.14 0.17 0.10 0.15 0.29 

      0.010 17 0.34 0.52 0.51 0.66 0.52 0.29 

      0.005 5 0.50 0.86 0.78 0.91 0.86 0.45 

gLog-ACD1 

0.57 0.29 0.10 0.10 0.07 0.80 0.050 52 0.05 0.06 0.03 0.03 0.07 0.18 

      0.010 19 0.14 0.47 0.27 0.62 0.47 0.02 

      0.005 3 0.11 0.91 0.28 0.93 0.91 0.60 

gLog-ACD2 

0.63 0.32 0.18 0.10 0.92 0.90 0.050 57 0.21 0.04 0.05 0.02 0.04 0.13 

      0.010 20 0.09 0.29 0.13 0.18 0.29 0.01 

      0.005 8 0.62 0.77 0.85 0.85 0.77 0.24 

gEXACD1 

0.16 0.15 0 0.04 0.07 0.82 0.050 56 0.16 0.10 0.10 0.07 0.11 0.28 

      0.010 16 0.48 0.55 0.65 0.68 0.55 0.31 

      0.005 4 0.26 0.89 0.53 0.93 0.89 0.42 

CondN 

-- -- -- 0 0 -- 0.050 96 0.01 0.94 0.05 0.94 0.94 0 

      0.010 51 0 NA NA 0.06 0.06 0 

      0.005 35 0 0.19 0 0.16 0.19 0 

CondT 

-- -- -- 0 0 -- 0.050 100 0 0.46 0.01 0.48 0.47 0 

      0.010 47 0 NA NA 0.21 0.08 0 

      0.005 27 0 0.32 0 0.48 0.32 0 

CondST 

-- -- -- 0 0 -- 0.050 63 0.16 0.66 0.34 0.67 0.67 0.36 

      0.010 28 0 0.11 0 0.04 0.11 0.20 

      0.005 22 0 0.42 0 0.56 0.42 0.54 

Table 3: Results for Goodness of fit (GoF) and Accuracy tests 

 

The results show selected ACD-POT models, on which both the Goodness-of-fit (GoF) 

and Accuracy tests are approved, like fitting the distribution as well as the quantity and inde-

pendence of both the times and failures occurrences, Computing a precise (at a p-value of 0.05) 

measure for VaR at all quantiles (95
th
, 99

th
, 99.5

th
). 

The last three models of Table 3 present the competing models, on which the perfor-

mance is not adequate for estimating a VaR on neither case, as evidenced by the excessive 

amount of failures for any given quantile as well as the result of the tests, while the best of the 

three models presented being the CondST. 

It should be noted that, for the scale parameter β, the better performed models suggest a 

constant or a linear function over a more complex one (model names’ that end with 1 or 2). Also, 

the generalized gamma distribution presented the best results overall, while the most efficient 

ACD model were both the lineal and logarithmic approach. 
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6. Conclusion 

Electricity spot prices present a more difficult  analysis than traditional financial mar-

kets, mostly because of its distinctive features, with a special attention for spikes on price. 

This paper presented a new methodology exposed for financial series, focused on the in-

ter-exceedance times of extreme events rather than the series itself in order for estimating a 

measure for VaR, applied on electricity markets. The model itself, and its components, show 

flexibility that allows more complex structures to be studied in the future. One of the advantages 

for this approach is that we concentrate on the distribution limit of maxima, rather than on the 

entire sample as is common on the studied literature. 

With regard of the empirical application presented in this paper, computing VaR on the 

studied electricity markets performs well under both fitting models and accuracy statistics.  

For the selected models, an interesting result is given by the performance of the constant 

scale parameter, which implies the minimum dependence the series exhibit, thought it’s there on 

most of the series modeling. This particular outcome is not present on financial markets. 

For a trader’s point of view, the advantage of a more accurate method for estimating VaR 

can be translated on better policies for risk management (minimizing risk and adjusting provi-

sions, giving more margins to invest). 

Future work may need to be focused on dealing with modeling spikes on the series and 

regime switching methodology to be able to respond to these shifts. 
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