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ABSTRACT 

The analysis of return series from financial markets is often based on the Peaks-over-
threshold (POT) model. This model assumes independent and identically distributed observations 
and therefore a Poisson process is used to characterize the occurrence of extreme events. 
However, stylized facts such as clustered extremes and serial dependence typically violate the 
assumption of independence. In this paper we concentrate on an alternative approach to 
overcome these difficulties. We consider the stochastic intensity of the point process of 
exceedances over a threshold in the framework of irregularly spaced data. The main idea is to 
model the time between exceedances through an Autoregressive Conditional Duration (ACD) 
model, while the marks are still being modeled by generalized Pareto distributions. The main 
advantage of this approach is its capability to capture the short-term behavior of extremes without 
involving an arbitrary stochastic volatility model or a prefiltration of the data, which certainly 
impacts the estimation. We make use of the proposed model to obtain an improved estimate for 
the Value at Risk. The model is then applied and illustrated to transactions data from Bayer AG, a 
blue chip stock from the German stock market index DAX. 
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1 Introduction

The current subprime crisis, together with its consequences for international markets, shows that a

deeper understanding of extreme events in statistical data from economics, insurance and finance is of high

priority. According to the Extreme Value Theory (EVT), extreme events refer, for example, to extraordinary

claims to insurance companies, crashes of equity markets or extreme losses in credit portfolios due to

borrower defaults. Hence, extreme events occur rarely, i.e., only few extreme observations are available;

but probabilities and dependence structures have to be assigned to extreme events due to their economic

impact.

The main contribution of this paper from the point of view of extreme value theory is that we can

capture the short-term behaviour of extreme events in stock market returns without involving an arbitrary

stochastic volatility model or the prefiltration of the data, which certainly impacts the measures of risk.

We model the stochastic intensity of the point process of exceedances within the framework of irregularly

spaced data. Contrary to the classical Peaks over Threshold (POT) methodology, where the time of oc-

currence of the extreme events is modeled, the methodology proposed models the inter-exceedance times

between extreme events. To this end, we use a methodology similar to an Autoregressive Conditional Du-

ration (ACD) model (see Engle and Russell, 1998 for more reference), while the marks still being modelled

by generalized Pareto distributions. Like the GARCH models, the ACD models and their alternatives (see

Hautsch, 2004) have proven to be very useful in capturing the clustering effects. Taking into account the dy-

namic aspects within the cluster of extremes is absolutely necessary if one seeks to exploit the full amount

of information in financial data, such as the irregular spacing in time, the discreteness of price changes, the

cluster of extremes as well as the presence of strong correlation among the duration time between extreme

events and persistent dynamics.

The results of the empirical application to the Bayer stock index show that characteristics associated

with previous extreme losses as well the time between these extreme events have a significant impact on

the dynamic aspects and size of future extreme events. In a Value at Risk (VaR) context the results of

our backtesting procedure, which dynamically adjusts quantiles incorporating the new information daily,

allows us to statistically conclude that the models proposed are suitable for the estimation of different risk

measures as the VaR, according to the restriction imposed by Basel Committee on Banking Supervision

(1996, 2006).

This paper is organized as follows. In section 2 we outline relevant aspects of the classical POT

model of EVT, and then we describe the ACD-POT model theory that is central to the paper and discusse

a conditional generalized Pareto distribution based approach for the exceedances. In addition, we make

use of the models proposed to obtain an expression and its estimate for the VaR one day ahead predictive

distribution of the returns, conditionally on the past and current data. In section 3 the models are applied to

transactions data from the Bayer index. Conclusions are resumed in section 4.

2 The Peaks-Over-Threshold method of extreme value theory

The normal distribution is the important limiting distribution for sample averages as summarized

in a central limit theorem. However, we cannot hope that the magnitude of such an extreme event as the

crash of 1987 could be modelled by such class of distributions. In fact, under the Gaussian hypothesis

for any given stock, an observation more than five standard deviations from the mean should be observed

about once every 7,000 years! Fortunately, the family of extreme value distributions is the one to study

the limiting distributions of sample extrema. The Fisher and Tippet theorem suggests that the asymptotic

distribution of the maxima of iid random variables under some norming constants, the resulting distribution,

if it is non-degenerate distribution function, belong to the maximum domain of attraction of Hξ ,µ ,σ , where
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Hξ ,µ,σ is the generalized extreme value distribution

Hξ ,µ,σ (y) =

{

exp
{

−
(

1+ξ y−µ
σ

)−1/ξ
}

ξ 6= 0,

exp
{

−exp
(

− y−µ
σ

)}

ξ = 0,

where ξ ,µ ∈ R and σ > 0 are the shape location and scale parameter respectively, and 1+ ξ y > 0. Es-

sentially, all the common, continuous distributions of statistics and risk management are in MDA(Hξ ,µ,σ ).

In this paper the statistical approach is based on viewing the high level of exceedances (extreme events),

Yi > u for a high threshold u > 0, as a marked point processes (MPP). In many stochastic process models,

a point process arises as the component that carries the information about the events t in time or space of

objects that may themselves have a stochastic structure and stochastic dependency relations. We define a

MPP N as a set of observations, occurrence times and marks {(ti,yi)} on the space T ×Y , whose history

Ht = ({t1,y1} , . . . ,{tt−1,yt−1}) consists only of the occurrence times and marks {t1,y1} , . . . ,{tt−1,yt−1}
up to time t but not including t. Moreover, we define the point process Ng, the ground process, which

refers to the stochastic process of the inter-exceedance times of the extreme events. This point process has

a conditional density function p(t |Ht) and its corresponding survival distribution function S (t |Ht). The

conditional (finite) intensity function (or hazard function) for the ground process Ng is given by

λg (t |Ht) =
p(t |Ht)

S (t |Ht)
(1)

while the conditional intensity function for the MPP N is given by

λ (t,y |Ht) = λg(t |Ht) f (y |Ht , t) (2)

where f (y |Ht , t) is the density function of the marks conditional on t and Ht . Thus, the conditional

intensity function with respect to the internal history Ht determines the probability structure of the point

process N uniquely. The advantage is that we only have to concentrate on the distribution limit of the

maxima more than on the entire sample of a distribution to estimate such type of probabilities.

3 The autoregressive conditional duration Peaks-Over-Threshold (ACD-POT) model

We propose a set of models, which show autocorrelation between inter-exceedance times, clustered

extremes and non iid exceedances or marks size. Following Engle and Russell (1998) we define a model for

the conditional intensity of the ground point process of exceedances depending only on a fixed number of

the most recent inter-exceedance times xi = ti− ti−1. Let ψi be the expectation of the i-th inter-exceedance

time given by

E(x | xi−1, . . . ,x1) = ψi (xi−1, . . . ,x1;θ)≡ ψi, (3)

where θ is a parameter vector. We assume that ψi correspond to the ACD class of models. In general

the assumption is based on that for a strictly positive function with positive support ϕ (·) : R+ → R+ the

standardized durations

εi =
xi

ϕ (ψi)
(4)

are iid random variables. To derive a general expression for the conditional intensity let p be the density

function of (4)

p

(

xi

ϕ (ψi)
|Ht ;θ

)

= p

(

xi

ϕ (ψi)
| θ

)

, (5)
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where θ is a parameter vector. This implies that the time dependence of the duration process is summarized

by the conditional expected duration sequence. If we define again a MPP on [t0,T )×Y for some finite

positive time T and let (t1,y1) , . . . ,
(

tN(T ),yN(T )

)

be a realization of N over the interval [0,T ), one can

easily show that the conditional expected intensity of the interexceedances times between extreme events,

the ground process, can be expressed as a multiplicative effect between the baseline hazard function and a

shift given by the expected duration

λg(t |Ht ;θ) = λ0

(

t− tN(T )

ϕ
(

ψN(T )

)

)

1

ϕ
(

ψN(T )

) (6)

In addition, we also consider the case of predictable marks, i.e., the marks are conditionally gen-

eralized Pareto, given the history Ht up to the time of the mark. To this end, we parameterized a scaling

parameter β (t,y |Ht) such that it depends on the history1. In this way, we assume that in a period of

turmoil the temporal intensity of the inter-exceedance times and the magnitude of the marks increase. Re-

placing the form of the ground process by one of this type and plugging the a generalized pareto density for

size of the exceedances or marks in (2) we obtain the ACD-POT model in its more general form2.

λ (t,y |Ht ;θ) =

λ0

(

t−tN(T )

ϕ(ψN(T ))

)

ϕ
(

ψN(T )

)

β (t,y |Ht)

(

1+ξ
y−u

β (t,y |Ht)

)−1/ξ−1

+

. (7)

The conditional rate of crossing the threshold y≥ u at time t, given the history Ht up to that time, is in this

case

τ (t,y |Ht ;θ) =

ˆ

∞

y

λ (t,s |Ht ;θ)ds =

λ0

(

t−tN(T )

ϕ(ψN(T ))

)

ϕ
(

ψN(T )

)

(

1+ξ
y−u

β (t,y |Ht)

)−1/ξ

+

,

while the implied distribution of the marks when an extreme observation occurs is given by

τ(t,u+ y |Ht ;θ)

τ(t,u |Ht ;θ)
=

(

1+ξ
y−u

β (t,y |Ht)

)−1/ξ

+

= Gξ ,β (t,y|Ht)(y).

Note that the marginal distribution of the marks will now be a conditional generalized Pareto distribution.

One main purpose of this paper is to develop a methodology to obtain an expression and its estimate

for the quantile of the one day ahead predictive distribution of the returns, conditionally on the past and

current data. In particular, the Value-at-risk (VaR), which has become standard measure in financial risk

management due to its conceptual simplicity, computational facility and ready applicability. For the ACD-

POT models the VaR is defined for the α-th quantile as follows

VaRt
α = u+

β (t,y |Ht)

ξ

(

(

1−α

1− exp(−λ (t,s |Ht ;θ))

)−ξ

−1

)

. (8)

The last equation implies that the VaR is only defined for our models if 1− exp(−λ (t,s |Ht ;θ))> 1−α .

In the following sections we introduce the models that we want to utilize to parameterize; the

expected conditional duration function ψi, the distribution of probability of the standardized durations εi

and the models for the scale parameter β (t,y |Ht).

1We can also parameterized the shape parameter ξ . However, the behaviour of the estimation is severely affected. For this

reason it is reasonable to take the shape parameter to be constant.
2The features of this model immediately follow of the classical POT model and the parameteres are the same as for the

generalized extreme value distribution Hξ ,µ,σ with scaling parameter constant and equal to β = σ +ξ (u−µ).
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3.1 ACD models for the expected conditional duration

In this subsection, we consider models that allow for additive as well as multiplicative components

in the conditional duration function ψ . In addition, we introduce parameterizations that allow not only for

linear but also for more flexible innovation impact curves. For simplicity, we restrict our attention to ACD

models of order (1,1). The most popular autoregressive conditional duration models are:

• (ACD) The first ACD model (Engle and Russell, 1998) : ψi = w+axi−1 +bψi−1.

• (Log-ACD) The logarithmic ACD model introduced by Bauwens and Giot (2000) :

ψi = exp{w+axi−1 +bψi−1} , where w > 0, a,b≥ 0.

• (BCACD) The Box-Cox-ACD model (Dufour and Engle (2000)): ψi = w+ a
δ

(

εδ
i−1−1

)

+bψi−1.

• (EXACD) The EXponential ACD Model (Dufour and Engle, 2000):

ψi = w+{aεi−1 +δ |εi−1−1|}+bψi−1.

In order to ensure stationarity and existence of the unconditional expected duration for the Log-ACD model

we need a+ b < 1. Strict stationarity of the conditional mean for the models Log-ACD, BCACD and

EXACD is guaranteed when |b| < 1. This BCACD specification includes the Log-ACD model for the

Box-Cox parameter δ → 0 and a linear specification for δ = 1. For the EXCAD model, the news effects

are modeled with a piece-wise linear specification. Thus, for durations shorter than the conditional mean

(εi−1 < 1), the news impact curve has a slope a− δ and an intercept w+ δ . Durations longer than the

conditional mean (εi−1 > 1), also have a linear effect, but with a slope a+δ and intercept w−δ . For more

references to ACD models we refer to Hautsch (2004); Bauwens and Hautsch (2009).

3.2 Distributional assumptions for the standardized durations

The second important ingredient in the parameterization of our ACD-POT model is the distribu-

tional assumption for the innovation process. In this paper we explore the generalized gamma distribution.

The major advantage of this distribution is that this has non-monotonic hazard function taking bathtub

shaped or inverted U-shaped forms. This feature is of particular importance if we are interested in mod-

elling risk measures such as the VaR or the expected shortfall.

A three parameter generalized gamma density is given by

f (x | γ,k) =
γxkγ−1

λ kγΓ(k)
exp

{

−
( x

λ

)γ}

, x > 0.

It includes the exponential distribution (γ = k = 1), the Weibull distribution (k = 1), the half-normal (γ =
1/2, k = 1) and the ordinary gamma distribution (k = 1). Under the restriction that λ = 1 we chose ϕ (ψi) =

φi = ψi
Γ(k)

Γ

(

k+ 1
γ

) which implies a conditional density of the standardized duration given by

p

(

xi

φi

|Ht ;θ

)

=
γψi

xiΓ(k)

(

xi

φi

)kγ

exp

{

−

(

xi

φi

)γ}

where θ is once more a parameter vector. Note that if k = 1, then we get the Weibull-ACD model, while for

k = γ = 1 the model reduces to an Exponential-ACD model. The hazard function implied by the generalized

gamma model may now be written as

λg(xi |Ht ;θ) =

γx
kγ−1
i

φ
kγ
i Γ(k)

exp
{

−
(

xi

φi

)γ}

I
(

k,
(

xi

φi

)γ) ,
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where is the upper incomplete gamma integral I
(

k,
(

xi

φi

)γ)

=
´

∞
(

xi
φi

)γ uk−1 exp(−u)du.

In addition, the shape properties of the conditional hazard function can be derived from its parame-

ters values. If kγ < 1, the hazard rate is decreasing for γ ≤ 1 and U-shaped for γ > 1. Conversely, if kγ > 1,

the hazard rate is increasing for γ ≥ 1, and inverted U-shaped for γ < 1. Finally, if kγ = 1, the hazard is

decreasing for γ < 1, constant for γ = 1, and increasing for γ > 1.

The conditional intensity in this case takes the form

λ (t,y |Ht ;θ) =

γx
kγ−1
i

φ
kγ
i Γ(k)

exp
{

−
(

xi

φi

)γ}

I
(

k,
(

xi

φi

)γ)
1

β (t,y |Ht)

(

1+ξ
y−u

β (t,y |Ht)

)−1/ξ−1

+

.

3.3 Models for the time varying scale parameter

In this section we consider different models to parameterize the scaling parameter β (t,y |Ht) such

that it depends on the history. This feature implies that the marks are conditionally generalized Pareto, given

the history Ht up to the time of the mark. Under these models we assume that in a period of turmoil the

temporal intensity of the inter-exceedance times and the magnitude of the marks increase. We will specify

and estimate two alternatives forms for the scaling parameter β (t,y |Ht), the lineal

β (t,y |Ht) = ω +β1yi−1 +β2ϕ (ψi)

and the exponential

β (t,y |Ht) = ω +β1yi−1 +β
ϕ(ψi)
2 ,

where ω,β1,β2 ∈ R+.

The two models have in common a natural interpretation; the scaling parameter β (t,y |Ht) de-

pends on the last mark and the conditional mean function of the inter-exceedance times, given the informa-

tion up to time t, but not including t3.

3.4 Empirical application

For the empirical test we chose the transaction data from Bayer AG as announced already in the

introduction. In this study we only concentrate on the left tail, so that the daily returns are obtained as

rt = −100ln(pt/pt−1), where pt denotes the (closing) stock price at day t. The sample period spans from

2 January 1990 to January 18, 2008, two days before January 20, when the Global stock markets suffered

their biggest falls since September 11, 2001. A second sample is used for backtesting the estimation of the

VaR in the Bayer AG from 20 January 2008 to January 16, 2009. In the backtest we daily update the new

information that becomes available for the parameter estimates previously obtained. Thus, we dynamically

adjust quantiles, which allows us to improve as accurately as possible the estimation of the risk measures.

In order to summarize adequately the large quantity of empirical results obtained, we use a classifi-

cation scheme for the ACD-POT models. The first letters denote the type of ACD model: ACD, Log-ACD,

BCACD or EXACD4. The last small letter denotes the models for the time varying scale parameter: l (lin-

eal), e (exponential) or u (for unpredictable marks with scale parameter β constant). For example, a model

3In the first instance we take different models into account to find the best approach. Our analyses with financial time series

have suggested that by model comparisons based on the likelihood ratio statistic, these models keep the formulation easy to

understand.
4For a meaningful comparison of alternatives and for simplicity, we limit the dynamic structure of the ACD-POT models to the

first lag order only.
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Log-ACDu means that we are working with a Log-ACD model for the expected conditional duration with

generalized gamma distribution and unpredictable marks.

Table 1: Results of the estimation of all ACD-POT models with distributional assumption generalize gamma for

the standardized durations of the inter-exceedance times for the Bayer returns. Standard deviations are given in

parentheses. Loglike are the results of the maximization of the log-likelihood estimation and AIC is the Akaike

Information Criterion.

Models Parameters Loglik AIC

ACD model POT Model

w a1 b1 δ γ k ξ ω β1 β2

ACDu 0.833 0.135 0.775 0.157 33.093 1.091 0.144 -2042.72 4099.45

(0.326) (0.035) (0.057) (0.046) (19.491) (0.072) (0.048)

ACDl 0.754 0.157 0.767 0.121 53.767 0.503 0.094 5.7e-07 4.492 -2024.8 4067.59

(0.280) (0.036) (0.051) (0.041) (36.539) (0.100) (0.044) (0.010) (0.826)

ACDe 0.769 0.146 0.773 0.097 86.674 0.657 0.123 0.055 0.513 -2032.27 4082.55

(0.190) (0.036) (0.052) (0.021) (41.234 (0.166) (0.046) (0.045) (0.212)

Log-ACDu 0.175 0.122 0.831 0.162 31.198 1.091 0.144 -2042.61 4099.23

(0.078) (0.031) (0.053) (0.044) (17.101) (0.072) (0.048)

Log-ACDl 0.184 0.139 0.814 0.179 24.668 0.474 0.097 3.2e-07 4.731 -2025.03 4068.07

(0.072) (0.030) (0.049) (0.046) (12.629) (0.105) (0.043) (0.009) (0.887)

Log-ACDe 0.161 0.128 0.833 0.108 69.870 0.653 0.124 0.055 0.510 -2031.9 4081.8

(0.069) (0.031) (0.049) (0.029) (37.581) (0.165) (0.046) (0.045) (0.208)

EXACDu 0.643 0.343 0.599 0.095 0.974 0.949 0.952 0.346 -2133.07 4282.15

(0.241) (0.064) (0.112) (0.128) (0.000) (0.000) (0.071) (0.083)

EXACDl 0.675 0.308 0.582 0.156 0.989 0.980 0.638 0.229 0.182 0.504 -2138.13 4296.27

(0.102) (0.075) (0.040) (0.083) (0.000) (0.000) (0.063) (0.053) (0.055) (0.027)

EXACDe 0.053 0.129 0.916 0.001 0.132 47.045 0.653 0.120 0.055 0.504 -2033.52 4087.05

(0.057) (0.023) (0.028) (0.010) (0.023) (21.023) (0.164) (0.046) (0.045) (0.205)

BCACDu 0.214 0.133 0.905 0.889 0.160 31.695 1.090 0.145 -2043.57 4103.14

(0.081) (0.044) (0.033) (0.394) (0.046) (18.085) (0.072) (0.048)

BCACDl 0.205 0.157 0.916 0.776 0.139 41.114 0.502 0.093 2.6e-08 4.501 -2025.24 4070.48

(0.074) (0.039) (0.029) (0.314) (0.043) (25.380) (0.100) (0.043) (0.008) (0.830)

BCACDe 0.197 0.145 0.915 0.838 0.120 56.519 0.664 0.123 0.053 0.520 -2033.16 4086.31

(0.075) (0.043) (0.030) (0.360) (0.041) (38.521) (0.161) (0.046) (0.045) (0.208)

All parametric models are estimated using quasi maximum likelihood. An important point is the

choice of the threshold, which implies a balance between bias and variance. The threshold must be set

high enough so that the exceedances are distributed generalized Pareto. However, the choice of the optimal

threshold is still considered an open problem and different approaches have been proposed to overcome this

difficulty. In this paper we choose to work with the 10% of the maxima of the sample5.

In relation to the measures of goodness of fit we utilize the W-statistics to assess our success in

modelling the temporal behaviour of the exceedances of the threshold u. This statistic states that if the GPD

parameter model is correct, then the residuals are approximately independent unit exponential variables.

5The choice of the threshold is done with help of the the mean excess (ME) function, which is a popular tool used to determine

the adequacy of the GPD model in practice.
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In addition, to check that there is no further time series structure the autocorrelation function (ACF) for

the residuals is also included. Similarly, we provide empirical evidence on the accuracy of actual VaR

measures derived from the models. The first of them is an unconditional coverage test proposed by McNeil

and Frey (2000). The idea is to test if the fraction of violations obtained for a particular risk measure, is

significantly different from the theoretical one. A violation of the VaR is defined as occurring when the

ex-post return is lower than the VaR. The second approach proposed by Berkowitz et al. (2009) tests for

uncorrelatedness of the violations. In particular, we suggest the well-known Ljung-Box test of the violation

sequence’s autocorrelation function.

3.5 Empirical results

The maximum log-likelihood estimates of the ACD-POT models proposed for the returns are dis-

played in Table 1. For the inter-exceedance times, the generalized gamma seems to be the best distribution

between the two choices. The results on ACD models for the expected conditional duration lead to markedly

fovour the Log-ACD specifications, followed by the ACD one. Finally, the models with time varying scale

parameters lead to a better fit. Indeed, the results suggest that the models with predictable marks react more

quickly to increasing and decreasing cluster of extremes, which means that the size of the exceedances has

an effect on the probability of further exceedances in the near future.

According to the AIC of the models proposed, the best fitted model for the Bayer index is a ACD

model with generalized gamma distribution and lineal form for the scale parameter (ACDl) with AIC of

4067.59. We observe further that k = 53.767 (36.539), γ = 0.121 (0.041), which implies that kγ > 1 and

γ < 1 so that the hazard rate is inverted U-shaped. This should not come as a surprise if one is aware of

the intimate relationship between durations and cluster of extremes. Furthermore, this is the sort of hazard

function that earlier authors have found to be realistic in modeling the dynamics of "price durations" in

stock markets (see for instance Zhang et al., 2001). In relation to the results of estimation of the conditional

GPD model to the excedances we obtained ξ =0.503 (0.100), ω= 0.094 (0.044), β1=5.7e-07 (0.001) and β2=

4.492 (0.826). This result indicates that the lineal form to parameterize the scaling parameter β (t,y |Ht),
such that it depends on the history, was a good choice. Interestingly, the size of the last exceedance is not

as important as the expectation of the i-th inter-exceedance time.

Although the model of choice identified by the AIC may be seen as the best among the existing

models because it shows the best global fit, this does not mean that no better model is possible for backtest-

ing. So, we usually check whether the major features of the given data can be reproduced by the estimated

models, for instance, the cluster of extreme events. If this important feature is not reproduced, we must

consider further models whose AIC values can be compared with those of the previous best model. To this

end, we include two other models to have a comparison of different alternatives in the backtest. The second

best alternative is a Log-ACD and the third is a BCACD, both with generalized gamma distribution and

lineal form for the scale parameter. We concentrate on these three alternatives and test the reliability of

these models by investigating the conditional GPD assumption of the marks in the models fitted, the quality

of the times component of our model and the performance in-sample of the estimated VaRs.

The results on the goodness of fit in sample are displayed in Figure 1. Here, we first assess the

conditional GPD assumption of the marks in the models fitted. To this end, we provide the W-statistic. This

statistic forms an iid sequence of exponential random variables with mean one if the marks are GPD. Ac-

cording to the QQ-plots displayed in Figure 1, we do not observe a substantial deviation from an exponential

distribution. In addition, to check that there is no further time series structure, the autocorrelation function

(ACF) for the residuals (middle panel) is also included. The autocorrelations is negligible at nearly all

lags. Finally, to appraise the quality of the times component of our model, we employ the residual analysis

method for point processes. This is based on the change of time scale using the estimated conditional in-
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Figure 1: QQ-plots of the residuals (left), autocorrelation function of the residuals (middle) and cumulative

numbers of the residual process versus the transformed time {τi} (right), for the returns of the Bayer index

for the gACDl (upper panel), gLog-ACDl (middle panel) and gBCACDl (lower panel) models.

tensity. We investigated whether the transformed time-scale version of the data constitutes a homogeneous

Poisson process. The residual analysis for the three models indicates that the ACD-POT models in their

three alternatives in the changed time scale seems to be acceptable. Hence, for the returns the ACD-POT

specification seems to be appropriate.

In relation to the performance in-sample of the estimates VaRs, Tables 2 displays the results for the

unconditional coverage test and the Ljung-Box test, for all the models for three different VaR levels (0.05,

0.01, and 0.001). For each model proposed in the last section we give the number of violations or failures

in the VaR, the unconditional coverage test and the Ljung-Box test (the last two in brackets). In the case of

these three models fitted the conditional VaR is correctly estimated for all the confidence levels6.

3.6 Backtesting the models

Backtesting provides invaluable feedback about the accuracy of the models proposed to risk man-

agers. The performance of VaR with respect to backtesting has been carried out with the daily returns for

one year, i.e., from January 20,2008 to January 16, 2009. The backtest method consists on comparing the

estimated conditional VaR for one day time horizon t, given knowledge of returns up to and including t for

three different confidence levels (0.95, 0.99, and 0.999). For each day in the back test we reestimate the

models, something that immediately reveals possible stability problems of a model. Then, we reestimated

6The null hypothesis is rejected whenever the p-value of the binomial test and the Ljung_Box test are less than 5 percent.
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Table 2: Some VaR in-sample results all models. The number of violations for all VaR confidence levels is displayed

for each model. Values in parentheses are p-values for the unconditional coverage test and the Ljung-Box statistic

with 5 lags. The number of observations in the sample is 4607.

Models Number of violations Models Number of violations

VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

EXACDu 387 61 3 ACDu 386 95 (0.00) 0

(0.00, 0.00) (0.05, 0.09) (0.64, 0.86) (0.00, 0.00) (0.00, 0.00) (0.02, - )

EXACDl 400 144 10 ACDl 245 54 6

(0.00, 0.00) (0.00, 0.00) (0.03, 0.00) (0.52, 0.22) (0.30, 0.48) (0.48, 0.51)

EXACDe 288 43 0 ACDe 291 46 0

(0.00, 0.00) (0.61, 0.92) (0.02, - ) (0.00, 0.00) (0.94, 0.88) (0.02, - )

BCACDu 389 93 0 Log-ACDu 390 90 0

(0.00, 0.00) (0.00, 0.00) (0.02, - ) (0.00, 0.00) (0.00, 0.00) (0.02, - )

BCACDl 244 53 6 Log-ACDl 243 43 5

(0.57, 0.31) (0.17, 0.29) (0.48, 0.51) (0.60, 0.36) (0.61, 0.92) (0.82, 0.61)

BCACDe 293 43 0 Log-ACDe 289 41 0

(0.00, 0.00) (0.69, 0.92) (0.02, - ) (0.00, 0.00) (0.42, 0.93) (0.02, - )

Table 3: Some VaR backtesting results for three models. Values in parentheses are p-values for the unconditional

coverage test and the Ljung-Box test iwth 5 lags. Values smaller than a p-value 0.05 indicate failure. The number of

observations in the sample is 288.

Model Number of violations

VaR0.95 VaR0.99 VaR0.999

ACDl 18 4 0

(0.34, 0.38) (0.54, 0.81) (1, -)

Log-ACDl 20 3 0

(0.14, 0.72) (0.77, 0.86) (1, -)

BCACDl 19 5 0

(0.22, 0.48) (0.22, 0.76) (1, -)

the risk measures for each return series according to the formula (8).

Table 3 reports the results on the VaR backtesting exercise for all confidence levels, while the VaR

violations for the 0.99 confidence level under the Log-ACDl, ACDl and BCACDl models are shown in

Figure 2. The performances for the models are similar for the results on VaR forecasting, although we

observe some differences. For instance, the gLog-ACDl model tends to lightly underestimate the VaR0.95,

while the gBCACDl do the same for the VaR0.99. However, the unconditional coverage test and the Ljung-

Box test for all the confidence levels indicate that no severe clustering of exceedances is present and that the

VaR violations can be considered as independent, respectively. In addition, according to the “traffic light”

approach the three models are all classified in the green zone (see for more reference Basel Committee

on Banking Supervision (2006)). Finally, due to the shortness of the time horizon we do not find a VaR

violation for the 0.999 quantile, and therefore the Box-Ljung test p-values are not reported.

To summarize, the results of our backtesting procedure with a dynamic adjustment of quantiles

incorporating the new information daily allows us to statistically conclude that the models proposed are
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Figure 2: In-sample and Backtest estimation of the VaR for the 0.99 confidence level for the the models fitted to the

Bayer returns. The black line is the VaR estimation. In the top panel from left to right we have the VaR estimates in-

sample for the ACDl, Log-ACDl and BCACDl models. In the bottom panel from left to right we have the backtesting

results for the VaR estimates for the ACDl, Log-ACDl and BCACDl models.The × marks at the top of the figures

indicate the violations of the VaR at the 0.99 confidence level.

suitable for the estimation of different risk measures, as for example, the VaR according to the restriction

imposed by Basel. Moreover, these models allow us to take the heavy-tailness or the stochastic nature of

the cluster of extreme events into consideration.

4 Conclusions

This paper proposed a new technique for modelling extreme events of stationary sequences as is

the case of the most financial returns. We make use of a new class of self-exciting point process models

that seem particularly well suited. The idea was to create a model being able to incorporate stylized facts

such as clustering of extreme events and autocorrelation of the inter-exceedance times of extreme events,

i.e., properties that are observed in practice.

The model can be interpreted as a combination between the classical Peaks over Threshold (POT)

model from Extreme Value Theory and the class of Autoregresive Conditional Duration (ACD) models that

are popular in finance. For this reason we call it ACD-POT models.

We observe that under this methodology the estimation of such models can be straightforwardly

derived through conditionals intensities. Different models were proposed having in mind the simplicity

of the structure of the conditional intensities. However, other more complicated structures could also be

adopted.

With regard to the empirical application the models and their estimations with returns from Bayer

AG were more than satisfactory. Our empirical results show that characteristics associated with previous
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extreme losses as well the time between these extreme events have a significant impact on the dynamic

aspects and size of future extreme events.

On average, the best three models fit well in-sample for the VaR for different levels of risk, i.e., in

terms of capital requirement; the models keep necessary capital to guarantee the desired confidence level.

For these models the VaR is backtested through a comparison with the actual losses over an out-of-the-

sample period of one year. The backtesting results indicate that the proposed methodology performs well

in forecasting the risk dynamically and provides therefore certainly more precise estimate as the information

in the data sample is exploited more efficiently. This refers particularly to clustering of extreme events and

the inter-exceedance times.
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