
September 24-28, 2012
Rio de Janeiro, Brazil

USING PRINCIPAL COMPONENTS FOR ESTIMATING POLYTOMOUS 
QUADRATIC LOGISTIC REGRESSION 

 
INÁCIO ANDRUSKI-GUIMARÃES 

DAMAT – DEPARTAMENTO ACADÊMICO DE MATEMÁTICA 
UTFPR – UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 

Av. Sete de Setembro, 3165 CEP 80230-901 Curitiba Paraná Brasil 
andruski@utfpr.edu.br 

 

ABSTRACT 

Many papers on logistic regression have only considered the logistic regression model with 
linear discriminant functions, but there are situations where quadratic discriminant 
functions are useful, and works better. However, the quadratic logistic regression model 
involves the estimation of a great number of unknown parameters, and this leads to 
computational difficulties when there are a great number of independent variables. This 
paper proposes to use a set of principal components of the explanatory variables, in order 
to reduce the dimensions in the problem, with continuous independent variables, and the 
computational costs for the parameter estimation in polytomous quadratic logistic 
regression, without loss of accuracy. Examples on datasets taken from the literature show 
that the quadratic logistic regression model, with principal components, is feasible and, 
generally, works better than the classical logistic regression model with linear discriminant 
functions, in terms of correct classification rates. 

KEYWORDS. Polytomous Logistic Regression, Quadratic Logistic Regression, Principal 
Components Analysis, Polytomous Response. 

Main area EST - Statistics 

 

 

1470

mailto:andruski@utfpr.edu.br


September 24-28, 2012
Rio de Janeiro, Brazil

1. Introduction 
Is well known that the logistic regression model are a powerful method widely applied 

for modeling the relationship between a categorical - or ordinal - dependent variable and a set of 
explanatory variables, or covariates, both continuous or discrete. One advantage of using logistic 
model for discriminant analysis, rather than Linear Discriminant Analysis, is that it is relatively 
robust. Furthermore the accuracy of the Classical Logistic Regression Model has been reported in 
many studies involving bankruptcy prediction and cancer classification, among others 
applications. Previous papers on logistic regression have only considered the logistic regression 
model with linear discriminant functions, but there are situations where quadratic discriminant 
functions are useful, and works better. However, the quadratic logistic regression model involves 
the estimation of a great number of unknown parameters, and this leads to computational 
difficulties when there are a great number of independent variables. Furthermore, a great number 
of parameters should be avoided, because of the risk of over-fitting. Another problem is that, 
while the logistic regression model work well for many situations, may not work when the data 
set has no overlapping. Moreover, the logistic model becomes unstable when there is 
dependence, or multicollinearity, between the explanatory variables. In this paper we propose to 
use a set of principal components of the explanatory variables, in order to reduce the dimensions 
in the problem, with continuous independent variables, and the computational costs for the 
parameter estimation in polytomous quadratic logistic regression, without loss of accuracy. 

 
2. Classical Logistic Regression Model 

Let us consider a sample of n independent observations, available from the groups G1 , 
G2 , … , Gs. Let x the vector of explanatory variables, xT = [x0 , x1 , … , xp], where x0 ≡ 1, for 
convenience.  Let Y denote the polytomous dependent variable with s possible outcomes. We will 
summarize the n observations in a matrix form given by: 

 

X = �
1 … 𝑥𝑝1
… … …
1 … 𝑥𝑝𝑛

� 

 
The Classical Logistic Regression (CLR) model assumes that the posterior probabilities 

have the form: 
 

𝑃�𝐺𝑘|x� =
𝑒𝑥𝑝�𝛽𝑘0 + ∑ 𝛽𝑘𝑗𝑥𝑗

𝑝
𝑗=1 �

∑ 𝑒𝑥𝑝 �𝛽𝑖0 + ∑ 𝛽𝑖𝑗𝑥𝑗
𝑝
𝑗=1 �𝑠

𝑖=1

 

 
where k = 1 , 2 , ... , s – 1, and Bs = 0. In this paper the group s is called reference group. The 
model involves (s – 1)(p + 1) unknown parameters. The conditional likelihood function is: 
 

L�𝐵|𝑌, x� = ���𝑃�𝐺𝑘|x𝑖��
𝑌𝑘𝑖

𝑠

𝑘=1

𝑛

𝑖=1

 

 
where Y = [Y1 , ... , Yn]T and Yi = (Y1i , ... , Ysi), with Yki = 1, if Y = k, and Yki = 0, otherwise. 
Taking the logarithm, the log-likelihood function is 
 

𝐿�𝐵|𝑌, x� = ��𝑌𝑘𝑖𝑙𝑛
𝑠

𝑘=1

𝑛

𝑖=1

�𝑃�𝐺𝑘|x𝑖�� 

 
The Maximum Likelihood Estimator (MLE) is the maximizer of the log-likelihood function in 
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relation to B. The mostly used iterative method is the Newton-Raphson. In practice, the 
estimation of unknown parameters is affected by the data's properties. Albert and Anderson 
(1984) suggested a sample classification into three categories: complete separation, quasi-
complete separation and overlap. They also proved that the MLE do not exist for complete and 
quasi-complete separation. Different approaches to deal with separation can be found in Heinze 
and Schemper (2002), Rousseeuw and Christmann (2003), for binary response, and Andruski-
Guimarães and Chaves-Neto (2009), for polytomous response. 
 
Our approach to solve the multiple group problem, when there are complete separation, is to 
provide a simple and direct generalization of the Hidden Logistic Regression Model (HLR), a 
robust estimation method presented by Rousseeuw and Christmann (2003). We consider n 
unobservable independent variables T1 , … , Tn, where each Ti  has s possible values,  γ1 , … ,  
γs. Thus, we observe Yi = j with a 𝑃(𝑌𝑖 = 𝑗|𝑇𝑖 = 𝛾𝑘) = 𝛿𝑗𝑘  probability, where ∑ 𝛿𝑗𝑘 = 1𝑠

𝑗=1  and 
𝛿𝑗𝑗 = 𝑚𝑎𝑥𝑘=1,…,𝑠�𝛿𝑗𝑘�. The maximum likelihood estimator for Ti , if Yi = j, is 𝑇� 𝑖 = 𝛾𝑗. In a 
model with n responses yij (i = 1, … , n ; j = 1, … , s) where yij = 1, if Yi = j, and yij = 0, 
otherwise, we can define the variable given by 𝑦�𝑖𝑗 = ∑ 𝑦𝑖𝑘𝛿𝑘𝑗𝑠

𝑘=1  . Let us keep in mind that in 
the CLR model, δjj = 1 and δjk = 0, if j ≠ k. The purpose is to maximize: 
 

L�Θ|𝑌� , x� = ���𝑃�𝑇𝑗|x𝑖��
𝑦�𝑗𝑖

𝑠

𝑗=1

𝑛

𝑖=1

 

 
The log-likelihood function becomes: 
 

l�Θ|𝑌� , x� = ���𝑦�𝑗𝑖𝛾𝑗 − 𝑙𝑛 �1 + �𝑒𝑥𝑝�𝜇𝑗�
𝑠−1

𝑗=1

�
𝑠−1

𝑗=1

�
𝑛

𝑖=1

 

 
where 𝜇𝑗 = 𝜃𝑗0 + 𝜃𝑗1𝑥1 + ⋯+ 𝜃𝑗𝑝𝑥𝑝 , j = 1 , 2 , … , s – 1. 
 
The maximum likelihood estimators are the maximizers of the log-likelihood function, which is 
strictly concave. For more details about the maximization of log-likelihood function, the 
interested reader is referred to Andruski-Guimarães and Chaves-Neto (2009). In related literature 
different approaches to implement robust estimation methods are given by Kodzarkhia et al. 
(2001), Hubert and Van Driessen (2004) and Gervini (2005), to name just a few. 

 
According to Rousseeuw and Christmann (2003), Copas (1988) found that accurate the 
estimation of δ0 and δ1 in the binary case is very difficult, unless n is extremely large. For a 
detailed explanation, and discussion, see Copas (1988), Hubert and Van Driessen (2004) and 
Rousseeuw and Christmann (2003). In this paper, we consider that the probability of observing 
the true status, which is given by: 

 
𝑃�𝑌𝑖 = 𝑗|𝑇𝑖 = 𝜇𝑗� = 𝛿𝑗𝑗 , 

 
should be higher than 0.5, this is, 0.5 < δjj < 1, furthermore ∑ 𝛿𝑗𝑘 < 𝛿𝑗𝑗𝑠

𝑘=1,𝑘≠𝑗  . Therefore, we 
cannot take the estimate given by 𝜋�𝑗 = 1

𝑛
∑ 𝑦𝑖𝑗𝑛
𝑖=1 ,  j = 1 , … , s, once 𝜋�𝑗 can be smaller than 0.5. 

Our default choice will be δ = 0.99, and set δjj = δ and 𝛿𝑗𝑘 = 1−𝛿
𝑠−1

 . 
 
3. Quadratic Logistic Regression Model 
 An extension of the CLR model is to include quadratic and multiplicative interaction 
terms. The Quadratic Logistic Regression (QLR) Model can be given by: 
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𝑄�𝐺𝑘|x� =
𝑒𝑥𝑝 �𝜒𝑘�

∑ 𝑒𝑥𝑝 �𝜒𝑖�𝑠
𝑖=1

 

 

where 𝜒𝑘 = 𝛼𝑘0 + ∑ 𝛼𝑘𝑖𝑥𝑖2
𝑝
𝑖=1 + ∑ 𝛼𝑘𝑖𝑥𝑗´𝑥𝑗´´

�𝑝2�
𝑖=𝑝+1 + ∑ 𝛼𝑘𝑖𝑥𝑗

�𝑝2�+𝑝

𝑖=�𝑝2�
 , k = 1 , 2 , … , s – 1, χs = 0 

and  j , j´´ = 1 , … , p , j´ = 1 , 2 , … , p – 1. 
 
The model involves [(𝑠 − 1)(𝑝 + 1)] �1 + 𝑝

2
� unknown parameters and the estimation of these 

parameters follows the same lines as that taken by the Classical Logistic Regression Model 
(CLR). However, for a large number of independent variables, the number of extra parameters 
can be render an unworkable problem, so that a reduction dimension method can be useful to way 
out of this problem. Furthermore, a large number of parameters should be avoided, because of the 
risk of over-fitting. As pointed out by Anderson (1975), the quadratic term also can be written as: 
 

𝜒𝑘 = 𝛼𝑘0 + x𝑇𝛀𝑘x + 𝛼𝑘𝑇x 

 
where Ω𝑘 = V𝑘−1 − V𝑠−1, and 𝐕𝑘 is the dispersion matrix in 𝐺𝑘 , k = 1 , … , s – 1. An 
approximation, proposed by Anderson (1975), gives a quadratic term with a reduced number of 
parameters. This approximation is given by the spectral decomposition: 
 

𝛀𝑘 = �𝜆𝑗𝑘𝑙𝑗𝑘𝑙𝑗𝑘𝑇
𝑝

𝑗=1

 

 
where the 𝜆𝑗𝑘 are the eigenvalues of Ω𝑘 , in decreasing size, 𝜆1𝑘 ≥ 𝜆2𝑘 ≥ ⋯ ≥ 𝜆𝑝𝑘 , and 𝑙𝑗𝑘 are 
the corresponding eigenvectors. In this case, Ω𝑘 can be given by: 
 

𝛀𝑘 ≅  𝜆𝑘𝑙𝑘𝑙𝑘𝑇 
 
In the sequence, each 𝑙𝑗𝑇 = �𝑙𝑗1, … , 𝑙𝑗𝑝�  is normed with the constraints: 
 

�𝑙𝑗𝑘2
𝑝

𝑘=1

= 1 

 
Since this approach is not always convenient for computing, an alternative parameterization is 
suggested: 
 

𝜒𝑘 = 𝛼𝑘0 + 𝜇𝑘�𝑑𝑘𝑇𝐱�
2 + 𝛼𝑘𝑇𝐱 , 

 

where 𝜇𝑘 = 𝑠𝑔𝑛(𝜆𝑘), k = 1 , … , s – 1, 𝑑𝑘𝑗 = 𝑙𝑘𝑗
�|𝜆𝑘|�   , j = 1 , … , p. 

The log-likelihood function is maximized with respect to the 𝛼𝑘𝑗 and 𝑑𝑘𝑗 unrestrictedly 2(𝑠−1) 
times for 𝜇𝑘 = ±1 and to take as maximum likelihood estimates those values of the parameters 
which give the greatest of these 2(𝑠−1) values of the log-likelihood function. With this 
approximation, there are (s – 1) unknown parameters. However, this approach is not always 
applicable. If the independent variables are binary, the diagonal terms of Ω are zero. In this paper 
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we propose to use as covariates the principal components of the (s – 1)(p + 1) matrix I(B)  whose 
elements are given by: 
 

𝜕2𝐿�𝐁�
𝜕𝛽𝑗𝑚𝜕𝛽𝑗𝑚´

= −�𝑥𝑚´𝑖𝑥𝑚𝑖�𝑄�𝐺𝑗|x���1 − 𝑄�𝐺𝑗|x��
𝑚

𝑖=1

 

and 
 

𝜕2𝐿�𝐁�
𝜕𝛽𝑗𝑚𝜕𝛽𝑗´𝑚´

= −�𝑥𝑚´𝑖𝑥𝑚𝑖�𝑄�𝐺𝑗|x���𝑄�𝐺𝑗´|x��
𝑚

𝑖=1

 

  
where j ,  j´ = 1 , 2 , … , (s – 1) and m , m´ = 1 , … , p. 
 
4. Principal Components Analysis 
 The Principal Components Analysis (PCA) is a method to explaining the variance and 
covariance structure through linear combinations of the variates and may be considered a tool for 
reducing the dimensionality of the data, as well the multicollinearity among the independent 
variables. 
 
 Let us consider n observations of p continuous variables, given by the matrix X, and let 
the sample covariance matrix: 
 

𝐒 = �
𝑠11 ⋯ 𝑠1𝑝
… ⋱ ⋯
𝑠𝑝1 … 𝑠𝑝𝑝

� 

 
The observations x can be standardized, so that 
 

𝐒 = 1
𝑛−1

𝐗T𝐗 . 
 
The matrix S can be written as S = VTΛV , where Λ = diag( λ1 , … , λp ) being orthogonal. Let Z 
the matrix whose columns are the principal components, given by Z = XV, where v  1 , … , v  p are 
the eigenvectors of the matrix S, associated to the eigenvalues λ1 , … , λp , so that the matrix of 
observations can be written as X = ZVT , where 
 

𝑥𝑖𝑗 = �𝑧𝑖𝑘𝑣𝑗𝑘

𝑝

𝑘=1

 

 
Furthermore, matrices Z and V also can be written as: 
 

𝐙 = �
1 𝑧11 …
1 𝑧21 …

𝑧1(𝑞+1) … 𝑧1𝑝
𝑧2(𝑞+1) … 𝑧2𝑝… … …

1 𝑧𝑛1 …
… … …

𝑧𝑛(𝑞+1) … 𝑧𝑛𝑝
� = �𝐙(𝑞)�𝐙(𝑟)� 

and 
 

𝐕 = �
1 1 …
1 𝑣11 …

1 … 1
𝑣1(𝑞+1) … 𝑣1𝑝… … …

1 𝑣𝑝1 …
… … …

𝑣𝑝(𝑞+1) … 𝑣𝑝𝑝
� = �𝐕(𝑞)�𝐕(𝑟)� 

 

1474



September 24-28, 2012
Rio de Janeiro, Brazil

In order to improve the parameter estimation under multicollinearity, and to reduce the dimension 
of the problem, Aguilera, Escabias and Valderrama (2006) propose to use as covariates of the 
logistic regression model a reduced set of optimum principal components of the original 
covariates. This approach, called Principal Component Logistic Regression (PCLR) model, 
provide an accurate estimation of the parameters in the case of multicollinearity. Furthermore, cf. 
Barker and Brown (2001), estimates obtained via principal components can have smaller mean 
square error than estimates obtained through standard logistic regression. Although, it is well 
known, cf. McLachlan (2004), that the estimates of the eigenvalues of S are biased. This bias is 
most pronounced when the eigenvalues of S tend toward equality, being less severe when they 
are highly disparate. 
 
The generalization of the PCLR model for polytomous responses does not require a complex 
formulation. We begin by computing the covariance matrix S. Then the matrix X can be written 
as: 
 

𝑥𝑖𝑘 = �𝑧𝑖𝑗𝑣𝑘𝑗

𝑝

𝑗=1

 

 
so that 
 

  𝑃�𝐺𝑡�𝐙𝐯𝑖� =
𝑒𝑥𝑝�𝛽𝑡0+∑ ∑ 𝑧𝑖𝑗𝑣𝑘𝑗𝛽𝑡𝑘

𝑝
𝑗=1

𝑝
𝑘=1 �

∑ 𝑒𝑥𝑝�𝛽𝑚0+∑ ∑ 𝑧𝑖𝑗𝑣𝑘𝑗𝛽𝑚𝑘0
𝑝
𝑗=1

𝑝
𝑘=1 �𝑠

𝑚=1
 

 
where i = 1 , … , s ;  j = 0 , … , p ; t = 1 , … , s and β sj = 0. 
 
Making 𝛾𝑡𝑗 = ∑ 𝑣𝑘𝑗𝛽𝑡𝑘

𝑝
𝑘=1  , the PCLR model, with linear discriminant functions, extended to 

polytomous responses is given by: 
 

�𝐺𝑡�𝐙𝐯𝑖� =
𝑒𝑥𝑝�𝛽𝑡0 + ∑ 𝑧𝑖𝑗𝛾𝑡𝑗

𝑝
𝑗=1 �

∑ 𝑒𝑥𝑝 �𝛽𝑖0 + ∑ 𝑧𝑖𝑗𝛾𝑚𝑗
𝑝
𝑗=1 �𝑠

𝑖=1

 

 
The Principal Components Quadratic Logistic Regression (PCQLR) is given by: 
 

𝑄�𝐺𝑘�𝐙𝐯𝑖� =
𝑒𝑥𝑝 �𝜒𝑘�

∑ 𝑒𝑥𝑝 �𝜒𝑖�𝑠
𝑖=1

 

 

where 𝜒𝑘 = 𝜒𝑘0 + ∑ 𝑧𝑖𝑗𝛾𝑘𝑗2
𝑝
𝑖=1 + ∑ 𝑧𝑖𝑗𝛾𝑘𝑗´𝛾𝑘𝑗´´ + ∑ 𝑧𝑖𝑗

�𝑝2�+𝑝

𝑖=�𝑝2�+1

�𝑝2�
𝑖=𝑝+1 𝛾𝑘𝑗 , k = 1 , … , s – 1; 𝜒𝑠 = 𝟎 

and j , j´´ = 1 , … , p; j´ = 1 , … , p – 1. 
 
In order to estimate the principal components model's parameters, one can apply the Maximum 
Likelihood Method. In the dichotomous case, Aguilera, Escabias and Valderrama (2006) also 
proposes two methods to solve the problem of choosing the optimum principal components that 
should be included in the model. However, the interested reader should to take in mind that, 
according Jolliffe (1982), principal components with small eigenvalues can be as important as 
those with large eigenvalues.  
In this paper the purpose is only to investigate the principal components model's classificatory 
performance in polytomous cases, using linear and quadratic forms, for practical purposes. In 
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order to formulate the model, the first step was to obtain the principal components of the 
covariates. We have used the first q principal components, with the largest variances, including 
principal components in the natural order, given by the explained variability. In the sequence, we 
fitted the quadratic logistic model, using the selected principal components as covariates. With 
respect to the QLR model, we propose to use as covariates the principal components of the 
[(𝑠 − 1)(𝑝 + 1)] �1 + 𝑝

2
� matrix I(χ). 

 
5. Applications 
 In this section we consider two benchmark data sets, taken from the trade literature. Iris 
Data, taken from Fisher (1936), and Fatty Acid Composition Data, taken from Brodnjak-Vončina 
et al. (2005). We have applied the CLR model, PCLR model, QLR model and PCQLR model to 
both data sets. The purpose is to compare the results provided by the four models, given by the 
Correct Classification Rate (CCR), defined as the percentage of observations that are correctly 
classified. A computer program which implements the approaches described previously has been 
written in Visual Basic 6.0 and runs on the HP Pavillion b1040br computer. The results achieved, 
in terms of performance, are given in the sequence. 
 
Example 1: Iris Data. There are three groups: Iris Setosa (G1), Iris Versicolor (G2) and Iris 
Virginica (G3). For each group there are 50 observations and four independent variables: Sepal 
Length, Sepal Width, Petal Length and Petal Width, all measured in mm. The reference group is 
Iris Virginica. Is well known that two groups, Iris Versicolor and Iris Virginica, overlap and form 
a cluster completely separated from Iris Setosa. The correct classification rates for HLR and 
PCLR models are summarized in Table 1. Table 2 displays the principal components and their 
cumulative percentage of the total variance. The correct classification rates for QLR and PCQLR 
models are summarized in Table 3. From Table 3, we can conclude that both models have high 
classification capability in terms of the correct classification rates. 
 

Table 1. Classification Matrix. Iris data. Linear Discriminant Functions. 

Model Observed Group Allocated Group 
𝐺1 𝐺2 𝐺3 

HLR 
𝐺1
𝐺2
𝐺3

 
1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.02 0.98

 

PCLR (1 p.c.) 
𝐺1
𝐺2
𝐺3

 
1.00 0.00 0.00
0.00 0.88 0.12
0.00 0.10 0.90

 

 
Table 2. Iris data. Variances (eigenvalues) 

Variance (λ) 2.9185 0.9140 0.1468 0.0207 
Cumulative Percentage of Total Variance 72.96 95.81 99.48 100 

 
 

Table 3. Classification Matrix. Iris data. Quadratic Discriminant Functions. 

Model Observed Group Allocated Group 
𝐺1 𝐺2 𝐺3 

QLR 
𝐺1
𝐺2
𝐺3

 
1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.02 0.98

 

PCQLR (3 p.c.) 
𝐺1
𝐺2
𝐺3

 
1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.02 0.98
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Example 2: Fatty Acid Data. There are 120 observations, five groups and seven variables, 
representing the percentage levels of seven fatty acids, namely palmitic (x1), stearic (x2), oleic 
(x3), linoleic (x4), linolenic (x5), eicosanoic (x6) and eicosenoic (x7) acids. In this paper we 
consider five groups: rapeseed (G1), sunflower (G2), peanut (G3), corn (G4) and pumpkin (G5) 
oils. In this paper the reference group is (G5) (pumpkin oil). The original data set have eight 
groups, and the complete table of the original data can be found in Brodnjak-Vončina et al. 
(2005). There are a high correlation between oleic and linoleic acids (r = – 0.9565). Table 4 
displays the classification matrix for the HLR and PCLR models. Table 5 displays the principal 
components and their cumulative percentage of the total variance. Table 6 displays the 
classification matrix for the QLR and PCQLR models. 
 

Table 4. Classification Matrix. Fatty acid data. Linear Discriminant. 

Model Observed Group Allocated Group 
G1        G2        G3        G4        G5 

HLR 

G1 
G2 
G3 
G4 
G5 

0.64     0.00     0.00     0.00     0.36 
0.00     0.95     0.00     0.00     0.05 
0.00     0.00     1.00     0.00     0.00 
0.00     0.00     0.00     1.00     0.00 
0.15     0.00     0.05     0.05     0.75 

PCLR (6 p.c.) 

G1 
G2 
G3 
G4 
G5 

0.64     0.00     0.00     0.00     0.36 
0.00     0.95     0.00     0.00     0.05 
0.00     0.00     0.96     0.00     0.04 
0.00     0.00     0.00     0.80     0.20 
0.17     0.06     0.03     0.06     0.68 

 
Table 5. Fatty acid data. Variances (eigenvalues) 

Variance (λ) 3.9092 1.0842 0.9325 0.7866 0.2053 0.0811 0.0001 
% of Total Variance 55.85 71.84 84.66 95.90 98.83 99.99 100 

 
 

Table 6. Classification Matrix. Fatty acid data. Quadratic Discriminant. 

Model Observed Group Allocated Group 
G1        G2        G3        G4        G5 

QLR 

G1 
G2 
G3 
G4 
G5 

0.82     0.00     0.00     0.00     0.18 
0.00     1.00     0.00     0.00     0.00 
0.00     0.00     1.00     0.00     0.00 
0.00     0.00     0.00     1.00     0.00 
0.00     0.00     0.00     0.00     1.00 

PCQLR (6 p.c.) 

G1 
G2 
G3 
G4 
G5 

0.73     0.00     0.00     0.00     0.27 
0.00     1.00     0.00     0.00     0.00 
0.00     0.00     1.00     0.00     0.00 
0.00     0.00     0.00     0.90     0.10 
0.00     0.03     0.00     0.05     0.92 

 
6. Conclusion 
 The purpose with this job is to develop and implement a simple and direct generalization 
for the Quadratic Logistic Regression Model, for polytomous response, which allows the 
reduction of the dimensions in the problem, and to explore the performance of the model when 
compared to the Classical Logistic Regression model with linear discriminant functions. In order 
to solve the problem that arises with the great number of unknown parameters, we have used the 
Principal Components Analysis (PCA), as well a generalization of the Hidden Logistic 
Regression Model, to deal with the complete separation. We can see that the PCA allows the 
reduction of the number of dimensions in a polytomous Quadratic Logistic Regression Model, 
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with continuous variables and avoiding the multicollinearity of these variables. For practical 
purposes, the main advantage of the HLR model is the existence and uniqueness of estimators. 
Furthermore, there are not computational difficulties to implement the referred approaches. With 
respect to the performance, we can see that the Quadratic Logistic Regression Model can provide 
better classification rates than the Classical Logistic Regression Model. 
 

In the future we intend to study the behaviour of the models that were approached with 
respect to aspects such as their performance regarding data sets with a reduced number of 
observations and the bias of the estimators that were obtained. 
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